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Abstract 

In this study the influence of the morphology in the polylactic acid/Cloisite30B 
(PLA/C30B) composites on the mechanical and fracture behavior of calendered films 
was evaluated. An image analysis was performed using TEM micrographs in order to 
complete the morphological study. The micrographs were taken from ultramicrotomic 
samples corresponding to the melting flow (MD) and transverse direction (TD) of the 
films. The image analysis showed intercalated particles and tactoids, which was in 
accordance to the wide angle X-ray scattering (WAXS) patterns. TEM micrographs also 
revealed highly oriented particles.  Uniaxial tensile tests were performed in the MD and 
TD directions finding a slight anisotropy of the films, which was associated to low level 
of chains orientation due to the calander processing. The fracture behavior was also 
evaluated in the MD and TD directions using deeply double-edge-notched (DDENT) 
specimens. The mechanical and fracture tests were evaluated on aging (brittle) and de-
aging (ductile) films. For ductile PLA/C30B composites, the reinforcement effect 
promoted by the clay particles was not evident. 

Introduction 

Polylactic acid (PLA) is a biodegradable polymer widely used in the past for medical 
applications. Nowadays, PLA has tremendous potential as an industrial commodity 
because of its attributes of biodegradability. This biopolymer is a linear aliphatic 
thermoplastic polyester and is produced from renewable resources via ring-opening 
polymerization of lactides.[1, 2] 

Commercial grades of PLA show similar attributes as polystyrene or polyethylene 
terephthalate and are considered to be a great alternative for the packaging sector, 
especially for bottles and disposable food containers.[2] This is the reason why the 
development of films made of PLA, along with their low environmental impact, has 
generated high expectations. Nevertheless, the performance of PLA is limited by its 
own brittle nature and mechanical properties. 

One potential solution to improve its mechanical properties is the addition of nanosized 
particles. Montmorillonite (MMT) clay, which consists of platelets with an inner 
octahedral sandwiched two silicate tetrahedral layers,[3-5] is frequently used as a filler 
to produce polymer-layered silicates (PLS). However, raw MMT clay often produces 
immiscible phases; hence, the ammonium ions are exchanged by more voluminous 
organic cations to form organo-montmorillonite (o-MMT) clay. The ammonium ions 
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increase both the clay galleries and the chemical compatibility between the hydrophilic 
clay surface and the organophilic polymer chains. 

The most common reason for adding o-MMT into a polymer matrix is to increase its 
stiffness and strength.[5-7] Well-dispersed and well-aligned clay platelets are effective 
in improving the elastic modulus; meanwhile, adequate molecular compatibility 
(chemical bonding) is the key to enhancing the adhesion between filler and matrix, 
increasing the strength of the composite. 

PLS can be formed using different processing techniques such as in situ polymerization 
or melt extrusion.[8-11] The latter is the most economical and flexible approach, 
because it involves compounding facilities used in commercial practice. 

After compounding, an important issue is the mechanical performance of the PLS 
concerning the morphology of the clay particles in the matrix.[11, 12] PLS, also known 
as polymer nanocomposites, are often categorized into four types based on the degree of 
exfoliation and dispersion: conventional miscible composites, where tactoids 
(aggregated states) exist; intercalated composites, where polymer chains are inserted 
into the galleries; partially intercalated composites, where some exfoliated and 
intercalated clusters are randomly distributed into the matrix; and exfoliated composites, 
where individual layers of ∼1 nm thickness are totally dispersed into the matrix. 

In recent years, several studies about PLA nanocomposites have been published.[5, 13-
16] However, to our knowledge, there are a few works dealing with the mechanical 
properties but not with the fracture behavior in a film form. 

The goal of this work was to prepare and characterize films of PLA with low amounts 
of o-MMT clay to relate the platelets' morphology with the mechanical properties and 
fracture behavior by applying the essential work of fracture (EWF) approach. For this, 
an extensive particle analysis was performed and also used to predict the elastic 
modulus based on the composite theory. 

