
Adaptive MapReduce Scheduling

in Shared Environments

Jordà Polo, Yolanda Becerra, David Carrera,

Jordi Torres and Eduard Ayguadé

Barcelona Supercomputing Center (BSC) -

Technical University of Catalonia (UPC)

Malgorzata Steinder

IBM T.J. Watson Research Center

Yorktown, NY

Abstract—In this paper we present a MapReduce task sched-
uler for shared environments in which MapReduce is executed
along with other resource-consuming workloads, such as trans-
actional applications. All workloads may potentially share the
same data store, some of them consuming data for analytics
purposes while others acting as data generators. This kind of
scenario is becoming increasingly important in data centers where
improved resource utilization can be achieved through workload
consolidation, and is specially challenging due to the interaction
between workloads of different nature that compete for limited
resources. The proposed scheduler aims to improve resource
utilization across machines while observing completion time goals.
Unlike other MapReduce schedulers, our approach also takes into
account the resource demands for non-MapReduce workloads,
and assumes that the amount of resources made available to
the MapReduce applications is variable over time. As shown
in our experiments, our proposal improves the management of
MapReduce jobs in the presence of variable resource availability,
increasing the accuracy of the estimations made by the scheduler,
thus improving completion time goals without an impact on the
fairness of the scheduler.

Keywords—MapReduce, Scheduling, Distributed, Analytics,
Transactional, Adaptive, Availability, Shared Environments

I. INTRODUCTION

In recent years, the industry and research community have
witnessed an extraordinary growth in research and develop-
ment of data-related technologies. In addition to distributed,
large-scale data processing workloads such as MapReduce [1],
other distributed systems have been introduced to deal with the
management of huge amounts of data [2] [3] providing at the
same time support for both data-analytics and transactional
workloads.

Instead of running these services in completely dedicated
environments, which may lead to underutilized resources, it
is becoming more common to multiplex different and com-
plementary workloads in the same machines. This is turning
clusters and data centers into shared environments in which
each one of the machines may be running different applications
simultaneously at any point in time: from database servers
to MapReduce jobs to other kinds of applications [4]. This
constant change is challenging since it introduces higher
variability and thus makes performance of these systems less
predictable.

In particular, in this paper we consider an environment in
which data analytics jobs, such as MapReduce applications,

are collocated with transactional workloads. In this scenario,
deep coordination between management components is critical,
and single applications can not be considered in isolation but
in the full context of mixed workloads in which they are
deployed. Integrated management of resources in presence
of MapReduce and transactional applications is challenging
since the demand for transactional workloads is known to be
bursty and varying over time, while MapReduce schedulers
usually expect that available resources are unaltered over time.
Transactional workloads are usually of higher priority than
analytics jobs because they are directly linked to the QoS
perceived by the users. As such, in our approach transactional
workloads are considered as critical and we assume that only
resources not needed for transactional applications can be
committed to MapReduce jobs.

In this work we present a novel scheduler, the Reverse-
Adaptive Scheduler, that allows the integrated management
of data processing frameworks such as MapReduce along
with other kinds of workloads that can be used for both,
transactional and analytics workloads. The scheduler expects
that each job is associated with a completion time goal that is
provided by users at job submission time. These goals are
treated as soft deadlines as opposed to the strict deadlines
familiar in real-time environments: they simply guide workload
management. We also assume that the changes in workload
intensity over time for transactional workloads can be well
characterised, as has been previously stated in the literature [5].

Existing previous work on MapReduce scheduling involved
estimating the resources that needed to be allocated to each job
in order to meet its completion goals [6], [7], [8]. This naive
estimation worked fine under the assumption that the total
amount of resources remained stable over time. However, in a
scenario with consolidated workloads we are targeting a more
dynamic environment in which resources are shared with other
frameworks and availability changes depending on external and
a priori unknown factors. The scheduler proposed in this paper
proactively deals with dynamic resource availability while still
being guided by completion time goals.

While resource management has been widely studied in
MapReduce environments, to our knowledge no previous work
has focused on shared scenarios with transactional workloads.

The remaining sections of the paper are organized as
follows: We first present a motivating example to illustrate
the problem that the proposed scheduler aims to address in

2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-2784-5/14 $31.00 © 2014 IEEE

DOI 10.1109/CCGrid.2014.65

61

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41778375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section II. After that, we provide an overview of the problem in
Section III, and then describe our scheduler in Section IV. An
evaluation of our proposal is studied in Section V. Finally, we
discuss related work in Section VI and conclude in Section VII.

II. MOTIVATING EXAMPLE

Consider a system running two major distributed frame-
works: a MapReduce deployment used to run background
jobs, and a distributed data-store that handles transactional
operations and serves data to a front-end. Both workloads
share the same machines, but since the usage of the front-
end changes significantly over time depending on the activity
of external entities, so does the availability of resources left
for the MapReduce jobs. Notice that the demand of resources
over time for the front-end activities is supposed to be well
characterized [5], and therefore it can be predicted in the form
of a given function f(t) known in advance.

In the proposed system, the MapReduce workload consists
of 3 identical jobs: J1, J2, and J3. All jobs are submitted at
time 0, but have different deadlines: D1 (6.5h), D2 (15h), and
D3 (23.1h). Colocated with the MapReduce jobs, we have a
fron-end driven transactional workload that consumes available
resources over time. The amount of resources committed to the
critical transactional workload is defined by the function f(t).

