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Strong experimental guarantees in ultrafast quantum random number generation
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We describe a methodology and standard of proof for experimental claims of quantum random-number
generation (QRNG), analogous to well-established methods from precision measurement. For appropriately
constructed physical implementations, lower bounds on the quantum contribution to the average min-entropy can
be derived from measurements on the QRNG output. Given these bounds, randomness extractors allow generation
of nearly perfect “ε-random” bit streams. An analysis of experimental uncertainties then gives experimentally
derived confidence levels on the ε randomness of these sequences. We demonstrate the methodology by
application to phase-diffusion QRNG, driven by spontaneous emission as a trusted randomness source. All
other factors, including classical phase noise, amplitude fluctuations, digitization errors, and correlations due to
finite detection bandwidth, are treated with paranoid caution, i.e., assuming the worst possible behaviors consistent
with observations. A data-constrained numerical optimization of the distribution of untrusted parameters is used
to lower bound the average min-entropy. Under this paranoid analysis, the QRNG remains efficient, generating
at least 2.3 quantum random bits per symbol with 8-bit digitization and at least 0.83 quantum random bits per
symbol with binary digitization at a confidence level of 0.999 93. The result demonstrates ultrafast QRNG with
strong experimental guarantees.
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I. INTRODUCTION

Quantum random-number generation extracts randomness
from quantum mechanical processes and measurements. Pro-
cesses used have included radioactive decay [1], path-splitting
of single photons [2], photon number path entanglement [3],
amplified spontaneous emission [4], measurement of the phase
noise of a laser [5–8], photon arrival time [9], vacuum-seeded
bistable processes [10], and stimulated Raman scattering [11].
Quantum random number generators (QRNGs) are attractive
because their randomness can be linked to well-tested princi-
ples of quantum mechanics, e.g., the uncertainty principle [12],
which guarantees a minimum amount of randomness in some
physical quantities.

Physics plays an essential role in QRNG, not only at the
generation stage, but also when making claims of randomness.
While it is common to test generated data against statistical
test suites [13], these tests can only identify nonrandomness,
i.e., patterns in the output. For fundamental reasons, statistical
tests cannot confirm randomness of finite sequences [14]. In
contrast, physical models can support a randomness claim, as
we describe in this work.

Trust plays a central role in contemporary discussions of
QRNG, as it does in quantum cryptography. Cryptography
employs trust models that define what parts of a commu-
nication system are assumed to be understood, in contrast
to those that could be under the control of an adversary. A
strategy that trusts fewer parts of the system places a lower
burden on verification. In an extreme of paranoia, “device-
independent” (DI) strategies distrust even the measurement
devices employed by the communicating parties [15–19]. The
DI approach aims to provide security against hardware-based
attacks [20], and some progress toward DI QRNG has been
demonstrated [21].

*morgan.mitchell@icfo.es

It is important to note that DI techniques aim to guarantee
considerably more than randomness. They use loophole-free
Bell inequality violations [15], or other evidence for nonlocal-
ity [17,18], in conjunction with monogamy relations and the
no-signaling principle to guarantee that no other actor could
be in possession of a copy of the generated random numbers.
This guarantee has obvious security value and explains much
of the interest in DI quantum key distribution and DI QRNG.
In practice, however, loophole-free Bell inequality violations
are experimentally difficult, and the demonstrated rates are
very low. A heroic experiment that still left open the timing
loophole produced 42 random bits in 1 month [21], 15
orders of magnitude slower than other techniques [8,22]. For
the foreseeable future, practical use of QRNGs will require
verification. Moreover, many randomness applications, e.g.,
Monte Carlo simulations, have no reason to protect themselves
against information leakage and obtain no benefit from the
additional security of the DI approach.

Nearly all experimental claims of QRNG to date implicitly
or explicitly assume nonadversarial devices, with varying
degrees of trust in their sources [2,3,5–7,9–12,22–28]. To
take the best-known example, splitting a single photon on
an ideal 50:50 beam splitter gives a random direction to
the photon, and this direction can be measured to give one
perfectly random bit. DI-grade paranoia is not practical in
this scenario; if the beam-splitter transmission were under the
control of an adversary, she could determine every outcome.
It is thus necessary to verify the performance of the device.
Unfortunately, most QRNG claims, indeed all that we are
aware of, leave important gaps in the verification. In the beam-
splitter example, a variety of classical effects could steer the
outcome: correlations in the photon source, inefficiency in the
detectors, light entering the unused port of the interferometer,
sensitivity of the beam splitter to polarization, frequency,
beam position, beam direction, or any other variable that
might fluctuate in the light source, to name a few. Some of
these effects, e.g., variable detector efficiency [29,30], have
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been accounted for, while others have not. For continuous-
variable (CV) QRNGs, a category that includes the fastest
devices, the accounting for noise and detection bandwidth
has to date been unrealistically optimistic. For example, it
is often assumed that digitization noise is independent of
the quantum noise being digitized [7,31] or that detection
systems introduce no correlations [25,32]. As we show in
Sec. V, these assumptions are unwarranted in real systems.
Concerning analysis, only a few experimental works [7,8,11]
quantify their performance using measures compatible with
modern randomness extraction (see Sec. II).