Oftentimes, polymer nanocomposites are considered anisotropic materials; hence, in 
this work the PLA composite films are evaluated in both the melt (MD) and transverse 
(TD) directions. 

Experimental 

MATERIALS 

Two commercial grades of PLA from NatureWorks LLC (Blair, Nebraska, USA) were 
used in this work: PLA2002D (PLA96) and PLA4032D (PLA98), with 95.8% and 98% 
l-lactic acid enantiomer content, respectively. The flow index values were 7.0 g/10 min 
for both resins. According to the supplier, the Young modulus for both matrices is 
approximately 3.5 GPa. Cloisite 30B from Southern Clay Products (Gonzales, TX, 
USA) is the o-MMT clay used as the filler. Colisite 30B is organically modified with 
methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride (MT2EtOH) with a 
cation exchange capacity of 90 meq per 100 g, a density of 1.98 g/cm[3], and a weight 
loss on ignition of 30%. The particle sizes are 90% < 13 μm, 50% < 6 μm, and 10% < 



2 μm, and the galleries have a d spacing (d(001)) of 18.5 Å (2θ = 4.8°). The o-MMT was 
used as received. 

COMPOSITE AND FILM PREPARATION 

PLA composite films were prepared in a three-step melt-extrusion process using a 
corotating twin-screw extruder (Collin ZK 25, Ebersberg, Germany) with a screw 
diameter of 25 mm and an L/D ratio of 36. The twin-screw rotation speed was set at 85 
rpm with barrel temperatures between 145°C in the feed section and 200°C in the 
extrusion die. PLA pellets were dried at 80°C for 3 h in a dehumidifier (Piovan 
DSN506HE, Maria di Sala (Venice), Italy) prior to each melt-extrusion step. Similarly, 
C30B was vacuum dried under the same conditions (80°C for 3 h) in a desiccator. 

A masterbatch with a nominal filler content of 10 wt% was compounded in the first step 
of the melt-extrusion process. The masterbatch was homogenized in the second step. 
Finally, the third step was used to mix the masterbatch with neat PLA to obtain 
composites with nominal compositions of 0.5 and 2.5 wt% (PLA/0.5 and PLA/2.5C30B 
respectively). For this last extrusion step, the circular extrusion die used for the 
compounding (first and second steps) was replaced with a flat extrusion die to obtain 
the films, which were then calendered using a calender machine (Collin Teach Line 
(Ebersberg, Germany) with CR72-T chill rolls at 50°C) placed at the end of the extruder 
to obtain homogeneous films approximately 400 μm in thickness and 100 mm in width. 
The chill rolls' speed was set to avoid the polymer chain orientation induced by 
processing as much as possible. 

The amount of MMT of the composite films was determined following the ISO 3451-1 
plastics test standard (determination of ash, part 1) using a muffle furnace (Selecta® 
367 PE, JP Selecta S.A., Abrera, Barcelona, Spain) at 600°C until constant weight was 
achieved. The results are summarized in Table I. 

Table I. Clay Content, MFI and WAXS Data for Neat PLA, Unfilled PLA Films, and 
PLA Composite Films 
 

Material wt. % 
MMT* 

MFI  

(g/10 min) 

  2 (º)  d 

(nm) 

PLA96 --- 

 

7 ± 0.8        

PLA98 --- 7.4 ± 0.6        

PLA96 film --- 10 ± 1.1        

PLA98 film --- 9.7 ± 0.8        

C30B ---   5.0 --- --- 1.8 --- --- 



PLA96/0.5C film  0.4  9.9 ± 1.2  2.8 5.5 7.7 3.2 1.6 1.1 

PLA96/2.5C film  1.7  14.1 ± 0.9  2.8 5.7 --- 3.2 1.6 --- 

PLA98/0.5C film  0.3  11 ± 0.8  2.9 6.0 --- 3.0 1.5 --- 

PLA98/2.5C film  1.7  15.5 ± 1.4  2.4 6.1 --- 3.7 1.4 ---

 

MELT FLOW INDEX 

The melt flow index (MFI) is an assessment of average molecular mass, which is an 
inverse measure of the melt viscosity of polymers. Therefore, the larger the MFI value 
the lower the viscosity and, therefore, the average molecular weight of the polymer is 
reduced. 