Figure 1 shows the expected outcome of an execution using
a MapReduce scheduler that is not aware of the dynamic
availability of resources and thus assumes resources remain
stable over time. Figure 2 shows the behaviour of a scheduler
aware of changes in availability and capable of leveraging the
characteristics of other workloads to scheduler MapReduce
jobs. In both Figures, the solid thick line represents f(t).
Resources allocated to the transactional workload are shown
as the white region on top of f(t), while resources allocated to
the MapReduce workload are shown below f(t), being each
job represented by a different pattern. X-axis shows time, while
Y-axis represents compute nodes allocated to the workloads.

Figure 1 represents the expected behavior of a scheduler
that is not aware of the presence of other workloads. As it is
not able to predict a future reduction in avaialable resources,
it is not able to cope with dynamic availability and misses the
deadline of the first two jobs because it unnecessarily assigns
tasks from all jobs (e.g. from time 0 to 5, and from time
7 to 11 approximately). On the other hand, Figure 2 shows
the behaviour of the scheduler proposed in this paper, the
Reverse-Adaptive Scheduler, which distributes nodes across
jobs considering future availability of resources. From time
0 to D1, most of the tasktrackers are assigned tasks from J1,
and the remaining to J2 since it also needs those resources
to reach its goal on time. From time D1 to D2, most of the
resources go to J2 in order to meet a tight goal. However,
as soon as J2 is estimated to reach its deadline, a few tasks
from J3 are assigned as well starting around time 4. Finally,
from time D2 until the end only tasks from J3 remain to be
executed.

III. PROBLEM STATEMENT

We are given a cluster of machines, formed by a set of
nodes N = {1, . . . , N} in which we need to run different
workloads. We use n to index the set of nodes. We are also

6 12 18 24

Hours

0

20

40

60

80

100

N
u
m
b
e
r
o
f
n
o
d
e
s

D1 D2 D3

J1 J2 J3

Fig. 1. Distribution of assigned resources over time running the sample work-
load using the Adaptive Scheduler [6] without dynamic resource availability

6 12 18 24

Hours

0

20

40

60

80

100

N
u
m
b
e
r
o
f
n
o
d
e
s

D1 D2 D3

J1 J2 J3

Fig. 2. Distribution of assigned resources over time running the sample
workload using the Reverse-Adaptive Scheduler

given a set of MapReduce jobs J = {1, . . . , J}, that has to
be run in N . We use j to index the set of MapReduce jobs.

Each node n hosts two main processes: a MapReduce slave
and a non-MapReduce process that represents another kind of
workload. While MapReduce usually consists of a tasktracker
and a datanode in Hadoop terminology, we summarize both of
them for simplicity and refer to them as the tasktracker pro-
cess hereafter. Similarly, The non-MapReduce process could
represent any kind of workload but we identify it as data-store
in this paper.

We refer to the set of MapReduce processes, or tasktrack-
ers, as T T = {1, . . . , N} and the set of data-store processes
committed to the front-end activity as DS = {1, . . . , N}, and
we use tt and ds respectively to index these sets.

With each node n we associate a series of resources, R =
{1, . . . , R}. Each resource of node n has an associated capacity

62

Ωn,1, . . . ,Ωn,r, which is shared between the capacity allocated

to the data-store and to the tasktracker so that Ωn,1 = (Ωds
n,1+

Ωtt
n,1), . . . ,Ωn,r = (Ωds

n,r + Ωtt
n,r), where the capacity of the

data-store takes preference over the tasktracker.

The usage of each data-store ds changes over time de-
pending on the demand imposed by its users, represented as
a function f(t). This function is a prediction of expected
workload intensity over time, and affects the resource capacity
reserved for each data-store, Ωds

n,1, . . . ,Ω
ds
n,r. In turn, since the

capacity of each node remains the same, the available resources
for each tasktracker tt, Ωtt

n,1, . . . ,Ω
tt
n,r, also changes to adapt

to the remaining capacity left by the data-store.

A MapReduce job (j) is composed of a set of tasks, already
known at submission time, that can be divided into map tasks
and reduce tasks. Each tasktracker tt provides to the cluster a
set of job-slots in which tasks can run. Each job-slot is specific
for a particular job, and the scheduler will be responsible for
deciding the number of job-slots to create on each tasktracker
for each job in the system.

Each job j can be associated with a completion time goal,

T
j
goal, the time at which the job should be completed. When

no completion time goal is provided, the assumption is that
the job needs to be completed at the earliest possible time.

Additionally, with each job we associate a resource con-
sumption profile. The resource usage profile for a job j consists
of a set of average resource demands Dj = {Γj,1, . . . ,Γj,r}.
Each resource demand consists of a tuple of values. That is,
there is one value associated for each task type and phase (map,
reduce in shuffle phase, and reduce in reduce phase, including
the final sort).

We use symbol P to denote a placement matrix with the
assignment of tasks to tasktrackers, where cell Pj,tt repre-
sents the number of tasks of job j placed on tasktracker
tt. For simplicity, we analogously define PM and PR, as
the placement matrix of Map and Reduce tasks. Notice that
P = PM +PR. Recall that each task running in a tasktracker
requires a corresponding slot to be created before the task
execution begins, so hereafter we assume that placing a task
in a tasktracker implies the creation of an execution slot in
that tasktracker.

IV. REVERSE-ADAPTIVE SCHEDULER

The driving principles of the scheduler are resource avail-
ability awareness and continuous job performance manage-
ment. The former is used to decide task placement on task-
trackers over time, while the latter is used to estimate the
number of tasks to be run in parallel for each job in order
to meet performance objectives, expressed in the form of
completion time goals. Job performance management has been
extensively evaluated and validated in our previous work,
presented as the Adaptive Scheduler [6] [7]. In this paper we
extend the resource availability awareness of the scheduler
when the MapReduce jobs are collocated with other time-
varying workloads.

