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Abstract— Microprocessor memory is sensitive to cold boot 
attacks. In this kind of attacks, memory remanence is exploited to 
download its content after the microprocessor has been struck by 
a hard boot. If just in this moment, a crypto-algorithm was in 
execution, the memory data can be downloaded into a backup 
memory and specialized tools can be used to extract the secret 
keys.  

In the main memory data can be protected using efficient 
encryption techniques but in caches this is not possible unless the 
performance becomes seriously degraded. Recently, an 
interleaved scrambling technique (IST) was presented to improve 
the security of caches against cold boot attacks. While IST is 
effective for this particular kind of attacks, a weakness exists 
against side channel attacks, in particular using power analysis. 

Reliability of data in caches is warranted by means of error 
detecting and correcting codes. In this work it is shown how these 
kinds of codes can be used not only to improve reliability but also 
the security of data. In particular, a self-healing technique is 
selected to make the IST technique robust against side channel 
attacks using power analysis. 

Keywords— data scrambling, cache memories, cold boot attack, 
self-healing memories, side channel attack. 

I.  INTRODUCTION  

Modern day ICs contain significant information that must 
be highly secured, so that it stays hidden. In the last six years, 
there have been reported a large variety of attacks against ICs 
and memories, mostly targeting the vulnerabilities of cache and 
main memories, smartcards, etc. This problem broadens when 
the attacks target credit cards and other kind of legal supports 
including biometric information [1]. Desktop computers are 
increasingly being used for secure purposes. Operating systems 
like Windows and MacOS include encryption tools for 
securing data in disk. In these two cases it has been seen that 
encryption/decryption keys are stored in memory as plain text 
and therefore that they can be downloaded successfully [2].  

In systems aimed for security it is then necessary to protect 
the memory, especially the cache, because most of the time 
designers assume that it is intrinsically secure and therefore 
they forget to protect this, even with the most basic 
mechanisms. In this paper, we demonstrate that the cache 
memory can be secured against two kinds of attacks: power 
analysis side channel attacks and cold boot attacks, using a 

combination of error correction and data scrambling technique. 
In the next paragraphs the following points are reviewed 
concerning cache memories: different kind of side channel 
attacks, cold boot attacks and error detection/correction 
techniques. 

Side-channels attacks on cache memories which are 
embedded in the CPU chips are becoming a serious threat 
when critical data is temporarily stored. These types of attacks 
rely on monitoring the behavior of the target in various ways. 
Time-based attacks observe the execution time of the victim 
when accessing cached and non-cached values and are 
somehow feared because they can be executed remotely. In 
access-based attacks, the opponent tests the cache state when 
corrupt data enter the memory. However, it is required that 
both, the attacker and victim, share the hardware platform. The 
last type of side-channel attacks are based on monitoring the 
sequence of cache hits and misses [2]. This is possible by 
measuring the power consumption. By exploiting the 
information leaked through side-channel attacks, sensitive data 
can be extracted from the cache memory. In this scope, the 
authors in [4] propose a tool for the static analysis of cache 
side-channel attacks. They focus on the effect of data leakage 
from software-based solutions and cache configurations.  

In order to mitigate cache side-channel attacks, most of the 
existing proposals rely on controlling the information exchange 
between the hardware and software layers [5][6]. 
Cryptographic systems that run specific algorithms like the 
AES are widely targeted by side-channel attacks. In [7], the 
authors present an attack for the AES-128 algorithm that can 
recover the secret key and propose general countermeasures for 
these attacks. 

Some modern CPUs have a shared L3 cache because the 
chip contains 2 or more cores. Because it is difficult to perform 
an attack on lower levels of the cache, the authors from [8] 
describe and execute an attack on the shared L3 cache. This 
attack is possible if the memory pages are shared between the 
spy program and the victim. The results indicate that it is 
possible to recover 98% of the bits of the private key, from a 
RSA encryption algorithm. 