Knowing the MFI of a polymer is vital in anticipating and controlling its processing. In 
this work, the MFI was determined for neat PLA, unfilled PLA films, and PLA 
composite films using a CEAST 684 MFI tester (Cerdanyola, Barcelona, Spain) (load 
2.16 kg, temperature 210°C, according to the ASTM D-1238 standard). 

The unfilled PLA films were obtained through the same composite film processing 
conditions, which included the three-step melt-extrusion process (using the twin-screw 
extruder) and the chill-rolls calender in the last extrusion step. Neat twice-processed 
PLA was used as the masterbatch and was diluted at 0.5 and 2.5 wt% with nonprocessed 
neat PLA during the third extrusion step to simulate the composite film processing. 

MORPHOLOGICAL	CHARACTERIZATION	

Relating the mechanical performance of the polymer composite to the o-MMT 
morphology is an important issue to be considered. 

Wide angle X-ray scattering (WAXS) and transmission electron microscopy (TEM) are 
so far the most common and useful characterization techniques for polymer 
nanocomposites. WAXS is relatively simple to carry out and allows determination of 
the platelet separation (d spacing), which is required to categorize polymer 
nanocomposites. However, many factors must be considered before stating if the 
composite is a conventional miscible, intercalated, or exfoliated composite.[5, 17] TEM 
observation is a far more direct way of visualizing composite morphology. The 
observation is simple, but the specimen preparation requires considerable skill and 
patience. Despite TEM allowing actual visualization of the particles' morphology, 
which is obviously relevant in performing the counting and analysis of the clay 
particles, this approach is criticized because it reveals the morphology in just a very 
small region. So, it is highly recommended to take samples from different locations and 
directions. 

In this work, the WAXS patterns were performed in the lateral zone of the films. The 
diffraction was run in a Siemens D5000D diffractometer (Munich, Germany) at room 
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As expected, the number of clay particles increased with the clay content but this 
increase was not linear if the amount of MMT clay was considered (Table I). The 
counting of the number of clay particles varied between 23% and 14% for the 
PLA96/2.5C30B and the PLA98/2.5C30B in TD and MD, respectively, in spite of both 
composites having similar amounts of MMT. Therefore, the higher the clay content the 
greater the tendency to become agglomerated, being the PLA98 composite films more 
sensitive to the formation of tactoid structures. 

The effective length of the clay particles (ℓp) seems to be inconclusive because it was 
not possible to appreciate an evident tendency in either the clay content or the grade of 
the PLA matrix. In a similar way, the thickness of the particles (tp) did not show any 
particular variation, and the data obtained for the aspect ratio (ℓp/tp) were even lower 
than that reported by other authors.[12, 29] 

The previous results seem to indicate that the mechanism for organoclay dispersion and 
exfoliation during the melt-extrusion process was not so effective when the PLA was 
mixed with o-MMT. It is well known that shear stress during the melt extrusion favors 
the breakup of large organoclay particles into dispersed stacks before individual 
platelets peel apart, which happens after delamination of the layered stacks.[30] The 
values of ℓp and ℓp/tp presented in this work (Table II) suggest that breakup of silicate 
tactoids as well as some diffusion of polymer chains between sandwiched platelets 
occur with an inefficient delamination process and poor exfoliation. The previous 
results could be attributed to a low shear level promoted by the reduction in the PLA 
viscosity when adding clay particles during the melt-extrusion process, according to the 
MFI values presented in Table I. Notwithstanding this, homogeneous dispersion of the 
clay particles was found in the PLA composite films, as revealed by the TEM 
micrographs in Fig. 3. 