One key element of our proposal in this paper is the
variable Sfit, which is an estimator of the minimal number
of tasks that should be allocated in parallel to a MapReduce
job to keep its chances to reach its deadline, assuming that

the available resources will change over time as predicted by
f(t). Notice that the novelty of this estimator is the fact that
it also considers the variable demand of resources introduced
by other external workloads. Thus, the main components of
the Reverse-Adaptive Scheduler, as described in the following
sections, are:

• Sfit estimator. Described in Section IV-B.

• Utility function that leverages Sfit used as a per-job
performance model. Described in Section IV-C.

• Placement algorithm that leverages the previous two
components. Described in Section IV-D.

A. Intuition

The intuition behind the reverse scheduling approach is
that it divides time into stationary periods, in which no job
completions are expected. One period ends and starts in
instants in which a job completion time goal is expected. When
a job is expected to complete at the end of a period, the
scheduler calculates the amount of resource to be allocated
during the period for the job to make its completion goal.
If the available resources are not enough, the amount of
pending work is pushed back to the immediately preceding
period. Notice that the amount of the available resources for
the period is determined by the function f(t), that estimates
the resources that will have to be committed to the non-
MapReduce workloads. When more than one job co-exists
in the same period, they compete for the available resources,
and they are allocated following a fairness criteria that will
try to make all jobs obtain the same utility from the decided
schedule.

For the sake of clarity, Figure 3 retakes the example
presented in Section II and shows how the placement decision
is made step by step. Starting at the desired completion time,
which is represented by the deadline of the last job, we assign
as many tasks as possible from the jobs that are supposed to
be running within that timeframe, compressed between that
deadline and the previous one. In this case only J3 is running
and we are able to assign most of its tasks, as shown in
Figure 3(a). Next we estimate the timeframe between time
7 and 15 as shown in Figure 3(b), in which we would like to
run all the tasks from J2 and the remaining ones from J3. The
scheduler is able to run the remaining tasks from J3, but since
there aren’t enough resources to run all the tasks from J2, the
remaining ones are carried to the last timeframe. Similarly, in
the final step of the estimation as shown in Figure 3(c), the
scheduler evaluates the timeframe between 0 and 7, in which
it is supposed to execute J1 and the remaining tasks from J2.

Once the estimation of expected availability is completed,
the scheduler is aware of all the steps needed to reach its
desired state from the current state, and therefore proceeds to
create the next placement of jobs that will satisfy its final goal.

B. Estimation of the resources to allocate to each job

We consider a scenario in which jobs are dynamically
submitted by users. Each submission includes both the job’s
completion time goal (if one is provided) and its resource
consumption profile. This information is provided via the job
configuration file. The scheduler maintains a list of active

63

6 12 18 24

Hours

0

20

40

60

80

100

N
u
m
b
e
r
o
f
n
o
d
e
s

D2 D3

(a)

6 12 18 24

Hours

0

20

40

60

80

100

N
u
m
b
e
r
o
f
n
o
d
e
s

D1 D2

(b)

6 12 18 24

Hours

0

20

40

60

80

100

N
u
m
b
e
r
o
f
n
o
d
e
s

D1

(c)

Fig. 3. Step by step estimation with the Reverse-Adaptive Scheduler

jobs and a list of tasktrackers. For each active job it stores
a descriptor that contains the information provided when the
job was submitted, in addition to state information such as
number of pending tasks. For each tasktracker tt, the sched-
uler also knows its resource capacity at any point in time,
Ωtt,1, . . . ,Ωtt,r since it can be derived from the function that
describes the transactional workload pattern, f(t). Note that
predicting long-term usage patterns of such workloads has
been studied before [9]. While some workloads are inherently
unpredictable, the prediction error is small compared to overall
workload variability, and there are also well known ways of
dealing with it such as adding a buffer to cover for the error.

For any job j in the system, let s
j
pend be the number of

map tasks pending of execution. The scheduler estimates the

Algorithm 1 Reverse fitting algorithm to estimate sfit

Require: J : List of Jobs in the system; s
j
pend: Number of

pending map tasks for each job; Γj and Ωtt: Resource
demand and capacity for each job and tasktracker corre-
spondingly, as used by the auxiliary function fit

1: for j in J do

2: s
j
fit = s

j
pend

3: end for
4: P = []
5: Sort J by completion time goal
6: for j in J do

7: a = T
next(J)
goal // deadline for the next job in J

8: b = T
j
goal // deadline for j

9: for p in P do
10: if s

p
fit > 0 then

11: s
p
fit = s

p
fit − fit(p, a, b)

12: end if
13: end for
14: if s

j
fit > 0 then

15: s
j
fit = s

j
fit − fit(j, a, b)

16: end if
17: Add j to P
18: end for
19: return s

j
fit for each job in J

minimum number of map tasks that should be allocated con-

currently during the next placement cycle, s
j
fit, by reversing

the expected execution assuming all jobs meet their completion

time goal T
j
goal, and relying on the observed task length (μj)

and the availability of resources over time (Ωtt).

Algorithm 1 shows how this estimation takes place. We

first start assuming that for each job j, s
j
fit equals the number

of pending tasks s
j
pend (lines 1-3), and then proceed to subtract

as many tasks as possible beginning from the job with the last
deadline to the job with the earliest deadline (lines 5-8), and as
long as they fit within the availble amount of resources (lines
9-17). The algorithm uses the fit() function, which given a
job j and two points in time a and b returns the amount of
tasks from job j that can be assigned between time a and b,
taking into consideration the profile and resource requirements
of said job. Notice also how on every iteration we try to fit
tasks between the two last deadlines (lines 7-8), and try to
assign tasks from jobs with the latest deadlines first as long as
they still have remaining tasks left (lines 9-13).