We propose a standard of proof for quality assurance in
QRNG, between the paralyzing “trust-nothing” paranoia of
the DI approach and the risky insouciance of most QRNG
demonstrations to date. We refer to this as metrology-grade
paranoia. The name notes the similarity of the verification
required for characterization of a QRNG and the verification
required to make a precision measurement. Both practices
assume that the system is fundamentally understandable, but
take a conservative and rigorous approach to calibration and
experimental imperfections, i.e., to systematic errors. A mod-
ern precision measurement, e.g., of the transition frequency
in an atomic clock, will take into account a large variety of
possible systematic errors and give a quantitative estimation
of their effect on the measurement result [33,34]. Both
approaches burden the experimenter with understanding and
quantifying all relevant aspects of their system. The success
of similar approaches in precision measurement reassures us
that this burden is not unbearable.

We apply our approach to phase-diffusion QRNG [6,7],
the fastest reported QRNG approach [8,22]. We show that
the statistics of the measured output provide lower bounds
on the amount of quantum randomness contained in the
data stream, allowing the generation of ε-random sequences
and the assignation of confidence levels to the purity of the
randomness. We find that the claims for pulsed phase diffusion
survive metrology-grade paranoia, and thus it is possible to
have simultaneously a very high bit rate and strong randomness
assurance in a practical system.

II. RANDOMNESS QUANTIFICATION

A perfect physical device is not required for near-perfect
randomness generation. Algorithms known as randomness
extractors (REs) [14,35] convert partly random data into nearly
perfect “ε-random” bit strings by a hashing process [36]. If d is
a random symbol with probability distribution P (d), then P ≡
maxd P (d) is the predictability, and H∞ ≡ − log2 P is the
min-entropy. Information-theoretically provable REs [14,38]
can produce ε-random output bit strings with a length given
by their input min-entropy.

Real devices do not operate under constant conditions, and
it is necessary to accommodate the possibility that a QRNG
is at some moments producing higher-quality randomness
than at other moments. We can describe this situation saying
the symbol d has a probability distribution P (d|x), where x
describes the condition of the source when d is produced.
Although x may vary, it is not a source of true randomness. It
describes parameters not trusted to be random; for example,
the x variation may be deterministic but unknown to us. We

consider the randomness quantification from the perspective
of someone, perhaps an adversary, who knows x. Because x
includes all of the untrusted variables, and because the trusted
variables are independent, subsequent d are independent, in
the sense that the probability P ({d}|{x}) of generating a string
of output symbols {d} ≡ (d1, . . . ,dN ) under conditions {x} ≡
(x1, . . . ,xN ) is given by the product P ({d}|{x}) = �iP (di |xi).
The conditional min-entropy of {d} is then

H∞({d}|{x}) ≡ − log2 min
{d}

P ({d}) =
∑

i

H∞(di |xi), (1)

where H∞(d|x) ≡ − log2 mind P (d|x) is the conditional min-
entropy of a single symbol generated with conditions x. Note
that H∞({d}|{x}) does not depend on the order of the elements
of {x}, so that a knowledge of the relative frequencies Frel(x)
with which the conditions x appear in {x} is sufficient to
compute the mean min-entropy per symbol,

H∞ =
∫

dx Frel(x)H∞(d|x). (2)

As we shall see, a measured string {d}, combined with a model
of how x and trusted randomness interact in the source to
produce d, constrain Frel(x), and thus provide a bound on H∞
for that string. In this way, randomness guarantees, with no
prior assumptions about {x}, can be generated, at the cost of
analyzing each raw string {d}.

If we allow ourselves to assume that the conditions
{x} are independent random variables [39], it suffices to
characterize P (x), the distribution of x, rather than Frel(x),
the relative frequencies that actually occur. REs adapted to
this probabilistic situation [40,41] give ε-random output with
length limited by the average min-entropy, defined as

H̃∞ ≡ − log2

∫
dx P (x) max

d
P (d|x). (3)

Note the difference relative to Eq. (2); here the logarithm is
outside of the average. This reduces the entropy, so that for
P (x) = Frel(x), H̃∞ � H∞. As with Frel(x) and H∞, P (x) and
H̃∞ can be bounded using knowledge of a measured string {d},
but this calculation only needs to be performed once, and can
be performed with a very long string {d}, to precisely estimate
P (x). In what follows, we work with P (x) and H̃∞, the more
conservative of the two entropy measures, although the same
methods can be applied to Frel(x) and H∞.

III. METHODOLOGY

In principle, the prescription for metrology-grade paranoia
is simple. First, describe the process by which a quantum
random variable, in our case φq , the laser phase diffusion
due to spontaneous emission, and other experimental variables
x combine to produce measurement results d. Second, use
the distribution of φq , known from first principles or from
modeling, to calculate P (d|x), the distribution of symbols d,
conditioned on x. Third, find H̃∞, the lowest value of H̃∞ that is
consistent with what is known about x, i.e., with experimental
or theoretical constraints on P (x), the distribution of x.

Knowing H̃∞, a RE can then be used to produce an
ε-random bit string, with length ≈NH̃∞, where N is the
number of symbols in the raw data string. Confidence in the
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randomness of this bit string derives from the confidence in
P (x). For example, if statistical and systematic uncertainties
give 99% confidence that the process produced at least H̃∞
average min-entropy, then the extracted bit-string is ε-random
with at least that same confidence level.

