
TRUDEVICE workshop, 2015, Grenoble.

On the Use of Error Detecting and Correcting Codes
to Boost Security in Caches against Side Channel

Attacks

Mădălin Neagu, Liviu Miclea
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
Madalin.Neagu@cs.utcluj.ro
Liviu.Miclea@aut.utcluj.ro

Salvador Manich
Department of Electronic Engineering
Universitat Politècnica de Catalunya

Barcelona, Spain
Salvador.Manich@upc.edu

Abstract— Microprocessor memory is sensitive to cold boot
attacks. In this kind of attacks, memory remanence is exploited to
download its content after the microprocessor has been struck by
a hard boot. If just in this moment, a crypto-algorithm was in
execution, the memory data can be downloaded into a backup
memory and specialized tools can be used to extract the secret
keys.

In the main memory data can be protected using efficient
encryption techniques but in caches this is not possible unless the
performance becomes seriously degraded. Recently, an
interleaved scrambling technique (IST) was presented to improve
the security of caches against cold boot attacks. While IST is
effective for this particular kind of attacks, a weakness exists
against side channel attacks, in particular using power analysis.

Reliability of data in caches is warranted by means of error
detecting and correcting codes. In this work it is shown how these
kinds of codes can be used not only to improve reliability but also
the security of data. In particular, a self-healing technique is
selected to make the IST technique robust against side channel
attacks using power analysis.

Keywords— data scrambling, cache memories, cold boot attack,
self-healing memories, side channel attack.

I. INTRODUCTION

Modern day ICs contain significant information that must
be highly secured, so that it stays hidden. In the last six years,
there have been reported a large variety of attacks against ICs
and memories, mostly targeting the vulnerabilities of cache and
main memories, smartcards, etc. This problem broadens when
the attacks target credit cards and other kind of legal supports
including biometric information [1]. Desktop computers are
increasingly being used for secure purposes. Operating systems
like Windows and MacOS include encryption tools for
securing data in disk. In these two cases it has been seen that
encryption/decryption keys are stored in memory as plain text
and therefore that they can be downloaded successfully [2].

In systems aimed for security it is then necessary to protect
the memory, especially the cache, because most of the time
designers assume that it is intrinsically secure and therefore
they forget to protect this, even with the most basic
mechanisms. In this paper, we demonstrate that the cache
memory can be secured against two kinds of attacks: power
analysis side channel attacks and cold boot attacks, using a

combination of error correction and data scrambling technique.
In the next paragraphs the following points are reviewed
concerning cache memories: different kind of side channel
attacks, cold boot attacks and error detection/correction
techniques.

Side-channels attacks on cache memories which are
embedded in the CPU chips are becoming a serious threat
when critical data is temporarily stored. These types of attacks
rely on monitoring the behavior of the target in various ways.
Time-based attacks observe the execution time of the victim
when accessing cached and non-cached values and are
somehow feared because they can be executed remotely. In
access-based attacks, the opponent tests the cache state when
corrupt data enter the memory. However, it is required that
both, the attacker and victim, share the hardware platform. The
last type of side-channel attacks are based on monitoring the
sequence of cache hits and misses [2]. This is possible by
measuring the power consumption. By exploiting the
information leaked through side-channel attacks, sensitive data
can be extracted from the cache memory. In this scope, the
authors in [4] propose a tool for the static analysis of cache
side-channel attacks. They focus on the effect of data leakage
from software-based solutions and cache configurations.

In order to mitigate cache side-channel attacks, most of the
existing proposals rely on controlling the information exchange
between the hardware and software layers [5][6].
Cryptographic systems that run specific algorithms like the
AES are widely targeted by side-channel attacks. In [7], the
authors present an attack for the AES-128 algorithm that can
recover the secret key and propose general countermeasures for
these attacks.

Some modern CPUs have a shared L3 cache because the
chip contains 2 or more cores. Because it is difficult to perform
an attack on lower levels of the cache, the authors from [8]
describe and execute an attack on the shared L3 cache. This
attack is possible if the memory pages are shared between the
spy program and the victim. The results indicate that it is
possible to recover 98% of the bits of the private key, from a
RSA encryption algorithm.