In addition to the main estimator s
j
fit, which estimates

the minimum number of tasks to be allocated for each job
during the next placement cycle, we also calculate the average
number of tasks that should be allocated over time considering
a fixed availability of resources equal to the average amount
of resources from current time to its deadline, sjreq . The latter
is used to assign remaining the resources left after allocating
the minimum number of tasks with the former, if any.

C. Performance Model

To measure the performance of a job given a placement
matrix, we define a utility function that combines the number
of map and reduce slots allocated to the job with its com-

64

pletion time goal and job characteristics. Below we provide a
description of this function.

Given placement matrices PM and PR, we can define the

number of map and reduce slots allocated to a job j as s
j
alloc =∑

tt∈T T PM
j,tt and r

j
alloc =

∑
tt∈T T PR

j,tt correspondingly.

Based on these parameters and the previous definitions

of s
j
pend and r

j
pend, we define the utility of a job j given

a placement P as:

uj(P) = uM
j (PM) + uR

j (P
R), where P = PM + PR (1)

and where uM
j is a utility function that denotes increasing

satisfaction of a job given a placement of map tasks, and uR
j

is a utility function that shows satisfaction of a job given a
placement of reduce tasks. The definition of both is as follows:

uM
j (PM) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(sj
alloc

)

log(sj
fit

)
− 1 s

j
alloc < s

j
fit

s
j

alloc
−s

j

fit

2×(sjreq−s
j

fit
)

s
j
fit < s

j
alloc < sjreq

s
j

alloc
−sjreq

2×(sj
pend

−s
j
req)

+ 1
2 s

j
fit < sjreq < s

j
alloc

s
j

alloc
−s

j

fit

s
j

pend
−s

j

fit

sjreq ≤ s
j
fit < s

j
alloc

(2)

uR
j (P

R) =
log(rjalloc)

log(rjpend)
− 1 (3)

Notice that in practice a job will never get more tasks
allocated to it than it has remaining: to reflect this in theory
we cap the utility at uj(P) = 1 for those cases.

The definition of u differentiates between three cases: (1)
the satisfaction of the job grows logarithmically from −∞
to 0 if the job has fewer map slots allocated to it than it
requires to meet its completion time goal; (2) the function

grows linearly between 0 and 0.5, when s
j
alloc = sjreq and

thus in addition to the absolute minimum required for the next
control cycle, the job is also allocated the estimated number
of slots required over time to meet the completion time goal;
and (3) the function grows linearly between 0.5 and 1.0, when

s
j
alloc = s

j
pend and thus all pending map tasks for this job are

allocated a slot in the current control cycle.

Notice that uM
j is a monotonically increasing utility func-

tion, with values in the range (−∞, 1]. The intuition behind
this function is that a job is unsatisfied (uM

j < 0) when
the number of slots allocated to map tasks is less than the
minimum number required to meet the completion time goal
of the job. Furthermore, the logarithmic shape of the function
stresses the fact that it is critical for a job to make progress
and therefore at least one slot must be allocated. A job is
no longer unsatisfied (uM

j = 0) when the allocation equals

the requirement (s
j
alloc = sjreq), and its satisfaction is positive

(uM
j > 0) and grows linearly when it gets more slots allocated

than required. The maximum satisfaction occurs when all the
pending tasks are allocated within the current control cycle

(s
j
alloc = s

j
pend). The intuition behind uR

j is that reduce tasks
should start at the earliest possible time, so the shuffle sub-
phase of the job (reducers pulling data produced by map
tasks) can be fully pipelined with execution of map tasks. The
logarithmic shape of this function indicates that any placement
that does not run all reducers for a running job is unsatisfac-
tory. The range of this function is [−1, 0] and, therefore, it
is used to subtract satisfaction of a job that, independently
of the placement of map tasks, has unsatisfied demand for
reduce tasks. If all the reduce tasks for a job are allocated,
this function gets value 0 and thus, uj(P) = uM

j (PM).

sj
fit = 10

sj
req = 15

sj
pend = 35

rjpend = 10

 0 5 10 15 20 25 30 35 40 45 50

Allocated Map Slots

sj
alloc

 0 5 10 15 20 25 30 35 40 45 50

Allocated Reduce Slots

rjalloc

-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
 0
 1

Utility

Fig. 4. Shape of the Utility Function when s
j

fit
= 10, s

j
req = 15 s

j

pend
=

35, and r
j

pend
= 10

Figure 4 shows the generic shape of the utility function
for a job that requires at least 10 map tasks allocated during

the next cycle (s
j
fit = 10), 15 map tasks concurrently over

time (sjreq = 15) to meet its completion time goal, has 35

map tasks (s
j
pend = 35) pending to be executed, and has been

configured to run 10 reduce tasks (r
j
pend = 10), none of which

have been started yet. On the X axis, a variable number of

allocated slots for reduce tasks (r
j
alloc) is shown. On the Y

axis, a variable number of allocated slots for map tasks (s
j
alloc)

is shown. Finally, the Z axis shows the resulting utility value.