By relating ℓp in the MD and the TD directions, it is possible to note that ℓpTD/lpMD 
results in values close to 1 (Table II), which gives an idea about the exfoliation process 
and the isotropic level in the PLA composite films. The similar values of ℓp obtained in 
both directions should be indicative of the three-step extrusion process that has not been 
so effective in skewing the platelet stacks and creating larger effective length particles. 

In addition, it is very important to take into account that the imageJ software estimates 
the clay particles' dimensions as elliptical shapes; hence, the image analysis results are 
highly complicated for composites where the clay particles are not perfectly aligned or 
when the high exfoliation is not well developed. In addition, when manipulating the 
TEM micrographs some pixels are bleared or even deleted, wherewith the finest and the 
smallest particles could be not considered. Therefore, the image analysis becomes 
trustworthy for composites with laminate morphology (i.e., highly exfoliated and 
oriented laminates). Otherwise, the image analysis must be used as a general tendency 
that it allows complementing the composite morphologies without being conclusive. In 
our case, where the clay particles are oriented but not laminated (Fig. 4), the results 
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When relating the experimental values with the theoretical predictions, it is possible to 
observe that the experimental data are not well adjusted to the Halpin–Tsai model, as 
plotted in Fig. 5. This could be attributed to several factors such as the orientation of the 
polymer chains, the nature of the organomodifier, and the level of degradation of the 
polymer matrix that are not considered by the theory. 

Table III shows the mechanical parameters obtained from the stress versus strain curves 
corresponding to the specimens machined from the MD and TD directions, as 
schematized in Fig. 1. 

Table III. Mechanical Parameters of the PLA Composite Films 

    Untreated Films Thermal-Treated Films 

Material 
Drawing 
Direction 

E (GPa) 
σy 
(MPa) 

εb (%) E (GPa) σy (MPa) εb (%) 

PLA96/0.5C MD 

  

3.9 ± 0.1 74 ± 2 14 ± 3 3.6 ± 0.2 65 ± 2 385 ± 8 

PLA96/2.5C 4.2 ± 0.2 75 ± 2 22 ± 4 3.6 ± 0.1 65 ± 1 414 ± 19 

PLA96/0.5C TD 

 

3.9 ± 0.2 66 ± 4 3 ± 1 3.6 ± 0.1 62 ± 3 411 ± 38 

PLA96/2.5C 4.3 ± 0.3 65 ± 3 4 ± 1 3.8 ± 0.1 63 ± 2 384 ± 10 

PLA98/0.5C MD 

  

4.1 ± 0.1 72 ± 3 6 ± 2 3.4 ± 0.2 62 ± 3 386 ± 16 

PLA98/2.5C 4.4 ± 0.2 74 ± 2 12 ± 3 3.6 ± 0.1 62 ± 3 361 ± 10 

PLA98/0.5C TD 

  

3.7 ± 0.2 62 ± 3 3 ± 1 3.5 ± 0.1 60 ± 2 308 ± 28 

PLA98/2.5C 4.3 ± 0.3 64 ± 2 7 ± 2 3.7 ± 0.2 61 ± 3 345 ± 35 

With respect to the filler content, no significant changes in the tensile strength were 
found by increasing the clay content, which suggests that in spite of a good interaction 
between the matrix and the filler probably existing, it is not good enough to improve the 
strength of the PLA composite films, at least not up to 2.5 wt% of clay. Furthermore, 
the tensile strength for the specimens tested in MD was a little bit higher than the 
specimens tested in the TD direction. According to the preceding sections, the lpTD/lpMD 
relationship was close to 1; hence, the results would be associated more with the 
induced polymer chain orientation in MD during the casting of the film than to the 
filler.[7] 

An unexpected behavior on ductility was found because the elongation increased with 
the clay content, which seems to be associated with the plasticizing effect promoted by 
the organomodifier of the Cloisite 30B. This behavior was notably more evident in the 
MD than the TD direction, which could be attributed to the anisotropy caused by the 
orientation of the chains in MD. 