Cold boot attacks target cache and main memories and 
require physical access to the device. By freezing the memory 
chip after a sudden power-off, the data inside can still be 
accessed for a small period of time. Authors in [2] conduct a 
similar experiment and manage to recover private keys from 
encryption algorithms and applications. Note that because of 
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the remanence, data is accessible even after 5 minutes if the 
temperature of the device is low enough. The same cold boot 
attack was tested on Android smartphones in [9] where they 
propose a tool set for extracting disk encryption keys from 
RAM, contact lists and other sensible data. A recent 
methodology for securing cache memories against cold boot 
attacks was presented in [10] and is explained in detail in the 
next section because it is the base for the protection against 
side-channel attacks proposed in this paper. 

As the title suggests, we wish to use the benefits of error 
detection and correction methodologies, in order to improve 
cache security. Usually, error detection and correction codes 
(EDC / ECC) are used in memories for mitigating soft errors. 
Thus, stored data that is corrupted by one or more errors can be 
reconstructed. This is possible due to the redundant 
information that is added to the original data. If errors occur in 
the data bits, the redundant bits help to detect errors and to 
recover the original data word. Transient faults are likely to 
cause symmetric soft errors or multiple unidirectional errors. In 
this scope, the authors in [11] present a comparative study on 
unidirectional error correction codes and propose a technique 
that chooses the suitable method, depending on the memory 
organization. A novel methodology that deals with 
unidirectional bit-flips in DRAMs was proposed in [12]. This 
method is explained in detail in the following section because 
is selected in this paper to leverage the interleaved scrambling 
technique [10]. 

In this work, we propose to combine the methodologies 
from [10] and [12]. In fact, it is seen that [10] is effective 
against cold boot attacks but that it could be circumvented 
using a side-channel attacks that would analyze the power 
consumption or the electromagnetic radiation emanating from 
the cache.  To this end, the error detecting and correcting codes 
[12] are used to boost the security against this kind of attack.  

The paper is organized as follows. Section II summarizes 
the previous techniques which are used in this work. Section III 
discusses the underlying problem of securing the cache 
memory from the side-channel attack perspective. Section IV 
describes the proposed solution and in Section V the technique 
is tested and evaluated from several points of view. Finally, in 
Section VI conclusions are drawn. 

II. REVIEW OF PREVIOUS TECHNIQUES   

In this paper the protection against power analysis side 
channel attack is achieved by combining an error detection, 
localization and correction technique (eDLC) [12] with the 
securing interleaved scrambling technique (IST) [10]. In this 
section these techniques are briefly explained to help clarifying 
the rest of the paper.  

A. Unidirectional error detection, localization and correction 
(eDLC) 

Permanent faults in memories are difficult to mitigate, but 
are barely encountered. On the other hand, transient faults that 
generate soft errors due to radiation are more likely to happen 
and the main causes are usually high-energy neutrons and 
alpha-particles. Dynamic RAMs are susceptible to radiation-
type errors that manifest as unidirectional bits flips (due to the 
capacitor inside the DRAM cell). In [12], we proposed an error 
detection, correction and localization methodology for soft 

unidirectional errors that occur in DRAMs. The method is 
based on creating a full adder tree that generates redundant bits 
(carry and sum) at each subset of three data bits, during the 
write phase of the cache, see Fig. 1. The redundant bits count 
the number of 1’s in the data subset. During the reading phase, 
the redundant bits are checked in the eDLC unit and in 
presence of an error they are used to localize and correct the 
data. 

 

 
Fig. 1. The error detection, correction and localization technique (eDLC) 

B. Interleaved scrambling technique 

The interleaved scrambling technique from [10] increases 
the security of a cache memory by storing scrambled data in 
the cache. It protects the memory against cold boot attacks 
using the following principle. During operation the data, that is 
stored inside the cache, is first XORed with the keys of an 
internal table (scrambling table), see Fig. 2. When data are read 
back, they are first XORed with the same keys to undo the 
scrambling. During a cold boot attack, the scrambling table 
automatically resets with new keys so that when the read 
operation is attempted it will produce corrupted data. 