The consistency condition is an invitation to paranoia. For
example, it has sometimes been assumed in QRNG work that
digitization errors are independent of the quantum signal being
digitized, and simply add entropy to the raw data, an entropy
that is not of quantum origin and must be accounted for in
order to not overestimate the quantum entropy, but is otherwise
harmless. But is this really the case? How can one be sure
that the noise added by the digitizer is independent of the
signal? Unless one possesses specific knowledge about this
characteristic of the digitizer in question, one must admit that
our knowledge is consistent with less favorable scenarios [25].
For example, the digitizer might organize its errors to bias
the results toward one subset of possible symbols, reducing
the entropy and in effect consuming some of the quantum
randomness present. A paranoid analysis must assume this is
indeed happening, and in the way that reduces H̃∞ as much as
possible.

To show that this methodology can be used in practice, we
perform this analysis on a phase-diffusion QRNG of the same
design as [8].

IV. MODEL

We start with the model shown in Fig. 1 (top), corresponding
to [6,8]. A single-mode diode laser is driven with a strongly
modulated injection current with period τ . For all data shown
in this work, τ = 5 ns. The optical output of the laser, described
by the field E(t), is fed to the input of an unbalanced Mach-
Zehnder interferometer (MZI), with short and long delays τs

and τl = τs + τ , respectively. The field exiting the MZI is

E1(t) = TsE(t − τs) + TlE(t − τl), (4)

where Ts and Tl are the transmission coefficients, including
both couplers, for the short and long paths, respectively. A
photodiode converts the incident power, p(i)(t) = |E1(t)|2,
into a current, which is amplified and digitized at times
ti = iτ , i = 1,2, . . . , with the time origin chosen near the
peak of the pulse. Due to strong phase-diffusion between
times ti and ti+1, the detected signal shows a strong variation
that is not present in the input pulses. This is illustrated in
Fig. 1 (middle), which shows digitized signals, both from the
complete MZI with interference and from the MZI with either
arm interrupted. Histograms of the resulting interference and
single-path signals are shown in Fig. 1 (bottom).

The phase between pulses contains a quantum contribution
φ(q) as well as a classical contribution φ(c), due to relative phase
of the interferometer arms, as well as classical fluctuations in
laser parameters such as injection current. As described in the
Appendix, quantum theory of laser dynamics [42,43] predicts
that φ(q) is independently distributed from one pulse to the next,
with a Gaussian probability density function (PDF) P (φ(q)) of
rms width σq . We keep σq as a parameter in order to study
its effect on randomness generation. Writing the total phase
φ(c)(t) +φ(q)(t) = arg E(t − τs) − arg E(t − τl) and suppress-
ing time dependencies for clarity, the optical signal, i.e., the

FIG. 1. (Color online) (Top) Schematic of phase-diffusion
QRNG. A single-mode diode laser is strongly current modulated
to produce a train of phase-randomized output pulses with field
strengths E(t). Interference of subsequent pulses is performed with
a Mach-Zehnder interferometer, consisting of single-mode 2 × 2
couplers (cpl) and a relative delay equal to the pulse-repetition period
τ . A photodiode (PD) converts the output pulse powers into electrical
current, which is amplified (amp) and converted to digital values with
a digitizer (dig). Either arm of the MZI can be broken to measure the
pulse amplitude in the other arm. (Middle) Time domain recording
of a short digitized sequence of p(i), the interferometer output with
interference (top, blue), and p(s) (middle, red) and p(l) (bottom, beige),
the outputs of the interferometer with only the short or long path open,
respectively. Data have been shifted to have equal baselines. (Bottom)
Histograms (scaled for equal height) for p(i) (wide, blue), p(s) (left
narrow, red), and p(l) (right narrow, beige). The wide p(i) distribution
arises from interference and resembles the arcsine distribution that
describes cos φ when φ is uniformly distributed.

instantaneous power, is

p(i) ≡ p(s) + p(l) + 2V
√

p(s)p(l) cos(φ(c) + φ(q)), (5)

where p(s)(t) ≡ |TsE(t − τs)|2, p(l)(t) ≡ |TlE(t − τl)|2, and
V(t) is the interference visibility. We assume that the pho-
todetection and amplification process is linear and stationary,
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so the electrical signal arriving to the digitizer is

V (t) =
∫ t

−∞
dt ′ G(t − t ′)p(i)(t ′) + V (el)(t), (6)

where G is the impulse response of the detector-amplifier-
digitizer system and V (el) is the summed electronic noise from
all sources. Finally, the digitizer converts V to a digital value d.
Digitization is a highly nonlinear process, and requires special
care, as we now describe.

V. DIGITIZATION

Figure 1 (bottom) illustrates a feature of digitization. This
process adds classical noise, e.g., from the amplification, and
moreover employs a highly nonlinear electronic operation to
convert a continuum of inputs p(i) into a finite set of outputs
d. Although it may be tempting to assume that errors in this
process are independent of p(i) (as is typically the case for
amplifier noise), this is clearly untrue for digitization noise.
For example, a digitizer will normally have a measurable
preference for even versus odd outputs [44], something that
would not occur if errors were independent of the input. In
Fig. 1, an oscillation in the histogram frequencies with period
4 is clearly visible, with an amplitude that is modulated with
a period of 16. These errors have an rms width of 0.8 codes,
i.e., increments of the digitizer output, when averaged over all
d, and are clearly not independent of p(i).