D. Job Placement Algorithm

Given an application placement matrix P , a utility value
can be calculated for each job in the system. The performance
of the system can then be measured as an ordered vector of
job utility values, U . The objective of the scheduler is to find
a new placement P of jobs on tasktrackers that maximizes the
global objective of the system, U(P), which is expressed as
follows:

max min
j

uj(P) (4)

min Ωtt,r −
∑
tt

(
∑
j

Pj,tt) ∗ Γj,r ∀r (5)

such that

∀tt∀r (
∑
j

Pj,tt) ∗ Γj,r ≤ Ωtt,r (6)

and Ωn,r = Ωtt,r +Ωds,r (7)

65

���������	
����
������
�	��������	�

�

��������	

	���

�������	�
��	����
����

�
�
�
�
�
�
�
�

����
��������

����	�����
�
����
����	�������
��

��
���������	���

�

	�����
�
�� �� ���������� �� �� �

����� �� ���������������	��
������������� ��������

!"�������#���������
$�

�	���%	
����&�

�� ��

��� ����� �

������
����������	

'	
�������
������
����

�

����#��	���
�(���
��(�&���
��

�
�����&����&
� ��

�������	����	���)����
� ��

�*�+ ���	���	
��������
�	���%��

����
��&��%�	��

��	���&����	�����&�

������
�����
� ���� ��� ��

��,�����&�
!
�	�����

-�&������ ��� ��

�� �
���

���
�������

������	
��	��
���
�������
�����	
����

���������
�
-�&����

�

#���������
����	�%��

����-�	�	� �
����������

�

��
����%�&����

�����������������

� �
�

Fig. 5. System architecture of the Reverse-Adaptive Scheduler

This optimization problem is a variant of the Class Con-
strained Multiple-Knapsack Problem. Since this problem is
NP-hard, the scheduler adopts a heuristic inspired by [10].
While not described in this paper, the Placement Algorithm
itself is the same as that described in [7], but using the
proposed utility function described in Section IV-C.

E. Scheduler Architecture

Figure 5 illustrates the architecture and operation the
scheduler. The system consists of five components: Placement
Algorithm, Job Utility Calculator, Task Scheduler, Job Status
Updater and Workload Estimator. Each submission includes
both the job’s completion time goal (if one is provided) and
its resource consumption profile.

Most of the logic behind the scheduler resides the utility-
driven Placement Control Loop and the Task Scheduler. The
former is responsible for producing placement decisions, while
the latter is responsible for enforcing the decisions made by
the former. The Placement Control Loop operates in control
cycles of period T . Its output is a new placement matrix
P that will be active until the next control cycle is reached
(current time + T). The Task Scheduler is responsible for
enforcing the placement decisions. The Job Utility Calculator
calculates a utility value for an input placement matrix which
is then used by the Placement Algorithm to choose the best
placement choice available. Upon completion of a task, the
TaskTracker notifies the Job Status Updater, which for any job

j in the system, triggers an update of s
j
pend and r

j
pend in the

job descriptor. The Job Status Updater also keeps track of the
average task length observed for every job in the system, which
is later used to estimate the completion time for each job. The
Workload Estimator estimates the number of map tasks that
should be allocated concurrently (sjreq) to meet the completion

time goal of each job, as well as the parameter S
j
fit.

In this work we concentrate on the estimation of the
parameter S

j
fit that feeds the Placement Algorithm, as well as

the performance model used by the Job Utility Calculator. The
major change in this architecture compared to the scheduler
presented in [7] is the introduction of the Workload Estimator,
that not only estimates the demand for MapReduce tasks as did
in previous work, but also provides estimates for the data-store
resource consumption, derived from the calculation of f(t).

V. EVALUATION

This section includes the description of the experimen-
tal environment, including the simulation platform we have
built, and the results from the experiments that explore the
improvements of our scheduler compared to previous existing
schedulers: the default FIFO scheduler, the Adaptive Scheduler
described in [7], and the Reverse-Adaptive scheduler proposed
in this paper.

In Experiment 1 (Section V-B) we consider the standard
scenario in which MapReduce is the only workload running in
the system and thus the performance of the scheduler should be
similar to previous approaches. In Experiment 2 (Section V-C)
we introduce an additional workload in order to gain insight
on how does the proposed scheduler perform in this kind of
shared environment. And finally, Experiment 3 (Section V-D)
shows the impact that the burstiness of transactional workloads
may have on the scheduler.

A. Simulation Platform

In order to simulate a shared environment, we built a
system with two components. First, a workload generator to
model the behaviour of multiple clients submitting jobs to the
MapReduce cluster. And second, a server simulator to handle
the workloads’ submissions and schedule jobs depending on
different policies.

The workload generator that describes the behaviour of
clients takes the cluster configuration information as well as
the desired workload parameters, and instantiates a number of

66

TABLE I. MAIN WORKLOAD CONFIGURATION PARAMETERS.

Parameter Value Description

Cluster size 100 Total number of nodes in the system.

Node availability f(t) Function that represents the available number of nodes over time.

System load 0.2− 1.0 Utilization of the MapReduce workload during the simulation. Deter-
mines the number of jobs.

Arrival distribution Poisson: n ≈ 200− 2500, λ ≈ 1.5− 15 How arrivals are distributed over time. Depends on system load.

Job length distribution Lognorm: μ = 62.0, σ = 15.5 Determines the number of tasks of each job.

Deadline distribution Uniform: 1.5x− [4, 8, 12]x Factor relative to completion time of jobs when executed in isolation.

jobs to meet those requirements. Table I describes the main
workload configuration parameters used for the experiments.
The dynamic availability of resources of the transactional
workload (f(t)) is based on a real trace obtained from Twitter’s
frontend during an entire day, and has the same shape as that
shown in Figures 1 and 2, with peak transactional utilization
around hour 18. The distribution of MapReduce job lengths,
which determines the number of tasks of each job, follows
a lognormal that resembles the job sizes observed in known
traces from Yahoo! and Facebook [11], but scaled down to a
smaller number of jobs to fit into the 100-node cluster used
during the simulations. For the distribution of deadlines factors
we use a 3 different categories: tight (between 1.5x and 4x),
regular (from 1.5x to 8x), and relaxed (from 1.5x to 12x).

