
Accurate Off-Line Phase Classification for HW/SW
Co-Designed Processors

Aleksandar Branković†, Kyriakos Stavrou§, Enric Gibert§, Antonio González†§
†Universitat Politècnica de Catalunya, Spain

§Intel Barcelona Research Center, Intel Labs Barcelona, Spain
abrankov@ac.upc.edu

{kyriakos.stavrou, enric.gibert.codina, antonio.gonzalez}@intel.com

ABSTRACT
Evaluation techniques in microprocessor design are mostly
based on simulating selected application’s samples using a
cycle-accurate simulator. These samples usually correspond
to different phases of the application stream. To identify
these phases, relevant high-level application statistics are
collected and clustered using a process named“Off-Line Pha-
se Classification”. The purpose of phase classification is to
reduce the number of samples that need to be simulated
with the minimum loss in accuracy (compared to simulating
the complete set of samples).

Unfortunately, when directly applied to HW/SW co-design-
ed processors1 the traditional phase classifications do not
provide a good trade-off between accuracy and the number
of samples. As an example, according to our experimental
results, to achieve a 4% error (compared to simulating all the
samples) one needs to simulate 2.5X more samples for the
case of HW/SW co-designed processors compared to what
is necessary for HW-only processors.

In this paper, we propose a novel off-line phase classifica-
tion scheme called TOL Description Vector (TDV), which is
suitable for HW/SW co-designed processors. TDV targets
at estimating the TOL particularities and on average gives
significantly better accuracy than traditional phase classi-
fication for any number of selected samples. For instance,
TDV reaches the average error of 3% with 3X less samples
than traditional classification. These benefits apply for dif-
ferent TOL and microarchitecture configurations.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies

1The scope of this work regards designs similar to Trans-
meta’s Efficeon [20], not on ASIPs or others. We use the
term HW/SW co-designed processors following the taxon-
omy provided by Smith and Nair [30]. They specifically call
them “HW/SW co-designed virtual machines”, but we found
that the word “processor” is less confusing.

General Terms
Performance

Keywords
Dynamic Binary Translation, HW/SW Co-Designed Proces-
sors, Simulation, Warm-Up Methodology

1. INTRODUCTION
HW/SW co-designed processors are equipped with a soft-

ware layer that dynamically analyzes, profiles, translates
and optimizes instructions from a guest ISA to an internal
microarchitecture with its own customized host ISA. Such a
software layer sits below the OS and it is totally transparent
to the entire software stack. This layer is often organized as
a staged compiler, in which lower optimization stages consist
of an interpreter or a fast translator for individual instruc-
tions. Code regions are formed and promoted to higher and
more aggressive optimization stages as they become hotter.
Optimized code regions are stored in a code cache and most
code is fetched and executed from it in the steady state.
While this software layer has received many different names
(e.g. Code Morphing Software in Transmeta designs [8, 19]),
we refer to it as the Transparent Optimization Layer or TOL
throughout the rest of this paper. Splitting the processor de-
sign into the two components aims to pursue better perfor-
mance, better power consumption, lower design complexity,
better design customization, backward / forward ISA com-
patibility or a combination of them [8, 10, 9, 15, 19, 20, 24,
25, 27, 28, 31, 33].

Due to this HW/SW collaborative combination in such
systems, designers need to decide what part of a particular
performance / power / compatibility feature is implemented
in hardware and what part is implemented in software. So-
lutions range from an entire hardware implementation to an
entire software implementation, with many of them requir-
ing support from both components. Examples of techniques
that require support from hardware and software include,
but are not limited to, the dual-address return address stack
[18] or flook stack [21] to handle subroutine calls and returns,
memory disambiguation support for data speculation opti-
mizations [8], the link pipe to handle indirect branches [21]
and hardware support to accelerate the execution of partic-
ular TOL components as the instruction decoder [15] or the
optimizer [27]. These solutions may also require the addition
of new host ISA instructions in order to define the interface
between the internal hardware and the Transparent Opti-
mization Layer (TOL). In addition, the decision on what

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41778279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

part is implemented in hardware and what part in software
may also depend on the details of the microarchitectural
implementation, such as the configuration of the memory
hierarchy or the design of the branch predictor. In order to
evaluate these trade-offs in a reasonable amount of time an
accurate but fast simulation methodology is required.