We experimentally bound the size of digitization errors
as follows. We use an electronic function generator (Tabor
WW1281A) followed by a low-pass filter to produce a
quasistatic voltage (a 1-kHz triangle wave) and digitize this
signal with our fast 8-bit digitizer (Acqiris U1084A) and
simultaneously with a 14-bit oscilloscope (Agilent infiniium
86100C with an electronic module Agilent 86112A) for
reference. Figure 2 shows the distribution of digitization errors,
i.e., of the deviation of the digitized value from the ideal
value, based on ≈214 samples per digitization value. This
allows us to identify limits V

(min)
d and V

(max)
d , the minimum

and maximum voltages, respectively, that were observed to
produce a given digitization value d. Below, to compute a

FIG. 2. (Color online) Measured digitization error frequencies
and error limits. Color indicates relative frequency from zero (black)
to maximum (white). It is interesting to note the presence of both
a large-scale nonlinearity in the conversion (the general trend) and
small-scale regularities (e.g., the period-two patterns clearly visible
between 50 and 60). Green traces above and below indicate the
largest and smallest errors observed, respectively. Approximately 214

samples per digitization value were used to obtain the frequencies, so
the confidence that a new event will fall within the limits is ≈1–2−14.

lower bound on H
(Q)
∞ in the presence of digitization errors, we

assume that digitization results outside of these limits are so
improbable as to have a negligible effect on H

(Q)
∞ . We note that

electronic noise during the characterization measurements,
e.g., in the voltage source or in the reference oscilloscope,
can only broaden these bounds, making them conservative.

VI. FINITE BANDWIDTH

Figure 1 (middle) illustrates something intrinsic to analog
randomness generators. An ideal physical process would
produce independent random values, but this is impossible in
a real system due to bandwidth limitations. When a digital
sample is taken, the detection system is still responding
(possibly weakly) to analog inputs it received at earlier times.
This is evident in the upper trace of Fig. 1, which visibly shows
electronic ringing and does not fully return to baseline after a
strong pulse.

We model this behavior using Eq. (6), but considering only
the sampling times t = t1,t2, . . . and write Vi ≡ V (ti), Gj ≡
G(tj ), etc.,

Vi =
∞∑

j=0

Gjpi−j + V
(el)
i . (7)

We compute the autocorrelation ac� ≡ cov(Vi,Vi+�) =∑
jk GjGkcov(pi−j ,pi+�−k) = var(p)

∑
j GjGj+�, plus a

contribution from V (el), and we have assumed cov(pi,pj ) =
var(p)δij . For our system, the V (el) contribution is negligible:
var(V ) places an upper bound on var(V (el)) for any input power
p. Yet, if we interrupt one arm of the interferometer, we
observe nearly constant signals V , as shown in Fig. 1, with
variance 39 dB below the variance of the interference signal.
Because ac� can be directly measured from the data, we
have an experimental determination of ac� ≡ ∑

j GjGj+�,
the autocorrelation of the impulse response. Considering
that G0 � Gj �=0, and using the causality condition Gj<0 =
0, we find Gj perturbatively as follows. We write Gj ≡∑∞

n=0 G
(n)
j λn, where λ is a parameter that later is set to unity,

and define the cross correlation cc(n,m)
� ≡ ∑∞

j=0 G
(n)
j G

(m)
j+�. We

write

ac� = λ0cc(0,0)
� + λ1

[
cc(0,1)

� + cc(1,0)
�

]
+ λ2

[
cc(0,2)

� + cc(1,1)
� + cc(2,0)

�

] + · · · (8)

and solve by orders in λ from the starting condition G
(0)
j ∝ δ0,j .

Considering the λ0 contribution we find cc(0,0)
� = [G(0)

0 ]2δ0,�

giving the λ0 solution [G(0)
0 ]2 = ac0. Without loss of generality,

we take G
(0)
0 to be positive. Considering then λ(1), we solve

ac� = cc(0,0)
� + [cc(0,1)

� + cc(1,0)
� ], a linear equation for G

(1)
j ,

by matrix inversion. Continuing in a similar fashion for
higher orders in λ, Gj rapidly converges to give the impulse
response shown in Fig. 3. Considering the low degree of
observed correlation, it is not surprising that this resembles
the correlation ac� and is dominated by the � = 0 term. It
is perhaps interesting to note the narrow negative feature at
� = 10, probably due to an electronic reflection in the cabling
of the digitization electronics.
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FIG. 3. (Color online) Normalized correlation and recovered im-
pulse response. The main graph shows autocorrelation ac� computed
on a string of 108 symbols. Open blue (solid red) circles indicate
positive (negative) correlation. The horizontal line shows sampling
uncertainty. The inset shows the reconstructed impulse response
function Gj , as described in the text.

The net contribution of previous pulses is V
(prev)
i =∑i−1

j=−∞ pjGi−j . This contributes to the variance of individual
Vi without adding any randomness to the sequence. From the
di sequence we find bounds ζ− ≡ mini V

(prev)
i = −0.0145 full

scale, or −3.7 codes at 8-bit resolution, ζ+ ≡ maxi V
(prev)
i =

0.0156 full scale, or +4.0 codes at 8-bit resolution. We
refer to ζ− and ζ+ as “hangover errors” for their delayed
nature.

VII. REFINEMENT OF THE PROBLEM

Having established a model for the device, we now ask
the following: Trusting only φ(q) to be random, how much
randomness exists in the output string? In particular, we
do not trust p(s), p(l), V, φ(c), V (el), or V (prev) to be random.
Fluctuations in these quantities can be traced to fluctuations
of classical variables, for example, the injection current of
the diode, that certainly contain patterns and that could, in
principle, be described by a perfectly deterministic pattern
unknown to us. We are not, however, completely ignorant
about these quantities; their distributions are constrained
by the digitization and correlation measurements described
above, as well as by the distributions of d (i), d (s), and
d (l).