 

 
Fig. 2. Interleaved scrambling technique. It protects againts cold boot attacks 

Using an internal mechanism of the scrambling table, keys 
are maintained in such a way that in normal operation they are 
periodically refreshed without the need of a full cache data 
update (interleaving mechanism). The whole set of keys point 
to subsets of addresses of the cache such that if a hacker 
discovers one key, during the limited time span before the key 
refresh, he would be able to execute a cold boot of the system 
and unscramble the data of the addresses in the same subset. 
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Key discovery can be theoretically achieved using power 
analysis, that is a kind of side-channel attack. 

In the next section, this type of attack is explained in detail 
and the solution is addressed.  

III. STATEMENT OF THE PROBLEM 

It is assume that the system under attack is the L2 cache 
that includes a unidirectional eDLC technique and is protected 
against cold boot attacks using an IST. In this section it is 
shown that under these circumstances a hacker can use a side 
channel attack technique based on simple power analysis 
(SPA) to recover the internal keys of the IST scrambling table 
and therefore to discover the content of the cache data. 

A. Attack model 

Let’s consider that the hacker knows the IST technique of 
the cache and how it is implemented. He ignores the internal 
keys and thus his objective is to discover them – from now on 
these keys will be named scrambling vectors ሺܵሻ –. He can 
measure the current consumption or the radiated energy that 
emanates from the boundaries of the cache and can add a 
program in the operating system that sends repeatedly 
controlled data to predetermined addresses of the cache. 

As it is overviewed in Fig. 3, the IST used in [10] selects a 
scrambling vector ܵ from a table whose content is generated 
randomly. During the writing cycle it is mixed with data ܦ that 
comes from the CPU using an XOR array and the scrambled 
data ܵܦ generated is sent to the cache. During this process the 
voltage transitions that take place in the XOR array and 
subsequent bus lines consume energy and therefore draw some 
amount of current from the power supply. By doing an 
appropriate profile of it, the amount of transitions occurring in 
the scrambling circuit can be estimated.  

 

 
Fig. 3. Energy consumed or radiated during the write cycle of a cache. 

 
Similarly to the current consumption, the transitions of the 

voltages in the lines, especially in the long lines, produce the 
emission of electromagnetic radiation that can be measured 
using a micro-antenna. With the proper control over the system 
and a scanning device, the scrambling circuit can be located 
and the electromagnetic impulses measured in such a way that 
the amount of transitions existing in the scrambling circuit can 
be estimated. 

B. Side channel leakage model 

Considering a standard bus implementation, the 
transmission of data is preceded and followed by rest states. 
Thus the number of transitions occurring is strongly correlated 

to the hamming weight of the data generated in the scrambling 
circuit. If ܧ is the radiated or consumed energy then it can be 
modeled by a certain function ܧ ൌ ݂ሺ݄ݓሺܵܦሻሻ which in turn it 
will depend on the hamming weight of the scrambled data. For 
the attack it is enough two know that ݂ሺ	ሻ is a monotonic 
function in order to generate an estimation of ݄ݓሺܵܦሻ from the 
measured ܧ. The attacker knows that there is a one-to-one 
relationship between the maximum and minimum values such 
that if ܵܦ∗ is the scrambled data maximizing the energy then it 
will also maximize the hamming distance and similarly will 
happen for the value ܵܦ∗ giving the minimum. The bijective 
relationship (1) applies, 

 

௠௔௫ܧ
௙ሺ ሻ
ርሮ ௠௔௫ܪ ൌ  ሻ∗ܦሺܵݓ݄

௠௜௡ܧ
௙ሺ ሻ
ርሮ ௠௜௡ܪ ൌ  ሻ∗ܦሺܵݓ݄

(1) 

C. Attack procedure 

Assume the scrambling function ܵܦ ൌ  is the ܵ .ܵ⨁ܦ
scrambling vector and is the target for the attack. Data ܦ is the 
search space and if it doesn’t include any ECC code then the 
maximum value achievable is ܵܦ∗ ൌ ሺ11. . .1ሻ. Below we will 
see how to focus the attack with ECC. 