In order to speed up the simulations, computer archi-
tects use sampling [29], a technique where only few applica-
tion samples are selected as representatives of the workload
whereas the rest of the samples are skipped. Each of these
selected samples should represent a different phase of the
application. The process that classifies the similar phases is
based on statistics which do not require cycle-accurate simu-
lation and thus it is called Off-Line Phase Classification. In
the case of HW-only processors the statistic typically used is
the basic block (BB) execution frequency [29], and the phase
classification is called Basic Block Vector (BBV) phase clas-
sification. BBV is based on the assumption that each basic
block of a given application behaves similarly each time ex-
ecuted.

In this paper we analyze BBV for the case of HW/SW co-
designed processors. Due to the nature of these processors
(the code regions are dynamically translated and they can
be executed in different optimization stages), the execution
time of each basic block has a significantly wider variance
compared to HW-only processors. In order to back up this
statement, Figure 1 compares the range of execution time
in terms of number of cycles for a basic block in 400.perl-
bench application for HW-only and HW/SW co-designed
processor. The results clearly indicate that the execution
time varies significantly more for HW/SW co-designed pro-
cessors. More specifically, for HW/SW co-designed proces-
sors the execution time for this basic block ranges from 20
to 1000 cycles, whereas for HW-only processors it ranges
from 15 to 100 cycles. Consequently, BBV phase classifica-
tion may classify dissimilar samples as similar in the case
of HW/SW co-designed processors, because the assumption
that each basic block behaves similarly each time executed
is not valid. On the other hand, in the case of HW-only
processors each basic block behaves similarly almost always.

Figure 1: Execution time boxplot chart of the one
BB (0x80c6d87) in 400.perlbench in two different
architectures: HW-only and HW/SW co-designed.

To overcome this limitation of BBV phase classification,
we propose a novel phase classification scheme that can be
applied for HW/SW co-design processors. The proposed
scheme focuses on both the TOL and the code cache exe-
cution and it is called TOL Description Vector phase clas-
sification (TDV). TDV outperforms BBV not only in the
accuracy / simulation time reduction trade-off, but also in
profiling effort (i.e. it requires fewer statistics to be pro-

filed).
In particular, the main contributions of this paper are:

1. We show that the traditional phase classification used
for monolithic HW-only processors has a prohibitively
low accuracy when applied to HW/SW co-designed
processors.

2. We propose a novel phase classification scheme that
targets the particularities of the HW/SW co-designed
processors. The accuracy achieved by this technique
is significantly better (3X on average) compared to
the BBV phase classification, which is the traditional
phase classification scheme for HW-only processors, for
the same number of samples.

3. We show that the different TOL configurations pro-
duce higher variability in simulation errors than dif-
ferences in the microarchitectural configurations.

The rest of the paper is organized as follows: Section 2 dis-
cusses the related work, while Section 3 gives the necessary
background. Section 4 introduces the TDV phase classifica-
tion. Experimental methodology is described in Section 5,
while evaluation results are presented in Sections 6. Finally,
Section 7 summarizes the paper.

2. RELATED WORK
Off-line phase classification schemes have been widely stud-

ied for HW-only architectures. The authors in [16] and [22]
list, describe and compare these techniques. In all of these
classifications different high-level statistics are used to de-
scribe the similarity of samples: instruction mix, loop de-
tection, memory access addresses etc. However, the tradi-
tional phase classification is based on the clustering using the
Basic Block Vector (BBV). Recent studies show that BBV
does not behave well in the presence of frequent L2 misses
[3, 7]. What differentiates our work from the previous con-
tributions is that we perform phase classification analysis
for HW/SW co-designed architectures, where the effects of
the dynamically execution and the staged compilation cause
different application behavior.

The phase behavior of JIT compilers was also well tar-
geted in the literature. The main issues are however differ-
ent. In particular, these papers try to identify on-line phase
changes [23, 11, 13]. JIT compilers use phase change in-
formation to improve the performance of the system. On
the other hand, in this paper we are focused on the off-line
phase classification. This problem is not relevant to the cur-
rent JIT compilers, since research in this area is typically
preformed using real hardware and not simulators, like in
the case of HW/SW co-designed processors.