With respect to the thermal treatment, it is possible to appreciate that the stiffness and 
strength of the PLA composite films are clearly lower if they are compared to the 
untreated films. The effect of the thermal treatment is to increase the free volume 
through the easy movement of the polymer chains, which allows greater displacement to 
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versus ℓ and β is determined from the slope of the straight line. The results are 
presented in Table IV. 

The wp term shows similar values in spite of the increase in the clay content, which is an 
unexpected behavior because the rigid clay particles limit the work dissipated during the 
fracture process.[7] Therefore, the results should imply the clay particles do not hinder 
the plastic flow by applying the thermal treatment. 

Smooth variations were found in the specimens tested in the MD direction where wp 
was slightly higher with respect to the TD direction. 

The main differences were related to the shape factor, where the values of β increase 
slightly with the clay content, being more notorious when the PLA composite films are 
drawing in the MD than the TD direction. It is worth noticeable that the values of β 
measured in this work were very small if they are compared with other works.[7] It has 
been stated that in PLS the difference in the size of β is mainly related to the energy 
dissipation promoted by the skewed clay particles[7] promoting effective stress transfer. 
Therefore, the greater the energy dissipation the greater the size of OPZ (Fig. 8), and the 
β factor increases as well. In this work, large skewed particles were not developed at all, 
according to the data obtained from the ℓpTD/ℓpMD relationship presented in Table II, and 
the results obtained could be related more to the orientation of the polymer chains in 
MD than the filler. 

Conclusions 

In this work, calendered PLA composite films were successfully prepared using the 
melt extrusion process. The PLA was shown to be very sensitive to the compounding 
process, which was mainly associated with temperature and shear stress, which caused 
the development of tactoids and intercalated structures. 

The image analysis was very useful for counting of the number of clay particles, but 
some problems came up when sizing the filler. Both the lp and tp dimensions were 
inconclusive because of distorted and poorly aligned particles, which were associated 
with the poor shearing produced by the low viscosity during melt extrusion. 

The influence of the clay particles' morphology on their mechanical properties and 
fracture behavior was evaluated in the MD and TD directions, finding slight traces of 
anisotropy caused by the polymer chains orientation that improved the mechanical 
performance of the films in the MD direction. 

The mechanical and fracture results were analyzed using unthermal treated films (aging) 
and treated films (deaging). For aging composite films, the clay improved the stiffness 
of the PLA but the tensile strength did not show significant variations. The ductility 
increased with the clay content because of the plasticizing effect promoted by the 
organomodifier of the filler. 

The we term increases with the addition of the clay due to the high stiffness nature of the 
clay and the interaction between the PLA and the organomodifier. The βwp increases 
with the addition of the clay particles as a consequence of the plasticizing effect. 



The free volume caused by applying the thermal treatment to the PLA composite films 
overlaps the true contribution of the clay particles to the mechanical properties and the 
fracture parameters to be clarified. 

Acknowledgments 

The authors thank the MICINN of Spain for the financing of the MAT2010-19721-C02-
01 project. J. C. Velazquez-Infante thanks to the AECID for the support in the form of a 
doctoral research grant. 

References 

1Auras, R. Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, 
2002. 

2Auras, R.; Harte, B.; Selke, S. Macromol Biosci 2004, 4, 835–864. 

3Singh, S.; Ray, S. S. J Nanosci Nanotechnol 2007, 7, 2596–2615. 

4Vaia, R. Nature Mater 2005, 4, 429–430. 

5Winey, K. I.; Vaia, R. A. MRS Bull 2007, 32, 314–322. 