Cold boot attacks target cache and main memories and
require physical access to the device. By freezing the memory
chip after a sudden power-off, the data inside can still be
accessed for a small period of time. Authors in [2] conduct a
similar experiment and manage to recover private keys from
encryption algorithms and applications. Note that because of

TRUDEVICE workshop, 2015, Grenoble.

the remanence, data is accessible even after 5 minutes if the
temperature of the device is low enough. The same cold boot
attack was tested on Android smartphones in [9] where they
propose a tool set for extracting disk encryption keys from
RAM, contact lists and other sensible data. A recent
methodology for securing cache memories against cold boot
attacks was presented in [10] and is explained in detail in the
next section because it is the base for the protection against
side-channel attacks proposed in this paper.

As the title suggests, we wish to use the benefits of error
detection and correction methodologies, in order to improve
cache security. Usually, error detection and correction codes
(EDC / ECC) are used in memories for mitigating soft errors.
Thus, stored data that is corrupted by one or more errors can be
reconstructed. This is possible due to the redundant
information that is added to the original data. If errors occur in
the data bits, the redundant bits help to detect errors and to
recover the original data word. Transient faults are likely to
cause symmetric soft errors or multiple unidirectional errors. In
this scope, the authors in [11] present a comparative study on
unidirectional error correction codes and propose a technique
that chooses the suitable method, depending on the memory
organization. A novel methodology that deals with
unidirectional bit-flips in DRAMs was proposed in [12]. This
method is explained in detail in the following section because
is selected in this paper to leverage the interleaved scrambling
technique [10].

In this work, we propose to combine the methodologies
from [10] and [12]. In fact, it is seen that [10] is effective
against cold boot attacks but that it could be circumvented
using a side-channel attacks that would analyze the power
consumption or the electromagnetic radiation emanating from
the cache. To this end, the error detecting and correcting codes
[12] are used to boost the security against this kind of attack.

The paper is organized as follows. Section II summarizes
the previous techniques which are used in this work. Section III
discusses the underlying problem of securing the cache
memory from the side-channel attack perspective. Section IV
describes the proposed solution and in Section V the technique
is tested and evaluated from several points of view. Finally, in
Section VI conclusions are drawn.

II. REVIEW OF PREVIOUS TECHNIQUES

In this paper the protection against power analysis side
channel attack is achieved by combining an error detection,
localization and correction technique (eDLC) [12] with the
securing interleaved scrambling technique (IST) [10]. In this
section these techniques are briefly explained to help clarifying
the rest of the paper.

A. Unidirectional error detection, localization and correction
(eDLC)

Permanent faults in memories are difficult to mitigate, but
are barely encountered. On the other hand, transient faults that
generate soft errors due to radiation are more likely to happen
and the main causes are usually high-energy neutrons and
alpha-particles. Dynamic RAMs are susceptible to radiation-
type errors that manifest as unidirectional bits flips (due to the
capacitor inside the DRAM cell). In [12], we proposed an error
detection, correction and localization methodology for soft

unidirectional errors that occur in DRAMs. The method is
based on creating a full adder tree that generates redundant bits
(carry and sum) at each subset of three data bits, during the
write phase of the cache, see Fig. 1. The redundant bits count
the number of 1’s in the data subset. During the reading phase,
the redundant bits are checked in the eDLC unit and in
presence of an error they are used to localize and correct the
data.

Fig. 1. The error detection, correction and localization technique (eDLC)

B. Interleaved scrambling technique

The interleaved scrambling technique from [10] increases
the security of a cache memory by storing scrambled data in
the cache. It protects the memory against cold boot attacks
using the following principle. During operation the data, that is
stored inside the cache, is first XORed with the keys of an
internal table (scrambling table), see Fig. 2. When data are read
back, they are first XORed with the same keys to undo the
scrambling. During a cold boot attack, the scrambling table
automatically resets with new keys so that when the read
operation is attempted it will produce corrupted data.

Fig. 2. Interleaved scrambling technique. It protects againts cold boot attacks

Using an internal mechanism of the scrambling table, keys
are maintained in such a way that in normal operation they are
periodically refreshed without the need of a full cache data
update (interleaving mechanism). The whole set of keys point
to subsets of addresses of the cache such that if a hacker
discovers one key, during the limited time span before the key
refresh, he would be able to execute a cold boot of the system
and unscramble the data of the addresses in the same subset.

TRUDEVICE workshop, 2015, Grenoble.

Key discovery can be theoretically achieved using power
analysis, that is a kind of side-channel attack.