A brute force attack consists of generating all possible ܦ’s 
and writing them to the same cache address. During this 
process the hacker records ܧ for each datum. Then the datum 
giving ܧ௠௔௫ is selected, ܦ∗. Since the attacker knows that 
∗ܦܵ ൌ ሺ11. . .1ሻ then it must be	ܵ ൌ  .∗ഥܦ

For large data bit vectors brute force explodes making this 
strategy unfeasible. But because of the linearity of the 
scrambling operation, the attack can be executed stepwise. 
First, a subset of bits of data is selected and the brute force is 
applied. Once the local maximum is found then the search 
moves to the next subset of bits and the same procedure is 
applied. This follows until all bits are scanned out and, in the 
end, the target ܵ is found. 

When data includes ECC bits then the IST is organized as 
follows. Assume that after receiving the CPU data, the checker 
adds the redundant bits, such that we have an extended data 
vector ሺܦ, ߰ሺܦሻሻ where ߰ሺܦሻ are the redundant bits. In the 
scrambling table, the scrambling vectors are also extended with 
additional bits generated randomly to scramble the redundant 
bits of the data. Thus we have ሺܵ, ܵటሻ being ܵ the bits 
scrambling the data and ܵట the bits scrambling the redundancy. 
The scrambled data ሺܵܦ, ܴܵሻ are finally generated as follows, 

 
ܦܵ ൌ 	஽ܵ⨁ܦ
ܴܵ ൌ ߰ሺܦሻ⨁ܵట (2) 

 
When the attack is executed it searches for the maximum 

hamming weight in the scrambled data, ሺܵܦ, ܴܵሻ∗. However, 
now the search in the data space is limited because of the 
redundant bits ߰ሺܦሻ. During the search, e.g. think of the brute 
force strategy, two possible end points can be reached: (1.) 
only one maximum is found ሺܵܦ, ܴܵሻ௎

∗  or (2.) more than one 
maximum exist, ሺܵܦ, ܴܵሻெ

∗ . 
1. In the case of ሺܵܦ, ܴܵሻ௎

∗  the attack is straightforward. If 
the number of bits in ܴܵ is less than the number of bits in 
 ܴܵ ܴܵ) being	the unique maximum must be ((11…1), ܦܵ
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of no relevance for the attack. Then the scrambling vector 
is found with ܵ ൌ  .∗ഥܦ

2. In the case of ሺܵܦ, ܴܵሻெ
∗  the maximum is not unique and 

this means that different values of ܦ௜
∗ may give the same 

hamming weight ܪ∗ ൌ ௜ܦሺݓ݄
∗⨁Sሻ ൅ ௜ܦሺ߰ሺݓ݄

∗ሻ⨁ܵటሻሻ 
for ݅ ൌ 1,2, …. This introduces an uncertainty to the hacker 
because now the breaking function ܵ஽ ൌ  ഥ∗ may not beܦ
valid. In general, there will be several values to consider 
and in particular none of them may include the case where 
ܦܵ ൌ ሺ11…1ሻ. 

The fact that case 1 or 2 happens it depends on the 
scrambling vector, and in particular of the ܵట segment of it. In 
the next section we present the proposed solution that is based 
on the following principle. Segment ܵ߰ is not completely 
generated at random but a filter is applied to the random 
generator such that case (2.) is always guaranteed. 

Next illustrative examples for the cases (1.) and (2.) are 
shown. 

D. Example 

1) Case 1. Unique maximum 
 

Table I presents a numeric example. 

TABLE I.  EXAMPLE OF UNIQUE MAXIMUM 

  
 
At the left we have 3 bit data with 2 check bits, they count 

the number of ones in data. All possible values are listed. At 
the top we have the scrambling vector ሺ101,10ሻ and below 
that, the scrambled data ሺܵܦ, ܴܵሻ. At the right, the hamming 
weight is evaluated. We can see that a unique maximum exists 
with a value of 5 and it corresponds to ܵܦ ൌ ሺ111ሻ. Therefore, 
the scrambling vector can be discovered by complementing the 
data ܦ∗ ൌ ሺ010ሻ giving ܵ ൌ ሺ101ሻ. 