A key observation is illustrated by Fig. 1 (bottom). The
distributions of d (s) and d (l) are very narrow, whereas the
distribution of d (i) is broad. Provided the digitization gives
a not-too-unfaithful conversion from p to d, we conclude that
p(i) varies much more than p(s) or p(l). By Eq. (5), this implies
V �= 0, at least for some fraction of the measured pulses.
V �= 0, in turn, means that p(i) (and thus d (i)) contain some
randomness from φ(q). Our goal is to make quantitative this
observation, to put lower bounds on the quantum randomness
of the string {d (i)

i }.

VIII. DIGITIZATION LIMITS

An ideal digitization process would output the value
d ∈ [0,N − 1] for inputs in the range p ∈ [p(ideal)

d,− ,p
(ideal)
d,+ ),

where

p
(ideal)
d,− ≡

{−∞ d = 0,

d otherwise, (9)

p
(ideal)
d,+ ≡

{∞ d = N − 1,

d + 1 otherwise. (10)

We have seen, however, that our digitizer sometimes makes
errors; i.e., it outputs a value d when p /∈ [p(ideal)

d,− ,p
(ideal)
d,+ ). The

distribution of these errors is illustrated in Fig. 2 and can be
roughly characterized by the rms width ≈0.8 codes. Defining
p

(dig)
d,− and p

(dig)
d,+ as the minimum and maximum inputs, respec-

tively, that are seen to give rise to an output d, we can say with
confidence that an output d implies an input p ∈ [p(dig)

d,− ,p
(dig)
d,+ ).

This also allows us to bound the probability P (d) of an output
d. Given a cumulative distribution function (CDF) F (p) for
the input, the output satisfies P (d) � F (p(dig)

d,+ ) − F (p(dig)
d,− ).

We can include also errors due to finite bandwidth in
this description. If the minimum and maximum hangover
are ζ− and ζ+, respectively (cf. Sec. VI), then a value d

implies p ∈ [p(d+h)
d,− ,p

(d+h)
d,+ ), where p

(d+h)
d,± = p

(dig)
d,± + ζ± (the

superscript (d+h) indicates the combined effects of digitization
and hangover errors). These digitization limits including
hangover will be used to evaluate digitization of the strongly
varying signal p(i), while the limits without hangover will
be used for the weakly varying p(s) and p(l), for which the
hangover error is negligible.

IX. POSSIBLE DISTRIBUTIONS

For given x ≡ (p(s),p(l),V,φ(c)), and with φ(q) normally
distributed with mean zero and rms width σq , we can
compute Fσq

(p(i)|x), the CDF for p(i), as follows. We note
the transformation of variables rule: If Y = f (X), where f

is a differentiable function and X is a random variable with
distribution PX(X), then the distribution of Y is

PY (Y ) =
∑

i

∣∣∣∣ d

dY
f −1

i (Y )

∣∣∣∣PX(f −1
i (Y )), (11)

where f −1
i (Y ) indicates the ith root of the equation f (X) = Y .

Applied to Eq. (5) and integrating to find Fσq
(p(i)|x) from

Pp(i) (p(i)), we find

Fσq
(p(i)|x) = 1 − 1

2

∞∑
n=−∞

erf
φ − φ(c) + 2πn

σq

√
2

∣∣∣∣φ=φdet

φ=−φdet

, (12)

φdet ≡ arccos
p(i) − p(s) − p(l)

2V
√

p(s)p(l)
, (13)

where erf is the error function. This result is illustrated in
Fig. 4. The CDF has the usual interpretation: The probability
to find p(i) in an interval [a,b) is Fσq

(b|x) − Fσq
(a|x).

We are also interested in the case where φ(q) + φ(c) is
completely uncertain, or equivalently uniformly distributed
on [0,2π ). This gives

F◦(p(i)|x) ≡ 1 − 1

π
Re

[
arccos

p(i) − p(s) − p(l)

2V
√

p(s)p(l)

]
, (14)

which, not surprisingly, is the σq → ∞ limit of Fσq
(p(i)|x).
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FIG. 4. (Color online) Illustration of the distribution function
Fσq

(p(i)|x) that characterizes p(i) given by Eq. (5) for fixed
p(s), p(l), φ(c), and normally distributed φ(q). (Left) Visualization of
the calculation. Gaussian P (φ(q)) (radial coordinate) centered at φ(c)

(polar coordinate), has probability mass (green area) given by the
error function between limits given by the arccosine of the scaled and
shifted p(i) (horizontal coordinate). (Right) Illustration of Fσq

(p(i)|x)
for p(s) = p(l) = 51, V = 0.7, σq = π/8, and φ(c) = 0,π/8, . . . ,π ,
from left to right.