In the next section, this type of attack is explained in detail
and the solution is addressed.

III. STATEMENT OF THE PROBLEM

It is assume that the system under attack is the L2 cache
that includes a unidirectional eDLC technique and is protected
against cold boot attacks using an IST. In this section it is
shown that under these circumstances a hacker can use a side
channel attack technique based on simple power analysis
(SPA) to recover the internal keys of the IST scrambling table
and therefore to discover the content of the cache data.

A. Attack model

Let’s consider that the hacker knows the IST technique of
the cache and how it is implemented. He ignores the internal
keys and thus his objective is to discover them – from now on
these keys will be named scrambling vectors ሺܵሻ –. He can
measure the current consumption or the radiated energy that
emanates from the boundaries of the cache and can add a
program in the operating system that sends repeatedly
controlled data to predetermined addresses of the cache.

As it is overviewed in Fig. 3, the IST used in [10] selects a
scrambling vector ܵ from a table whose content is generated
randomly. During the writing cycle it is mixed with data ܦ that
comes from the CPU using an XOR array and the scrambled
data ܵܦ generated is sent to the cache. During this process the
voltage transitions that take place in the XOR array and
subsequent bus lines consume energy and therefore draw some
amount of current from the power supply. By doing an
appropriate profile of it, the amount of transitions occurring in
the scrambling circuit can be estimated.

Fig. 3. Energy consumed or radiated during the write cycle of a cache.

Similarly to the current consumption, the transitions of the

voltages in the lines, especially in the long lines, produce the
emission of electromagnetic radiation that can be measured
using a micro-antenna. With the proper control over the system
and a scanning device, the scrambling circuit can be located
and the electromagnetic impulses measured in such a way that
the amount of transitions existing in the scrambling circuit can
be estimated.

B. Side channel leakage model

Considering a standard bus implementation, the
transmission of data is preceded and followed by rest states.
Thus the number of transitions occurring is strongly correlated

to the hamming weight of the data generated in the scrambling
circuit. If ܧ is the radiated or consumed energy then it can be
modeled by a certain function ܧ ൌ ݂ሺ݄ݓሺܵܦሻሻ which in turn it
will depend on the hamming weight of the scrambled data. For
the attack it is enough two know that ݂ሺ	ሻ is a monotonic
function in order to generate an estimation of ݄ݓሺܵܦሻ from the
measured ܧ. The attacker knows that there is a one-to-one
relationship between the maximum and minimum values such
that if ܵܦ∗ is the scrambled data maximizing the energy then it
will also maximize the hamming distance and similarly will
happen for the value ܵܦ∗ giving the minimum. The bijective
relationship (1) applies,

௠௔௫ܧ
௙ሺ ሻ
ርሮ ௠௔௫ܪ ൌ ሻ∗ܦሺܵݓ݄

௠௜௡ܧ
௙ሺ ሻ
ርሮ ௠௜௡ܪ ൌ ሻ∗ܦሺܵݓ݄

(1)

C. Attack procedure

Assume the scrambling function ܵܦ ൌ is the ܵ .ܵ⨁ܦ
scrambling vector and is the target for the attack. Data ܦ is the
search space and if it doesn’t include any ECC code then the
maximum value achievable is ܵܦ∗ ൌ ሺ11. . .1ሻ. Below we will
see how to focus the attack with ECC.

A brute force attack consists of generating all possible ܦ’s
and writing them to the same cache address. During this
process the hacker records ܧ for each datum. Then the datum
giving ܧ௠௔௫ is selected, ܦ∗. Since the attacker knows that
∗ܦܵ ൌ ሺ11. . .1ሻ then it must be	ܵ ൌ .∗ഥܦ

For large data bit vectors brute force explodes making this
strategy unfeasible. But because of the linearity of the
scrambling operation, the attack can be executed stepwise.
First, a subset of bits of data is selected and the brute force is
applied. Once the local maximum is found then the search
moves to the next subset of bits and the same procedure is
applied. This follows until all bits are scanned out and, in the
end, the target ܵ is found.