In the experiments we simulate a total of 7 days, and in
order to make sure the simulation is in a steady state we study
and generate all the statistics for the 5 days in the middle,
considering only jobs that either start or finish within that
time window. For each experiment we obtain the averages and
standard deviations of runing 10 different simulated workloads
generated with the same configuration parameters.

The simulation platform is written in Python using the
NumPy and SciPy packages, and the Reverse-Adaptive imple-
mentation in particular is based on splines for fast, approximate
curve fitting, interpolation and integration. While our proposal
hasn’t been optimized and is slower than the other schedulers
we are simulating, it doesn’t represent a performance issue
for the amount of concurrent jobs that are usually executed
in this kind of environment, specially considering MapReduce
clusters run the scheduler on a dedicated machine and deci-
sions are only made once per placement cycle, which is in the
order of tens of seconds. In our experiments with hundreds
to few thousands of jobs the scheduler is able to generate
placement matrices in a time that always remains in the order
of milliseconds. Our current implementation easily scales up
to thousands of jobs and nodes.

B. Experiment 1: No Transactional Workload

The goal of this experiment is to evaluate the scenario in
which there is no additional workload other than MapReduce
itself, and to assess that the scheduler doesn’t introduce any
flaw even in the worst-case scenario in which there is no
transactional workload. It also represents the standard scenario
considered by most MapReduce schedulers, which are only
concerned with assigning tasks to a fixed number of nodes in
the cluster.

To this end we disable the transactional workload on the
simulator and make all resources available to the MapReduce

workload. We then run the same experiments using the default
FIFO scheduler, the Adaptive scheduler, and our proposed
scheduler, the Reverse-Adaptive scheduler.

Figure 6 shows the percentage of missed deadlines for each
scheduler under different configurations. On the first row the
distribution of deadline factors assigned to jobs (meaning the
time each job is given to complete) is uniformly distributed
and ranges from a minimum of 1.5x to a maximum of 4x.
On the second and third rows, the maximum deadline factor is
increased to 8x and 12x respectively. Each row shows different
load factors as well, which represent how busy is the cluster:
from 0.2 (very small load) to 1.0 (fully loaded). As it can be
observed, there is a significant difference between the default
FIFO scheduler, which always misses more deadlines, and the
other deadline-aware schedulers. Also, as expected, increasing
the maximum deadline factor also has an impact on the number
of missed deadlines on all schedulers, but even more so on
the Adaptive and Reverse-Adaptive schedulers since that gives
them more flexibility and a higher chance of distributing the
execution of jobs.

On the other hand, in this scenario the Reverse-Adaptive
scheduler performs exactly like the Adaptive scheduler under
all configurations since it isn’t able to leverage the information
about the characteristics of other non-MapReduce workloads in
order to improve its performance. But it also shows that under
no circumstances will the Reverse-Adaptive scheduler perform
worse than previous deadline-aware schedulers in terms of
missed deadlines.

C. Experiment 2: Transactional Workload

In this experiment we evaluate the Reverse-Adaptive sched-
uler in the presence of transactional workloads, and compare it
to other schedulers, showing also additional metrics that help
understand the behaviour of our algorithm. In particular, we
study the same workload under different load levels: from 0.2
(low load) to 0.8 (high load); and also with different deadline
factor distributions, ranging from 1.5x–4x to 1.5–12x. The
transactional workload changes the availability of resources
over time, and is based on a real trace as described in V-A.

Figure 7 shows the results for each deadline factor distri-
bution: 1.5x – 4x (Figure 7(a)), 1.5x – 8x (Figure 7(b)), 1.5x
– 12x (Figure 7(c)). And each figure shows the number of
jobs that miss their deadline (1st row), time beyond deadline
for jobs that miss their deadline (2nd row), and distance to
deadline for jobs that meet their deadline (3rd row). For this
experiment we also run a fourth execution of the simulator
with a different optimization goal that only takes into account
minimizing the number of missed deadlines, and doesn’t

67

0.2 0.4 0.6 0.8 1.0

Load factor

0

20

40

60

80

100

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines (deadline factor: 1.5 - 4x)

0.2 0.4 0.6 0.8 1.0

Load factor

0

20

40

60

80

100

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines (deadline factor: 1.5 - 8x)

0.2 0.4 0.6 0.8 1.0

Load factor

0

20

40

60

80

100

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines (deadline factor: 1.5 - 12x)

fifo adaptive reverse

Fig. 6. Experiment 1: No transactional workload.

consider any fairness goals found in other schedulers. It is
shown in the first row of Figures 7(a) to 7(c) as a horizontal
line on the Reverse-Adaptive scheduler bars. We use these as a
reference to distinguish why are schedulers missing deadlines,
as it marks the minimum amount of jobs that will miss their
deadline independently of the policies of the scheduler.

As it can be observed in the three figures, introducing
a dynamic transactional workload allows the scheduler to
improve the number of missed deadlines without a significant
impact on other metrics. As shown in Figure 7(a), which
represents executions when running with a tight deadline factor
distribution between 1.5x and 4x, the number of deadlines
missed by the Reverse-Adaptive scheduler is always noticeable
lower than that of the Adaptive and FIFO schedulers (1st
row), while the time beyond deadline is only slightly lower
(2nd row), and distance to deadline remains mostly the same
with very small variations (3rd row). These results remain
the same with more relaxed deadline factors as shown in
Figure 7(b) and 7(c). Notice that the improvement in terms
of percentage of missed deadlines with the Reverse-Adaptive
scheduler compared to other schedulers is similar despite the
different deadline factors. This is basically because in these
three scenarios the actual chance of improving is similar, as
shown by the horizontal lines marking the percentage of jobs
that will be missed for certain.