 
2) Case 2. Multiple maximums 
Table II presents the numeric example.  
The content of the Table is the same except that now 

ܵట ൌ ሺ01ሻ instead of ሺ10ሻ. When the scrambled data is 
calculated, two maximums are found with hamming weights 
equal to 4, being the corresponding data ܦ∗ ൌ ሼሺ011ሻ, ሺ110ሻሽ. 
None of them contain the scrambled data ܵܦ ൌ ሺ111ሻ and as a 
consequence the scrambling vector cannot be obtained 
inverting any of both data. 

 

TABLE II.  EXAMPLE OF MULTIPLE MAXIMUMS 

 

 

IV. PROPOSED SOLUTION 

For our solution we start assuming that the ECC is based on 
the eDLC technique presented in Section II.A. As previously 
explained, it is a partial self-healing code that provides 
correction of bits on-the-fly and therefore significantly reduces 
the number of accesses to the external memory. It makes the 
eDLC coding oriented to high performance and reliable 
systems. When security is added through the IST methodology, 
the large overhead of the eDLC coding leverages the security 
against side channel attacks as it is explained hereafter. 

Keep in mind that the eDLC coding subdivides data in 
subsets of three bits and adds two additional bits corresponding 
to the Berger code to them, like the configuration shown in the 
examples of tables I and II. Let’s assume that ܦଷ ൌ
ሺ݀ଶ, ݀ଵ, ݀଴ሻ is one of these subdivisions. eDLC coding adds the 
carry and sum bits of the addition of these bits such that we 
have the codeword space ܦହ ൌ ሺ݀ଶ, ݀ଵ, ݀଴, ܿ,  ሻ, whereݏ
ሺܿ, ሻݏ ൌ ∑ ݀௜௔௟௟ . 

To guarantee that after scrambling we will reach case (2.), 
scrambling vectors are generated in the non-codeword space 
such that never all 1ns are found in the scrambled data. Let’s 
assume that our subset of bits scrambling ܦହ is ܵହ ൌ
ሺݏସ, ,ଷݏ ,ଶݏ ,ଵݏ  ଴ሻ. The following generating function assuresݏ
this condition, that set ܵହ ∉  ହ and that multiple maximumܦ
hamming weights will always exist in the scrambled data. 

 
ሺݏସ, ,ଷݏ ,ଶݏ ଵሻݏ ൌ 	ሺሻ݀݊ܽݎ
଴ݏ ൌ ସݏ ⊕ ଷݏ ⊕  ଶതതതതതതതതതതതതതതതതതݏ

(3) 

 
where ݀݊ܽݎሺሻ is the random generator function and bit ݏ଴ is 
the NXOR of the three most significant bits. Table III shows 
the codeword space of ܦହ and the non-codeword space of ܵହ. 

A. Stepwise attack 

Consider the case where the hacker attacks the system by 
scanning all possible values of the data in a subset base. First, 
he takes the three data bits ܦ଴

ଷ and generates all possible 
combinations, detects the maximums of the energy and records 
the values giving these maximums ܦ଴

ଷ∗. Then moves to the next 
subset ܦଵ

ଷ, repeats the procedure and identifies the maximums 
ଵܦ
ଷ∗. He continues until all subsets are scanned and the 

maximum subsets are created. Finally, he combines all the 
maximum subsets to create the set of data ܦ∗ giving the 

1 0 1 1 0 Hamming
weight

H
0 0 0 0 0 1 0 1 1 0 3
0 0 1 0 1 1 0 0 1 1 3
0 1 0 0 1 1 1 1 1 1 5 *

0 1 1 1 0 1 1 0 0 0 2
1 0 0 0 1 0 0 1 1 1 3
1 0 1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1 0 0 2
1 1 1 1 1 0 1 0 0 1 2

D  D )
Scrambled data

SD SR

Scrambling vector

S S

Data with ECC

1 0 1 0 1 Hamming
weight

H
0 0 0 0 0 1 0 1 0 1 3
0 0 1 0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1 0 0 3
0 1 1 1 0 1 1 0 1 1 4 *

1 0 0 0 1 0 0 1 0 0 1
1 0 1 1 0 0 0 0 1 1 2
1 1 0 1 0 0 1 1 1 1 4 *

1 1 1 1 1 0 1 0 1 0 2

D  D ) SD SR

S S 

Data with ECC Scrambled data

Scrambling vector
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maximum hamming weighs which are the candidates to extract 
the scrambling vector ܵ using the equation ܵ ൌ ഥ௜ܦ

∗. 