When data includes ECC bits then the IST is organized as
follows. Assume that after receiving the CPU data, the checker
adds the redundant bits, such that we have an extended data
vector ሺܦ, ߰ሺܦሻሻ where ߰ሺܦሻ are the redundant bits. In the
scrambling table, the scrambling vectors are also extended with
additional bits generated randomly to scramble the redundant
bits of the data. Thus we have ሺܵ, ܵటሻ being ܵ the bits
scrambling the data and ܵట the bits scrambling the redundancy.
The scrambled data ሺܵܦ, ܴܵሻ are finally generated as follows,

ܦܵ ൌ 	஽ܵ⨁ܦ
ܴܵ ൌ ߰ሺܦሻ⨁ܵట (2)

When the attack is executed it searches for the maximum

hamming weight in the scrambled data, ሺܵܦ, ܴܵሻ∗. However,
now the search in the data space is limited because of the
redundant bits ߰ሺܦሻ. During the search, e.g. think of the brute
force strategy, two possible end points can be reached: (1.)
only one maximum is found ሺܵܦ, ܴܵሻ௎

∗ or (2.) more than one
maximum exist, ሺܵܦ, ܴܵሻெ

∗ .
1. In the case of ሺܵܦ, ܴܵሻ௎

∗ the attack is straightforward. If
the number of bits in ܴܵ is less than the number of bits in
 ܴܵ ܴܵ) being	the unique maximum must be ((11…1), ܦܵ

TRUDEVICE workshop, 2015, Grenoble.

of no relevance for the attack. Then the scrambling vector
is found with ܵ ൌ .∗ഥܦ

2. In the case of ሺܵܦ, ܴܵሻெ
∗ the maximum is not unique and

this means that different values of ܦ௜
∗ may give the same

hamming weight ܪ∗ ൌ ௜ܦሺݓ݄
∗⨁Sሻ ൅ ௜ܦሺ߰ሺݓ݄

∗ሻ⨁ܵటሻሻ
for ݅ ൌ 1,2, …. This introduces an uncertainty to the hacker
because now the breaking function ܵ஽ ൌ ഥ∗ may not beܦ
valid. In general, there will be several values to consider
and in particular none of them may include the case where
ܦܵ ൌ ሺ11…1ሻ.

The fact that case 1 or 2 happens it depends on the
scrambling vector, and in particular of the ܵట segment of it. In
the next section we present the proposed solution that is based
on the following principle. Segment ܵ߰ is not completely
generated at random but a filter is applied to the random
generator such that case (2.) is always guaranteed.

Next illustrative examples for the cases (1.) and (2.) are
shown.

D. Example

1) Case 1. Unique maximum

Table I presents a numeric example.

TABLE I. EXAMPLE OF UNIQUE MAXIMUM

At the left we have 3 bit data with 2 check bits, they count

the number of ones in data. All possible values are listed. At
the top we have the scrambling vector ሺ101,10ሻ and below
that, the scrambled data ሺܵܦ, ܴܵሻ. At the right, the hamming
weight is evaluated. We can see that a unique maximum exists
with a value of 5 and it corresponds to ܵܦ ൌ ሺ111ሻ. Therefore,
the scrambling vector can be discovered by complementing the
data ܦ∗ ൌ ሺ010ሻ giving ܵ ൌ ሺ101ሻ.

2) Case 2. Multiple maximums
Table II presents the numeric example.
The content of the Table is the same except that now

ܵట ൌ ሺ01ሻ instead of ሺ10ሻ. When the scrambled data is
calculated, two maximums are found with hamming weights
equal to 4, being the corresponding data ܦ∗ ൌ ሼሺ011ሻ, ሺ110ሻሽ.
None of them contain the scrambled data ܵܦ ൌ ሺ111ሻ and as a
consequence the scrambling vector cannot be obtained
inverting any of both data.

TABLE II. EXAMPLE OF MULTIPLE MAXIMUMS

IV. PROPOSED SOLUTION

For our solution we start assuming that the ECC is based on
the eDLC technique presented in Section II.A. As previously
explained, it is a partial self-healing code that provides
correction of bits on-the-fly and therefore significantly reduces
the number of accesses to the external memory. It makes the
eDLC coding oriented to high performance and reliable
systems. When security is added through the IST methodology,
the large overhead of the eDLC coding leverages the security
against side channel attacks as it is explained hereafter.

Keep in mind that the eDLC coding subdivides data in
subsets of three bits and adds two additional bits corresponding
to the Berger code to them, like the configuration shown in the
examples of tables I and II. Let’s assume that ܦଷ ൌ
ሺ݀ଶ, ݀ଵ, ݀଴ሻ is one of these subdivisions. eDLC coding adds the
carry and sum bits of the addition of these bits such that we
have the codeword space ܦହ ൌ ሺ݀ଶ, ݀ଵ, ݀଴, ܿ, ሻ, whereݏ
ሺܿ, ሻݏ ൌ ∑ ݀௜௔௟௟ .