Finally, for the noninterfering signals p(s) and p(l), the
relevant CDF is

F|,s(p|x) ≡ θ (p − p(s)), (15)

F|,l(p|x) ≡ θ (p − p(l)), (16)

where θ is the Heaviside step function. Given a CDF F (P |x)
and a distribution P (x) for x, the statistically averaged CDF is

F (p) =
∫

d4x F (p|x)P (x). (17)

The p(i) digitization frequencies of Fig. 1 were collected
with φ(c) varying due to thermal expansion of the fiber loop
in the MZI and probably several other factors. This causes a
drift by much more than 2π over the time of the acquisition,
so it is appropriate to compare the p(i) data against F◦(p(i)),
which incorporates the φ(c) averaging. If we write P (s)(d),
P (l)(d), and P (i)(d) for the probabilities of digitization outcome
d when measuring variable p(s), p(l), and p(i), respectively,
then the probability of an outcome in the range l to h is
P

(s)
l,h ≡ ∑h

d=l P
(s)(d) and similar for P

(l)
l,h and P

(i)
l,h. P (i)

l,h is upper
bounded by

P
(i)
l,h � F◦

(
p

(d+h)
h,+

) − F◦(p(d+h)
l,− ), (18)

where [p(d+h)
d,− ,p

(d+h)
d,+ ) is the range, including errors as described

above, of the digitization outcome d. We can also obtain a
lower bound, considering that Pl,h = 1 − P0,l−1 − Ph+1,N−1

and that the latter two terms are upper bounded as above. We
find

P
(i)
l,h � F◦

(
p

(d+h)
h+1,−

) − F◦(p(d+h)
l−1,+). (19)

As both P (d)(i)and the limits pd,−,pd,+ have been measured,
Eqs. (18) and (19) provide experimental constraints on P (x).

Analogous constraints apply to the noninterfering signals

P
(s)
l,h � F|,s

(
p

(dig)
h,+

) − F|,s
(
p

(dig)
l,−

)
, (20)

P
(s)
l,h � F|,s

(
p

(dig)
h+1,−

) − F|,s
(
p

(dig)
l−1,+

)
, (21)

and similar for P
(l)
l,h.

X. RANDOMNESS QUANTIFICATION REDUX

We now find a lower bound for H∞, as in Sec. II,
but including worst-case considerations for digitization and
hangover errors. As above, we first consider a given x, implying
a given Fσq

(p(i)|x). Inclusion of digitization and correlation
errors leads to the upper bound,

P (i)(d|x) � Fσq
(pd,−|x) − Fσq

(pd,+|x). (22)

In contrast to p(s), p(l), and V , which are more-or-less directly
reflected in {di} and thus have distributions constrained by,
e.g., Eq. (18), we have little measured information about φ(c).
To be conservative, we maximize the right-hand side over this
variable to find the “worst-case” (wc) bounds

P (i)(d|x) � max
φ(c)

[Fσq
(pd,−|x) − Fσq

(pd,+|x)]

≡ P (wc)(d|x). (23)

Now maxd P (wc)(d|x) upper bounds the predictability of a
single symbol, produced with a given x. For a string of
symbols, generated as x varies with distribution P (x), the
average min-entropy is lower bounded by Eq. (3) applied to
P (wc)(d|x):

H̃∞ � − log2

∫
dx P (x) max

d
P (wc)(d|x) ≡ H

[wc,P (x)]
∞ . (24)

XI. OPTIMIZATION

Our goal is now to minimize H
[wc,P (x)]
∞ , or equivalently to

maximize

P (wc) ≡
∫

dx P (x) max
d

P (wc)(d|x) (25)

by choice of P (x), subject to constraints as in Eqs. (18)–(21).
This will give a conservative estimate of contribution of φ(q) to
the min-entropy in the digitized bit string. We transform this
into a linear programming problem by splitting the x space into
a covering by nonoverlapping regions {χi}. If Rχi

(x) ≡ 1 for
x ∈ χi and zero otherwise, then the probability to find x ∈ χi is
si ≡ ∫

d4x Rχi
(x)P (x). By assumption,

∫
d4x Rχi

(x)Rχj
(x) =

0 for i �= j .
Inserting the identity

∑
i Rχi

(x) in Eq. (25) we find

P (wc) =
∫

d4x
∑

i

Rχi
(x)P (x) max

d
P (wc)(d|x) (26)

�
∑

i

∫
d4x Rχi

(x)P (x) max
x∈χi

max
d

P (wc)(d|x) (27)

=
∑

i

si max
x∈χi

max
d

P (wc)(d|x) (28)

≡ P (wc,{si ,χi })
. (29)

As described below, the maximization over x ∈ χi in Eq. (27)
makes the coarse-graining procedure conservative.

The probabilities si are constrained by
∫

d4x P (x) = 1 or∑
i

si = 1. (30)
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An additional set of constraints, also linear in the {si}, is
generated from Eqs. (18)–(21) by applying the coarse-grained
average,

P (x) →
∑

i

siRχi
(x), (31)

to Eq. (17) to give

F (p) →
∑

i

si

∫
d4x F (p|x)Rχi

(x), (32)

describing the various F quantities appearing in
Eqs. (18)–(21). In what follows, the χi are chosen to
be rectangular regions of x space, which facilitates the
necessary integrations. For example,

∫
dV F◦(p(i)|x) has an

analytic form, reducing the number of numerical integrals.
Having expressed the constraints and objective function

as linear functions of the si , we use a large-scale linear
programming routine to find the unique solution {si} that

maximizes P (wc,{si ,χi }) subject to the set of constraints, for a
given covering {χi}. We arrive to the bound

H̃∞ � − log2 max
{si }

P (wc,{si ,χi }) ≡ H
(wc,{χi })
∞ . (33)

Illustrations are given in Figs. 5 and 6. We increase the
resolution, i.e., increase the number of elements in the
covering while decreasing their volumes, to reach our best

estimate of H
(wc,{χi })
∞ . Because the target function H

(wc,{χi })
∞

is calculated using the worst point in each region, as in
Eq. (27), while the constraints are calculated using the
region average, as in Eq. (31), the average min-entropy
bound increases with increasing resolution, making the
procedure conservative at finite resolution. See Fig. 7 for
illustration.