Sampling methodologies have also been widely researched
in the past. SimPoint [29] is most probably the most dom-
inant technique according to which the most representative
samples are determined by off-line phase classification. Be-
sides SimPoint, there are other sampling methodologies such
as Smarts [32, 12] and Cotson [4]. Smarts sampling method-
ology considers the architecture as a black box and does not
analyze samples’ similarity. It simply assumes random sam-
pling and only determines the parameters for this random
sampling. On the other hand, similar to SimPoint, Cotson
simulates only phases, but it predicts them based on the
on-line classification, using the internal simulation events.

However, it is not clear how these internal simulation events
apply in the case of HW/SW co-designed architectures. In
this paper we will use SimPoint as our baseline as it is the
most used technique.

3. BACKGROUND
This section presents the necessary background behind

this work. The first subsection explains the basics and the
terminology of SimPoint. The second subsection explains
the phase classification based on Basic Block Vector (BBV),
which is used by SimPoint. We also briefly describe the
reason why BBV does not perform well when applied to
HW/SW co-designed architectures.

3.1 SimPoint
To speedup the simulation process researchers typically

use only few samples of a particular application, instead of
simulating the whole application. The samples are usually
chosen such that they present dissimilar phases [29]. The
approach followed by SimPoint and is illustrated in Figure
2. Across all the samples, only n samples, out of M, are
selected for the simulation.

Figure 2: Sampling simulation approach. Only n
samples (out of M) are selected for cycle-accurate
simulation.

In this case, the Cycles Per Instruction (CPI) in applica-
tion execution is estimated as:

CPIest = Σn
i=1αi · CPIsample

i

Σn
i=1αi = 1, (1)

where CPIsample
i is the CPI value of the sample and αi is

the weighted coefficient of that sample. On the other hand,
the real CPI value is:

CPIreal = ΣM
i=1(1/M) · CPIsample

i . (2)

Selected samples (1, 2, ..., n) are usually chosen as the ones
which show the most phases’ dissimilarity between each other
and they are weighted with different coefficients (αi) de-
pending on their contribution. The similarity / dissimilarity
between the samples is estimated by employing the off-line
phase classification. The entire process is illustrated in Fig-
ure 3.

Off-line phase classification is the process of selecting sim-
ilar samples and does not require cycle-accurate simulation
results. It predicts which samples will have similar cycle-
accurate statistics between each other analyzing only the
microarchitectural independent statistics (e.g. instruction
mix, BB execution frequency etc.), as depicted in Figure 3-
a. These statistics are usually called high-level binary statis-
tics and the vector which contains them is attached to every
sample. For instance, in Figure 3-a CPI, D$ miss rate, I$
miss rate (which are microarchitectural dependent statistics)
are mapped to number of the integer instructions, number
of the loads and number of the stores (which are microar-
chitectural independent statistics).

After collecting the high-level binary statistics across all
samples, the phase classification algorithm is applied in or-
der to identify the samples that are similar (Figure 3-b).

Computer architects usually use the algorithm which con-
tains the following phases: normalization, dimensionality
reduction, clustering and representative members choosing
(Figure 3-b).

Figure 3: Phase Classification process in computer
architecture.

Normalization is the process of shrinking or expanding
each dimension of the off-line vector to the range [0, 1]. This
is done in order to avoid favoring one dimension over the
others. Figure 3-b depicts this process as compacting the
values to the range [0, 1].

The next step is Dimensionality Reduction. This is needed
to limit the execution time of the clustering algorithm it-
self; the initial dimensionality of the off-line vector can be
in the order of thousands. In this paper we use Random
Linear Projection (RLP), the same scheme as the one used
by SimPoint. In Figure 3-b this is illustrated as reducing
the dimensionality from 3 dimensions to 2 dimensions.

The clustering is performed at the end of the classifica-
tion process. The samples are grouped according to the Eu-
clidean distance between them. Once the groups are found,
the representative member of each subset is chosen as the
one which has the smallest Euclidean distance to all group
members (centroid approach). The representative members
are selected as the samples for the simulation, while the pop-
ulation of each group determines the contribution weight of
that sample (αi). In this paper we use Hierarchical Cluster-
ing.