To guarantee that after scrambling we will reach case (2.),
scrambling vectors are generated in the non-codeword space
such that never all 1ns are found in the scrambled data. Let’s
assume that our subset of bits scrambling ܦହ is ܵହ ൌ
ሺݏସ, ,ଷݏ ,ଶݏ ,ଵݏ ଴ሻ. The following generating function assuresݏ
this condition, that set ܵହ ∉ ହ and that multiple maximumܦ
hamming weights will always exist in the scrambled data.

ሺݏସ, ,ଷݏ ,ଶݏ ଵሻݏ ൌ 	ሺሻ݀݊ܽݎ
଴ݏ ൌ ସݏ ⊕ ଷݏ ⊕ ଶതതതതതതതതതതതതതതതതതݏ

(3)

where ݀݊ܽݎሺሻ is the random generator function and bit ݏ଴ is
the NXOR of the three most significant bits. Table III shows
the codeword space of ܦହ and the non-codeword space of ܵହ.

A. Stepwise attack

Consider the case where the hacker attacks the system by
scanning all possible values of the data in a subset base. First,
he takes the three data bits ܦ଴

ଷ and generates all possible
combinations, detects the maximums of the energy and records
the values giving these maximums ܦ଴

ଷ∗. Then moves to the next
subset ܦଵ

ଷ, repeats the procedure and identifies the maximums
ଵܦ
ଷ∗. He continues until all subsets are scanned and the

maximum subsets are created. Finally, he combines all the
maximum subsets to create the set of data ܦ∗ giving the

1 0 1 1 0 Hamming
weight

H
0 0 0 0 0 1 0 1 1 0 3
0 0 1 0 1 1 0 0 1 1 3
0 1 0 0 1 1 1 1 1 1 5 *

0 1 1 1 0 1 1 0 0 0 2
1 0 0 0 1 0 0 1 1 1 3
1 0 1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1 0 0 2
1 1 1 1 1 0 1 0 0 1 2

D  D)
Scrambled data

SD SR

Scrambling vector

S S

Data with ECC

1 0 1 0 1 Hamming
weight

H
0 0 0 0 0 1 0 1 0 1 3
0 0 1 0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1 0 0 3
0 1 1 1 0 1 1 0 1 1 4 *

1 0 0 0 1 0 0 1 0 0 1
1 0 1 1 0 0 0 0 1 1 2
1 1 0 1 0 0 1 1 1 1 4 *

1 1 1 1 1 0 1 0 1 0 2

D  D) SD SR

S S 

Data with ECC Scrambled data

Scrambling vector

TRUDEVICE workshop, 2015, Grenoble.

maximum hamming weighs which are the candidates to extract
the scrambling vector ܵ using the equation ܵ ൌ ഥ௜ܦ

∗.

TABLE III. CODEWORD AND NON-CODEWORD SPACES FOR ܦହ AND ܵହ

RESPECTIVELY

Now, we verify the multiplicity number for the maximum

hamming weights. In Table IV all possible hamming weights
for the scrambled data ܵܦହ ൌ ହ⨁ܵହ are shown. At the topܦ
we have ܵହ and at the left ܦହ. Assume that the hacker scans all
possible values for the data vector, this is equivalent to trace
the matrix column-wise. For each the column we count the
number of maximums found. This is summarized below the
Table.

TABLE IV. HAMMING WEIGHTS FOR THE DATA VECTOR AND

SCRAMBLING VECTOR SPACES

In a non-protected cache the number of elements in the set

 is one and then ܵ can be extracted immediately. For our ∗ܦ
case, in the most favorable situation all ܦ௜

ଷ may have 2
maximums at most and therefore the total number of elements
in the set ܦ∗ will be the combination of all the subset values,
that is 2௟ where ݈ is the number of subsets. In the worst case the
number of maximums in all the subsets will be 4 and thus the
total number of elements in ܦ∗ will be 4௟. In the Table V these
two limits are calculated for different sizes of data words. The
average number of maximums is therefore 2.5௟. It can be seen

that after 32 bits the number of elements that the hacker has to
investigate is significantly large and for higher number of bits
it becomes impractical.