TABLE III.  CODEWORD AND NON-CODEWORD SPACES FOR ܦହ AND ܵହ 

RESPECTIVELY 

 
 
Now, we verify the multiplicity number for the maximum 

hamming weights. In Table IV all possible hamming weights 
for the scrambled data ܵܦହ ൌ  ହ⨁ܵହ are shown. At the topܦ
we have ܵହ and at the left ܦହ. Assume that the hacker scans all 
possible values for the data vector, this is equivalent to trace 
the matrix column-wise. For each the column we count the 
number of maximums found. This is summarized below the 
Table.  

TABLE IV.  HAMMING WEIGHTS FOR THE DATA VECTOR AND 

SCRAMBLING VECTOR SPACES 

 
 
In a non-protected cache the number of elements in the set 

 is one and then ܵ can be extracted immediately. For our ∗ܦ
case, in the most favorable situation all ܦ௜

ଷ may have 2 
maximums at most and therefore the total number of elements 
in the set ܦ∗ will be the combination of all the subset values, 
that is 2௟ where ݈ is the number of subsets. In the worst case the 
number of maximums in all the subsets will be 4 and thus the 
total number of elements in ܦ∗ will be 4௟. In the Table V these 
two limits are calculated for different sizes of data words. The 
average number of maximums is therefore 2.5௟. It can be seen 

that after 32 bits the number of elements that the hacker has to 
investigate is significantly large and for higher number of bits 
it becomes impractical. 

 

TABLE V.  NUMBER OF ELEMENTS IN THE SET OF MAXIMUMS ܦ∗ 

 
 
 
In Fig. 4 an overview of the complete cache protection is 

shown. 

 
Fig. 4. Overview of the leveraged error correction and interleaved 
scrambling technique. 

In the next section results for the propose technique are 
presented.  

V. EXPERIMENTAL RESULTS 

As a first experiment we have prepared a workbench to 
simulate attacks in the proposed protected cache. A program 
has been made in C++ that emulates the eDLC and ITS units 
using the non-codeword generation for the scrambling vectors. 
For 12 data bit lengths, brute force attacks have been 
programmed scanning all the data space. One attack means that 
a scrambling vector is generated and data is scanned 
exhaustively while the maximum hamming weights are saved 
and counted. These results have been registered for 3,000 
attacks and are shown in the histogram of Fig. 5. 

As it can be observed, in 1,008 attacks, the number of 
maximum hamming weights have been 16 while in 15 attacks 
the number of maximums have increased to 256, as predicted 
in Table V. The average number of maximums is 37.92, very 
close to the predicted average. In any attack a unique 
maximum is not found which confirms the validity of the 
technique against the SPA attack. 

b 2 b 1 b 0 c s s 4 s 3 s 2 s 1 s 0

0 0 0 0 0 0 1 0 0 0 0 1
5 0 0 1 0 1 3 0 0 0 1 1
9 0 1 0 0 1 4 0 0 1 0 0

14 0 1 1 1 0 6 0 0 1 1 0
17 1 0 0 0 1 8 0 1 0 0 0
22 1 0 1 1 0 10 0 1 0 1 0
26 1 1 0 1 0 13 0 1 1 0 1
31 1 1 1 1 1 15 0 1 1 1 1

16 1 0 0 0 0
18 1 0 0 1 0
21 1 0 1 0 1
23 1 0 1 1 1
25 1 1 0 0 1
27 1 1 0 1 1
28 1 1 1 0 0
30 1 1 1 1 0

D
5

S
5

hw (SD
5
)