FIG. 5. (Color online) Optimized piecewise-constant distribu-
tion P (x) for 8-bit digitization and σq = 3π/2. Axes indicate p(s),
p(l), and V; density indicates si . φ(c) is not included as an independent
dimension because it is chosen according to other criteria (see text).
The ranges of p(s) and p(l) are chosen to cover the whole range of
these variables allowed by the measured distributions shown in Fig. 1,
in light of digitization errors from Fig. 2. The graphic on the left uses
worst-case errors (green curves in Fig. 2); the one on the right uses
error limits narrower by a factor 0.275. Within these ranges, the
space is divided into a uniform 8 × 8 × 32 rectangular grid {ξi}, and
corresponding weights {si} are calculated by numerical minimization
of the min-entropy lower bound as in Sec. XI. The probability is
concentrated in regions of high visibility, necessary to agree with the
wide measured distribution, and regions of low visibility, which give
low min-entropy. The distributions of p(i), p(s), and p(l) that follow
from these P (x) are shown in Fig. 6.

FIG. 6. (Color online) Comparison of measured frequencies
against their most conservative interpretation, the prediction from
the optimized P (x). (Top) Prediction from P (x) of Fig. 5 (left),
assuming worst-case tolerances. (Bottom) Prediction from P (x) of
Fig. 5 (right), assuming tolerances 0.275 of worst case. The main
graph shows a histogram of observed p(i) (jagged blue), and vertically
offset p(s),p(l) (inset, left blue and right red), the same as in Fig. 1.
Superposed smooth green curves show the predicted distribution

P (p(i)) computed from P (x) chosen to minimize H
(wc,{χi })
∞ . The inset

shows, inverted, the predicted distributions for p(s) and p(l). The
predicted distributions are consistent with the observed data in light
of the tolerances provided by digitization and hangover errors (see
Secs. V and VI). Note the central bump, from to low-visibility parts
of the distribution, that lowers the min-entropy.

The statistical analysis described here can, in principle, be
performed on the raw data themselves, i.e., to the symbols
{d} prior to randomness extraction. Furthermore, the analysis
uses only the frequencies of the symbols and is independent
of their order. For these reasons, there is no reason P (x) must
be stationary in time. Rather, it describes the distribution of x
aggregated over the time of the data acquisition.

XII. EXPERIMENTAL RESULTS

We apply the above analysis to the QRNG described in [8],
based on the data shown in Figs. 1, 2, and 3. To apply
the analysis, we need a value for σq , which we take to be
σq = 3π/2, well into the plateaus seen in Fig. 8. Previous
works describing the same system [6,8] describe a rapid phase
diffusion, reaching σq > 3π after a diffusion time of 0.17 ns.
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FIG. 7. (Color online) Min-entropy bound as a function of σq for
rectangular-lattice coverings of different resolution. Digitization is
8 bits. With n(1 × 1 × 4) divisions, where n = 6, . . . ,12, giving the
shown curves, from bottom to top. The inset shows the same curves
on a finer scale. Increasing n gives an increasing lower bound for
H∞: The inevitable error due to finite covering resolution works to
reduce H∞, making the estimate conservative. With n = 8 we find 1%
accuracy relative to n = 12, the highest resolution we could optimize
using the MATLAB function linprog and 8 GB of RAM.

Our 5-ns diffusion time is 29 times longer, and thus σq = 3π/2
is very conservative. The results of [8] are based on modeling
of the laser dynamics (see also the Appendix), supported by
direct experimental observations of the pulses. By considering
systematic uncertainties in the laser parameters, and statistical
uncertainties in the observations, it would, in principle, be
possible to place a confidence level on the assertion that
σq � 3π/2. In this case, however, we can see no reasonable
scenario in which the phase diffusion is so much slower (at
least a factor of 58) than calculated; the experimental results
of [8] would have been dramatically different in that case.

Figure 8 shows H
(wc,{χi })
∞ , the lower bound on the average

min-entropy, as a function of digitization resolution. We
find a lower bound of 2.3 quantum random bits per symbol
with 8-bit digitization and 0.83 quantum random bits per

FIG. 8. (Color online) Lower bound on min-entropy versus σq for
different digitization resolution, from 1 bit to 8 bit (bottom to top).
Other conditions are: covering resolution (p(s),p(l),V) = 8 × 8 × 32,
“worst-case” assumptions for digitization and hangover errors.

FIG. 9. (Color online) Lower bound on min-entropy versus error
tolerance at σq = 3π/2 and covering resolution (p(s),p(l),V) =
8 × 8 × 32. Hollow orange circles show 8-bit digitization (on left
scale), filled green circles show binary digitization (on right scale).
Error limits for a given d are computed using the data shown in Fig. 2,
plus the hangover errors ζ± for p(i) digitization, and are interpolated
between the mean and the worst-case limits by the error tolerance
shown here on the horizontal axis. For error tolerance below 0.275
and with this covering, no P (x) is consistent with the distributions
shown in Fig. 1.

symbol with binary digitization. Constraints are computed as
above, from the 8-bit characterization measurements, and we
compute lower-resolution digitizations by splitting the range
p(i) ∈ [0,1) into N = 2b equally spaced bins. We assume
worst-case digitization and hangover errors as in Sec. VIII.