TABLE V. NUMBER OF ELEMENTS IN THE SET OF MAXIMUMS ܦ∗

In Fig. 4 an overview of the complete cache protection is

shown.

Fig. 4. Overview of the leveraged error correction and interleaved
scrambling technique.

In the next section results for the propose technique are
presented.

V. EXPERIMENTAL RESULTS

As a first experiment we have prepared a workbench to
simulate attacks in the proposed protected cache. A program
has been made in C++ that emulates the eDLC and ITS units
using the non-codeword generation for the scrambling vectors.
For 12 data bit lengths, brute force attacks have been
programmed scanning all the data space. One attack means that
a scrambling vector is generated and data is scanned
exhaustively while the maximum hamming weights are saved
and counted. These results have been registered for 3,000
attacks and are shown in the histogram of Fig. 5.

As it can be observed, in 1,008 attacks, the number of
maximum hamming weights have been 16 while in 15 attacks
the number of maximums have increased to 256, as predicted
in Table V. The average number of maximums is 37.92, very
close to the predicted average. In any attack a unique
maximum is not found which confirms the validity of the
technique against the SPA attack.

b 2 b 1 b 0 c s s 4 s 3 s 2 s 1 s 0

0 0 0 0 0 0 1 0 0 0 0 1
5 0 0 1 0 1 3 0 0 0 1 1
9 0 1 0 0 1 4 0 0 1 0 0

14 0 1 1 1 0 6 0 0 1 1 0
17 1 0 0 0 1 8 0 1 0 0 0
22 1 0 1 1 0 10 0 1 0 1 0
26 1 1 0 1 0 13 0 1 1 0 1
31 1 1 1 1 1 15 0 1 1 1 1

16 1 0 0 0 0
18 1 0 0 1 0
21 1 0 1 0 1
23 1 0 1 1 1
25 1 1 0 0 1
27 1 1 0 1 1
28 1 1 1 0 0
30 1 1 1 1 0

D
5

S
5

hw (SD
5
)

1 3 4 6 8 10 13 15 16 18 21 23 25 27 28 30

0 1 2 1 2 1 2 3 4 1 2 3 4 3 4 3 4
5 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4
9 1 2 3 4 1 2 1 2 3 4 3 4 1 2 3 4

14 4 3 2 1 2 1 2 1 4 3 4 3 4 3 2 1
17 1 2 3 4 3 4 3 4 1 2 1 2 1 2 3 4
22 4 3 2 1 4 3 4 3 2 1 2 1 4 3 2 1
26 4 3 4 3 2 1 4 3 2 1 4 3 2 1 2 1
31 4 3 4 3 4 3 2 1 4 3 2 1 2 1 2 1

H * 4 3 4 4 4 4 4 4 4 4 4 4 4 4 3 4
of 4 4 2 2 2 2 2 2 2 2 2 2 2 2 4 4

Top number of maximums = 4 (for 4 cases)
Bottom number of maximums = 2 (for 12 cases)
Average number of maximums = 2.5

D
5

S
5

Data word # subsets
length l min avg max

8 3 8 15 64
10 4 16 39 256
12 4 16 39 256
14 5 32 97 1024
16 6 64 244 4096
20 7 128 610 16384
24 8 256 1525 65536
28 10 1024 9536 1048576
32 11 2048 23841 4194304
40 14 16384 372529 268435456
48 16 65536 2328306 4,295E+09
56 19 524288 3,638E+07 2,749E+11
64 22 4194304 5,684E+08 1,759E+13

Elements in D *

TRUDEVICE workshop, 2015, Grenoble.

Fig. 5. Histogram of number of maximums found in the ܦ∗ set for 12 data
bits after 3.000 attacks. Average is 37.92.

In order to evaluate the impact of the proposed solution in a

cache, a 4-way comparison between standard L2 cache, IST
from [10], eDLC from [12] and the proposed solution from
Section IV is made. The CACTI tool from [12] is used for
estimating the area and power consumption for different size
architectures.

Table VI contains the CACTI tool results. The area and
power consumption are simulated for different cache sizes and
compared to the others. Note that the same tool has been used
to simulate the methods from [12] and [10], as well as the
proposed solution because each of them is a memory in itself.
The IST is simulated using the equation from [10]. For the
eDLC technique, only the first level of FAs was taken into
consideration and simulated similarly as with the IST.
However, due to data redundancy, the overall size is a little bit
higher. Because the proposed solution is a combination of the
IST and eDLC, it scales as the addition of the previous two
proposals.