6Franco-Urquiza, E.; Gamez Perez, J.; Sánchez-Soto, M.; Santana, O. O.; 
Maspoch, M. L. Polym Int 2010, 59, 778–786. 

7Maspoch, M. L.; Franco-Urquiza, E.; Gamez-Perez, J.; Santana, O. O., Sánchez-
Soto, M. Polym Int 2009, 58, 648–655. 

8Wu, T. M.; Wu, C. Y. Polym Degrad Stab 2006, 91, 7–7. 

9Chang, J.-H.; An, Y. U.; Cho, D.; Giannelis, E. P. Polymer 2003, 44, 3715–3720. 

10Cui, L.; Paul, D. R. Macromol Symp 2011, 301, 9–15. 

11Fornes, T. D.; Yoon, P. J.; Keskkula, H.; Paul, D. R. Polymer 2001, 42, 9929–
9940. 

12Fornes, T. D.; Paul, D. R. Polymer 2003, 44, 4993–5013. 

13Basilissi, L.; Di Silvestro, G.; Farina; H.; Ortenzi; M. A. J Appl Polym Sci 2013, 
128, 3057–3063. 

14Fukushima, K.; Tabuani, D.; Arena, M.; Gennari, M.; Camino, G. React 
Function Polymers, 73, 540–549. 

15Gorrasi, G.; Milone, C.; Piperopoulos, E.; Lanza, M.; Sorrentino, A. Appl Clay 
Sci 2013, 71, 49–54. 



16Zaidi, L.; Bruzaud, S.; Bruzaud, S. p.; Kaci, M.; Kaci, M.; Bourmaud, A.; 
Gautier, N.; Grohens, Y. Polym Degrad Stab 2013, 98, 348–355. 

17Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R. E. J Compos Mater 2006, 40, 
1511–1575. 

18Halpin, J. C. J Compos Mater 1969, 3, 732–734. 

19Clutton, E.; D. R. Moore, A. P.; Williams, J. G. European Structural Integrity 
Society; Elsevier: Amsterdam, 2001; pp. 177–195. 

20Cotterell, B.; Reddel, J. K. Int J Fract 1977, 13, 267–277. 

21Broberg, K. B. J Mech Phys Solids 1975, 23, 215–237. 

22Mai, Y.-W.; Cotterell, B. Int J Fract 1986, 32, 105–125. 

23Ferrer-Balas, D.; Maspoch, M. L.; Martinez, A. B.; Santana, O. O. Polymer 
2001, 42, 1697–1705. 

24Gámez-Pérez, J.; Velazquez-Infante, J. C.; Franco-Urquiza, E.; Pages, P.; 
Carrasco, F.; Santana; O. O.; Maspoch, M. L. eXPRESS Polym Lett 2011, 5, 82–91. 

25Cailloux, J.; Santana, O. O.; Franco-Urquiza, E.; Bou, J. J.; Carrasco, F.; 
Maspoch, M. L. J Mater Sci 2014, 49, 4093–4107. 

26Martínez, A. B.; Segovia, A.; Gamez-Perez, J.; Maspoch, M. L. Eng Fract Mech 
2009, 76, 1247–1254.  

27Bigg, D. M. Adv Polym Technol 2005, 24, 69–82. 

28Alexandre, M.; Dubois, P. Mater Sci Eng, R 2000, 28, 1–63. 

29Fornes, T. D.; Yoon, P. J.; Hunter, D. L.; Keskkula, H.; Paul, D. R. Polymer 
2002, 43, 5915–5933. 

30Saito, T.; Okamoto, M.; Hiroi, R.; Yamamoto, M.; Shiroi, T. Macromol Rapid 
Commun 2006, 27, 1472–1475. 

31Arkhireyeva, A.; Hashemi, S. Polymer 2002, 43, 289–300. 

32Gray, R.; ESIS (Ed.): European Structural Integrity Society (ESIS) - TC4, 1993. 

 

 

 

 



 

 

 

 