1 3 4 6 8 10 13 15 16 18 21 23 25 27 28 30

0 1 2 1 2 1 2 3 4 1 2 3 4 3 4 3 4
5 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4
9 1 2 3 4 1 2 1 2 3 4 3 4 1 2 3 4

14 4 3 2 1 2 1 2 1 4 3 4 3 4 3 2 1
17 1 2 3 4 3 4 3 4 1 2 1 2 1 2 3 4
22 4 3 2 1 4 3 4 3 2 1 2 1 4 3 2 1
26 4 3 4 3 2 1 4 3 2 1 4 3 2 1 2 1
31 4 3 4 3 4 3 2 1 4 3 2 1 2 1 2 1

H * 4 3 4 4 4 4 4 4 4 4 4 4 4 4 3 4
# of 4 4 2 2 2 2 2 2 2 2 2 2 2 2 4 4

Top number of maximums = 4 (for 4 cases)
Bottom number of maximums = 2 (for 12 cases)
Average number of maximums = 2.5

D
5

S
5

Data word # subsets
length l min avg max

8 3 8 15 64
10 4 16 39 256
12 4 16 39 256
14 5 32 97 1024
16 6 64 244 4096
20 7 128 610 16384
24 8 256 1525 65536
28 10 1024 9536 1048576
32 11 2048 23841 4194304
40 14 16384 372529 268435456
48 16 65536 2328306 4,295E+09
56 19 524288 3,638E+07 2,749E+11
64 22 4194304 5,684E+08 1,759E+13

# Elements in D *
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Fig. 5. Histogram of number of maximums found in the ܦ∗ set for 12 data 
bits after 3.000 attacks. Average is 37.92. 

 
In order to evaluate the impact of the proposed solution in a 

cache, a 4-way comparison between standard L2 cache, IST 
from [10], eDLC from [12] and the proposed solution from 
Section IV is made. The CACTI tool from [12] is used for 
estimating the area and power consumption for different size 
architectures.  

Table VI contains the CACTI tool results. The area and 
power consumption are simulated for different cache sizes and 
compared to the others. Note that the same tool has been used 
to simulate the methods from [12] and [10], as well as the 
proposed solution because each of them is a memory in itself. 
The IST is simulated using the equation from [10]. For the 
eDLC technique, only the first level of FAs was taken into 
consideration and simulated similarly as with the IST. 
However, due to data redundancy, the overall size is a little bit 
higher. Because the proposed solution is a combination of the 
IST and eDLC, it scales as the addition of the previous two 
proposals. 

TABLE VI.  CACTI RESULTS FOR DIFFERENT CACHE SIZES  

 
Size (KB) 

Area occupied 
(mm2) 

Power consumption 
(W) 

L2 cache 
IST 

eDLC 
Proposed solution 

16 
4 

6.28 
10.28 

0.1479 
0.0365 
0.0842 
0.1165 

0.0945 
0.0394 
0.0706 
0.0824 

L2 cache 
IST 

eDLC 
Proposed solution 

32 
5.65 
8.87 
14.52 

0.2394 
0.0486 
0.1079 
0.1409 

0.0973 
0.0505 
0.0794 
0.0910 

L2 cache 
IST 

eDLC 
Proposed solution 

64 
8 

12.56 
20.56 

0.5493 
0.0691 
0.1292 
0.1376 

0.1594 
0.0579 
0.0869 
0.0703 

L2 cache 
IST 

eDLC 
Proposed solution 

128 
11.31 
17.75 
29.06 

1.1452 
0.1222 
0.1607 
0.2280 

0.2802 
0.0844 
0.0978 
0.0948 

VI. CONCLUSIONS 

In this paper, a novel technique for securing cache 
memories against side channel attacks is presented. Data 
scrambling techniques are a suitable against cold-boot attacks, 
as presented in [10], while the eDLC method from [12] is 
adequate for soft error detection and correction. By blending 
the two techniques and employing them in cache memories, 
side channel attacks become less effective. The evaluation of 
the proposal has been made using programmed models for the 
cache and the technological tool CACTI to evaluate the area 
and power impact of the solution proposed. 
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