TABLE VI. CACTI RESULTS FOR DIFFERENT CACHE SIZES

Size (KB)

Area occupied
(mm2)

Power consumption
(W)

L2 cache
IST

eDLC
Proposed solution

16
4

6.28
10.28

0.1479
0.0365
0.0842
0.1165

0.0945
0.0394
0.0706
0.0824

L2 cache
IST

eDLC
Proposed solution

32
5.65
8.87
14.52

0.2394
0.0486
0.1079
0.1409

0.0973
0.0505
0.0794
0.0910

L2 cache
IST

eDLC
Proposed solution

64
8

12.56
20.56

0.5493
0.0691
0.1292
0.1376

0.1594
0.0579
0.0869
0.0703

L2 cache
IST

eDLC
Proposed solution

128
11.31
17.75
29.06

1.1452
0.1222
0.1607
0.2280

0.2802
0.0844
0.0978
0.0948

VI. CONCLUSIONS

In this paper, a novel technique for securing cache
memories against side channel attacks is presented. Data
scrambling techniques are a suitable against cold-boot attacks,
as presented in [10], while the eDLC method from [12] is
adequate for soft error detection and correction. By blending
the two techniques and employing them in cache memories,
side channel attacks become less effective. The evaluation of
the proposal has been made using programmed models for the
cache and the technological tool CACTI to evaluate the area
and power impact of the solution proposed.

VII. ACKNOWLEDGEMENTS

This work was partially funded by the Spanish research
program TEC2013-41209 and by the COST action IC1204.

REFERENCES
[1] F. Paget, “Financial fraud and internet banking: threats and

countermeasures”, Report, McAffee Avert Labs, 2009.

[2] J. A. Halderman, et. al., ”Lest we remember: cold-boot attacks on
encryption keys”, Communications of the ACM – Security in the
Browser, Volume 52, Issue 5, pp. 91 – 98, 2009.

[3] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, G. Palermo,
“AES power attack based on induced cache miss and countermeasure”,
in Proceedings of the International Conference on Information
Technology: Coding and Computing, Vol. 1, pp. 586 – 591, 2005.

[4] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, J. Reineke, “CacheAudit:
a tool for the static analysis of cache side channels”, in Proceedings of
the 22nd USENIX Conference on Security, pp. 431- 446, 2013.

[5] Z. Wang, R. B. Lee, “New cache designs for thwarting software cache-
based side channel attacks”, in Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA), pp. 494 –
505, 2007.

[6] T. Kim, M. Peinado, G. Mainar-Ruiz, “StealthMem: System-level
protection against cache-based side channel attacks in the cloud”, in
Proceedings of 21st USENIX Security Symposium, USENIX
Association, pp. 11 – 11, 2012.

[7] D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games - Bringing
Access-Based Cache Attacks on AES to Practice”, In SSP, pages 490–
505. IEEE, 2011.

[8] Y. Yuval, K. Falkner, “Flush+Reload: a high resolution, low noise, L3
cache side-channel attack”, in Proceedings of the 23rd USENIX
conference on Security Symposium, pp. 719 – 732, 2014.

[9] T. Muller, M. Spreitzenbarth, “FROST: Forensic Recovery Of
Scrambled Telephones”, in Proceedings of International Conference on
Applied Cryptography and Network Security, pp. 373 – 388, 2013.

[10] M. Neagu, L. Miclea, S. Manich , “Interleaved scrambling technique: A
novel low-power security layer for cache memories”, Test Symposium
(ETS), 2014 19th IEEE European, 2014.

[11] J. Singh, “Unidirectional Error Correcting Codes for Memory Systems:
A Comparative Study”, in Proceedings of Second International
Conference on Advanced Computing and Communication Technologies,
pp. 187 – 189, 2012.

[12] M. Neagu, L. Miclea, J. Figueras, “Unidirectional error detection,
localization and correction for DRAMs: Application to on-line DRAM
repair strategies”, Proceedings of the 2011 IEEE 17th International On-
Line Testing Symposium (IOLTS), pp. 264-269, 2011.

[13] CACTI tool v5.3, http://quid.hpl.hp.com:9081/cacti/