D. Experiment 3: Burstiness of Transactional Workload

This experiment explores the impact of transactional work-
load burstiness on the scheduler. While the previous ex-
periment shows that the scheduler is able to leverage the
characteristics of the transactional workload to improve the
performance of the scheduler, in this experiment we show
how the shape of the availability function affects the chances
of improving the overall results. In particular, burstiness in
this scenario means variability between the highest and lowest
points of the availability function. Figure 8 shows the differ-
ent burstiness levels evaluated in this experiment: from high
burstiness (level 3) to low burstiness (level 1). As a reference to

0.2 0.4 0.6 0.8

Load factor

0
10
20
30
40
50
60
70
80

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines

0.2 0.4 0.6 0.8

Load factor

0.5
1.0
1.5
2.0
2.5
3.0

T
im

e
(h
)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8

Load factor

0.2
0.4
0.6
0.8
1.0
1.2

T
im

e
(h
)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(a)

0.2 0.4 0.6 0.8

Load factor

0
10
20
30
40
50
60
70
80

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines

0.2 0.4 0.6 0.8

Load factor

0.5
1.0
1.5
2.0
2.5
3.0

T
im

e
(h
)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8

Load factor

0.2
0.4
0.6
0.8
1.0
1.2

T
im

e
(h
)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(b)

0.2 0.4 0.6 0.8

Load factor

0
10
20
30
40
50
60
70
80

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines

0.2 0.4 0.6 0.8

Load factor

0.5
1.0
1.5
2.0
2.5
3.0

T
im

e
(h
)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8

Load factor

0.2
0.4
0.6
0.8
1.0
1.2

T
im

e
(h
)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(c)

Fig. 7. Experiment 2: Scheduling with transactional workload. Deadline
factors: 1.5x – 4x (a), 1.5x – 8x (b), 1.5x – 12x (c).

68

compare to previous executions, note that Experiment 1 has no
burstiness at all, while Experiment 2 represents high burstiness
(equivalent to level 3).

Figure 9 shows the number of jobs that miss their deadline
when running with different burstiness levels. To simplify,
only simulations with a medium deadline factor (1.5x–8x) are
shown; other factors behave similarly. As it can be observed,
the more bursty the availability function, the more likely it
is that the scheduler improves its performance, lowering the
amount of missed deadlines relative to other schedulers. The
higher variability of high burstiness levels makes available
resources less predictable, and this has a significant impact
on other schedulers because their estimations become less
accurate. However, it also provides provides more means for
the Reverse-Adaptive scheduler to plan in advance how to
schedule present tasks.

6 12 18 24

Hours

0

20

40

60

80

100

N
u
m
b
e
r
o
f
n
o
d
e
s

Burstiness Levels

Level 1 Level 2 Level 3

Fig. 8. Experiment 3: Burstiness level classification.

VI. RELATED WORK

Much work has been done in the space of scheduling for
MapReduce. Since the number of resources and slots in a
Hadoop cluster is fixed through out the lifetime of the cluster,
most of the proposed solutions can be reduced to a variant of
the task-assignment or slot-assignment problem. The Capacity
Scheduler [12] is a pluggable scheduler developed by Yahoo!
which partitions resources into pools and provides priorities for
each pool. Hadoop’s Fair Scheduler [13] allocates equal shares
to each tenant in the cluster. All these schedulers are built on
top of the same resource model and do not support high-level
goals nor dynamic availability in shared environments.

The performance of MapReduce jobs has attracted much
interest in the Hadoop community. Recently, there has been
increasing interest in user-centric data analytics. The Adaptive
Scheduler [6] enables soft-deadline support for MapReduce
jobs. It differs from this paper’s proposal in that it does not
take into consideration neither the resources of the system nor
other workloads. Similarly, Flex [14] is a scheduler proposed
as an add-on to the Fair Scheduler to provide Service-Level-
Agreement (SLA) guarantees. More recently, Aria [8] intro-
duces a novel resource management framework that consists
of a job profiler, a model for MapReduce jobs and a SLO-
scheduler based on the Earliest Deadline First scheduling
strategy. Flex and Aria are both slot-based and therefore suffer
from the same aforementioned limitations.

0.2 0.4 0.6 0.8

Load factor

0
10
20
30
40
50
60
70
80

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines

0.2 0.4 0.6 0.8

Load factor

0.5
1.0
1.5
2.0
2.5
3.0

T
im

e
(h
)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8

Load factor

0.2
0.4
0.6
0.8
1.0
1.2

T
im

e
(h
)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(a)

0.2 0.4 0.6 0.8

Load factor

0
10
20
30
40
50
60
70
80

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines

0.2 0.4 0.6 0.8

Load factor

0.5
1.0
1.5
2.0
2.5
3.0

T
im

e
(h
)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8

Load factor

0.2
0.4
0.6
0.8
1.0
1.2

T
im

e
(h
)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(b)

0.2 0.4 0.6 0.8

Load factor

0
10
20
30
40
50
60
70
80

N
u
m
b
e
r
o
f
jo
b
s
(%

)

Missed deadlines

0.2 0.4 0.6 0.8

Load factor

0.5
1.0
1.5
2.0
2.5
3.0

T
im

e
(h
)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8

Load factor

0.2
0.4
0.6
0.8
1.0
1.2

T
im

e
(h
)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(c)

Fig. 9. Experiment 3: Execution with different burstiness: level 1 (a), level
2 (b), and level 3 (c); deadline factor from 1.5x to 8x.