The results show a roughly linear increase in H
(wc,{χi })
∞ versus

b until saturation around b = 6. This supports the intuitively
reasonable conclusion that resolution finer than the scale of
the digitization errors contributes little to H

(wc,{χi })
∞ .

The above results are obtained with a high degree of
statistical confidence. As described in Sec. V, we use as our
error limits the most extreme errors seen in 214 samplings
for any given digitization output. We thus have a confidence
level of 1–2−14 ≈ 0.999 939 that any given digitization event
will be within our limits and thus is properly accounted
for in computing the average min-entropy. For hangover
errors, due to a larger data set, this confidence is ∼1–10−8.
It will surely be reasonable to consider less conservative
error bounds for some applications. We define a fractional
error tolerance η as follows: Recall that p

(ideal)
d,± and p

(d+h)
d,±

are the minimum (−) and maximum (+) values that can
give rise to a symbol d in the ideal and error-adjusted
cases, respectively. Corresponding limits with scaled errors
are p

(d+h,η)
d,± ≡ ηp

(d+h)
d,± + (1 − η)p(ideal)

d,± . In Fig. 9 we show

H
(wc,{χi })
∞ versus σq for different η, showing up to 3.5 quantum

random bits per symbol in 8-bit digitization and up to 0.947
quantum random bits per symbol for binary digitization.

XIII. CONCLUSIONS

Establishing the randomness of data generated by a physical
process is a vexing challenge, with important consequences
for data security and stochastic simulations. While many
experiments have generated data that in some way reflected
the randomness of quantum physics, many applications require
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both full randomness and realistic assurances of randomness.
We have described a methodology and experimental standard
of proof for quantum randomness, similar to the methodology
of precision measurement.

The methodology is paranoid in the sense that it assumes
the worst-case behavior for all untrusted variables. As in
precision measurement, it is possible to place experimental
constraints on the behavior of these variables using auxiliary
measurements and the generated data themselves. A con-
strained numerical optimization of the distribution of untrusted
variables gives a lower bound for the average min-entropy, the
measure of randomness appropriate to randomness extraction.
This enables the generation of nearly perfect ε-random bit
strings. A confidence level, also paranoid, is assigned to the
average min-entropy estimate, and thus to the ε-randomness
of the generated string.

We apply the method to an ultrafast phase-diffusion QRNG,
and find the system is an efficient randomness generator
even under this paranoid analysis. The result shows that
strong experimental guarantees can be given for quantum
random-number generators.
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APPENDIX: PHASE DIFFUSION IN DIODE LASERS

The dynamics of a diode laser are described by a set of
stochastic differential equations that govern the exchange of
energy between the charge carriers (electrons) and the field,
driven by the injection current I , with noise added from
spontaneous emission and spontaneous loss of electrons. We
reproduce the equations from Agrawal [42]. Other formula-
tions [43] have similar global properties:

Ṗ = (GL/
√

1 + p − γ )P + Rsp + FP (t), (A1)

φ̇ = α

2
(GL − γ ) + β

2

GLp

1 + √
1 + p

+ Fφ(t), (A2)

Ṅ = I/q − γeN − GLP/
√

1 + p + FN (t). (A3)

Here P is the number of photons, φ is the phase of the
intracavity field, and N is the number of charge carriers.
FP (t), Fφ(t), and FN (t) are δ-correlated zero-mean Langevin
noise terms, giving diffusion coefficients

DPP = Rsp, Dφφ = Rsp/(4P ), DPφ = 0,

DNN = RspP + γeN, DPN = −RspP, DNφ = 0. (A4)

Here Rsp is the rate of spontaneous emission, which depends on
N , while γe is the decay rate of the carrier population. The other
variables describe laser characteristics that are not important
in this discussion. Note that all of the noise terms are traceable
to two spontaneous processes: the spontaneous emission of
photons Rsp and the spontaneous loss of carriers γeN , both
of which give rise to δ-correlated noise. The dynamics are
invariant under a global change of φ.

If we write the dynamical equation for φ as φ̇ = A + Fφ(t),
we can formally integrate to find �φ, the change in φ over one
pulse cycle �φ = ∫

dtA(t) + ∫
dtFφ(t). The former term is a

contribution to φ(c) and may depend on, e.g., experimental
variations in the current I . In contrast, the latter term is
φ(q), the phase diffusion due to spontaneous emission. As the
integral of white noise, φ(q) is a Gaussian random variable. This
conclusion is not sensitive to the details of the model. Rather,
it is a consequence of our separation of the phase dynamics
into φ(q), the part driven by spontaneous emission, and the part
driven by everything else. We do not estimate the amount of
diffusion here, rather we leave this as a parameter, to study the
relationship of phase diffusion to min-entropy generation, as
in Figs. 7 and 8.

From the phase invariance of Eqs. (A1)–(A3), subsequent
realizations of φ(q) are independent. The phase invariance is a
possible weakness or point of attack on the implementation.
If an adversary could introduce a coherent field at the laser
frequency, they could bias the laser toward a chosen phase.
This attack appears difficult, however, as there is no optical
connection to the outside world; all optical fibers terminate
either on a photodetector or on an optical absorber. In
addition, in the implementation used here, an optical isolator
incorporated into the laser package allows light to leave the
laser, but not to enter it.
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