69

New platforms have been proposed to mix MapReduce
frameworks like Hadoop with other kinds of workloads.
Mesos [15] intends to improve cluster utilization on shared
environments, but is focused on batch-like and HPC instead of
transactional workloads. Finally, the Hadoop community has
also recognized the importance of developing a resource-aware
scheduling for MapReduce, and proposed a framework [16]
that introduces a resource model consisting of a ‘resource
container’ which is fungible across jobs. We think that our
resource management techniques can be leveraged within this
framework to enable better resource management.

VII. CONCLUSIONS

In this paper we have presented the Reverse-Adaptive
Scheduler, which introduces a novel resource management
and job scheduling scheme for MapReduce when executed
in shared environments along with other kinds of workloads.
Our scheduler is capable of improving resource utilization
and job performance. The model we introduce allows for
the formulation of a placement problem which is solved by
means of a utility-driven algorithm. This algorithm in turn
provides our scheduler with the adaptability needed to respond
to changing conditions in resource demand and availability of
resources.

The scheduler works by estimating the need of resources
that should be allocated to each job, but in a more proac-
tive way than previously existing work, since the estimation
takes into account the expected availability of resources. In
particular, the proposed algorithm consists of two major steps:
reversing the execution of the workload and generating the
current placement of tasks. Reversing the execution of the
workload involves creating an estimated placement of the full
workload over time, assigning tasks in the opposite direction:
starting at the desired end state and finishing at the current
state. The reversed placement is used as an estimation to know
how many tasks are left at the current state, which allows
the scheduler to determine what’s the need of tasks for each
job and how should they share the available resources. The
presented scheduler relies on existing profiling information
based on previous executions of jobs to make scheduling and
placement decisions.

The goal of the scheduler is to determine the best possible
placement of tasks across the tasktrackers so as to maximize
resource utilization in the cluster while observing the com-
pletion time goal for each job. To achieve this objective, the
system dynamically manages the number of slots each task-
tracker will provision for each job, and controls the execution
of their tasks. Our experiments in a simulated environment
driven by representative MapReduce workloads demonstrate
the effectiveness of our proposal. To the best of our knowledge
this is the first scheduling framework to take into account other
non-MapReduce workloads, such as transactional workloads,
in addition to leveraging resource information to improve the
utilization of resources in the system and meet completion time
goals on behalf of users.

ACKNOWLEDGEMENTS

This work is partially supported by the Ministry of Science

and Technology of Spain and the European Union’s FEDER funds

(TIN2012-34557), by the Generalitat de Catalunya (2009-SGR-980),

by the BSC-CNS Severo Ochoa program (SEV-2011-00067) and by

the by the European Commissionś IST activity of the 7th Framework

Program under contract number 317862 (COMPOSE).

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in OSDI’04: Proceedings of the 6th Symposium on

Operating Systems Design and Implementation. San Francisco, CA:
USENIX Association, December 2004, pp. 137–150.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.

Syst., vol. 26, no. 2, pp. 4:1–4:26, Jun. 2008.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in Proceedings of twenty-

first ACM SIGOPS symposium on Operating systems principles, ser.
SOSP ’07. NY, USA: ACM, 2007, pp. 205–220.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a
computer: An introduction to the design of warehouse-scale machines,
second edition,” Synthesis Lectures on Computer Architecture, vol. 8,
no. 3, pp. 1–154, 2013.

[5] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Dynamic
estimation of cpu demand of web traffic,” in Proceedings of the 1st

international conference on Performance evaluation methodolgies and

tools, ser. valuetools ’06. New York, NY, USA: ACM, 2006.

[6] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley,
“Performance-driven task co-scheduling for MapReduce environments,”
in Network Operations and Management Symposium, NOMS, Osaka,
Japan, 2010, pp. 373–380.

[7] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé, “Resource-aware adaptive scheduling for
mapreduce clusters,” in Middleware 2011, ser. Lecture Notes in Com-
puter Science, vol. 7049. Springer Berlin Heidelberg, 2011, pp. 187–
207.

[8] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic Re-
source Inference and Allocation for MapReduce Environments,” in 8th

IEEE International Conference on Autonomic Computing, Karlsruhe,
Germany., June 2011.

[9] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload anal-
ysis and demand prediction of enterprise data center applications,” in
Workload Characterization, 2007. IISWC 2007. IEEE 10th International

Symposium on, Sept 2007, pp. 171–180.

[10] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable
application placement controller for enterprise data centers,” in Procs.

of the 16th intl. conference on World Wide Web, ser. WWW ’07. NY,
USA: ACM, 2007, pp. 331–340.

[11] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “A methodology
for understanding mapreduce performance under diverse workloads,”
EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2010-135, Nov 2010.

[12] Yahoo! Inc. Capacity Scheduler.
http://developer.yahoo.com/blogs/hadoop/posts/2011/02/capacity-
scheduler/.

[13] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,”
in OSDI’08. Berkeley, USA: USENIX Association, 2008, pp. 29–42.

[14] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.-
L. Wu, and A. Balmin, “Flex: A slot allocation scheduling optimizer
for mapreduce workloads,” in Middleware 2010, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, vol. 6452, pp.
1–20.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in 8th USENIX conference on

Networked systems design and implementation. USENIX Association,
2011, pp. 22–22.

[16] Arun Murthy. Next Generation Hadoop. [Online]. Available:
http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-
nextgen-scheduler/

70