Note that the goal of this paper is not to propose a new
phase classification algorithm, nor to analyze a particular
clustering algorithm. The goal of this paper is to propose
the best off-line phase classification for HW/SW co-designed
processors.

3.2 BBV Phase Classification
The SimPoint methodology originally performs Basic Block

Vector (BBV) phase classification in order to find similar
samples. BBV is a vector which contains information of
the execution frequency of each BB in a given sample. The
length of the BBV is equal to the number of static BBs. We
use BBV as the baseline in our experiments.

BBV gives accurate phase classification in the cases where
each BB has similar behavior each time executed. It lays
down on the assumption that the CPI of one sample can be
represented as:

CPIsample = ΣN
bb=1ωbb · CPIbb, (3)

where CPIbb is the CPI of the basic block bb, ωbb is the
contribution of basic block bb and N is the number of the
basic blocks. In this case BBV is defined as the following
vector:

BBV = [ω1, ω2, ..., ωN]. (4)

However, for the cases with a significant number of non-
deterministic long latency events (like for example L2 misses)
CPIbb varies widely across executions [3, 7]. Consequently,
BBV phase classification in this case will give inaccurate
results.

Similar to that, in the case of HW/SW co-designed archi-
tectures, the execution of a particular BB will not be similar
every time. The main reason is the overhead cycles which
correspond to TOL execution. Such an overhead is 2-3 or-
ders of the magnitude higher than the highest penalties in
HW-only architectures (e.g. L2 cache miss). Moreover, this
penalty is not constant and totally unpredictable [6], so it
requires additional off-line statistics to express it.

In order to better understand the TOL behavior we need
to briefly introduce some details about its operation. The
execution flow in HW/SW co-designed processors switches
between instructions from the TOL and instructions from
the code cache. There are two main TOL tasks. The first
task translates and stores code regions in the code cache.
The next time these code regions are encountered, they are
executed directly from the code cache. The second task
refers to the cases when the code regions are already trans-
lated and stored into the code cache. For these cases TOL
intervention is needed to guarantee forward progress. This
happens in the cases when the previous code region ends
with an indirect branch. When an indirect branch occurs,
the address of the next code region is not known and the
TOL is employed. In particular, TOL performs Look Up in
a table of translated code regions in order to find the starting
address of the code region in the code cache.

TOL Look Up task is the main reason for non-similar ex-
ecution time of a specific basic block. This is illustrated in
Figure 4. Imagine three basic blocks: BB1, BB2 and BB3
such that the branch BB1→BB3 is a direct branch, while
the branch BB2→BB3 is an indirect branch. Imagine also
that the translations of these basic blocks are already stored
into the code cache. In this example we are focused on the
execution time of BB3. In the cases when control flow goes
from BB1 to BB3, the execution time of BB3 contains only
the code cache execution time. On the other side, when con-
trol flow goes from BB2 to BB3, the execution time of BB3
contains the code cache execution time plus the TOL Look
Up execution time, since BB2→BB3 is an indirect branch.
For this reason BB3 will not have the same execution time.
Although this example is related to indirect branches, sim-
ilar behavior can be observed in the cases of indirect calls
and returns.

In this paper we have also studied Path Profiling, the most
accurate profiling. This approach is similar to BBV, with
the only difference that instead of the contribution of the
basic blocks we profile the contribution of the each path. In
theory path profiling should give better sampling accuracy
since it can distinguish scenarios which BBV cannot. For
example, the execution stream a-b-c-a-b-c-a-b-c is different
than the execution a-a-a-b-b-b-c-c-c, where a, b and c are
different BBs. However, from BBV’s perspective these two
executions are the same. Although the path profiling is a

Figure 4: Example which illustrates the main rea-
son for high CPI variance per BB in HW/SW co-
designed architectures.

promising solution, we found out that it gives only slightly
better accuracy than BBV but not better than our solution.
The main reason is that path profiling cannot express the
TOL behavior accurately. Similar to BBV, paths p1 and
p2 can be similar, but the TOL execution can be different
among these two paths [6]. Moreover it requires bigger pro-
filing effort than BBV.

4. TOL BASED PHASE CLASSIFICATION
This section proposes and explains the novel and simple

off-line phase classification which being based on the TOL
Description Vector (TDV) makes it suitable for HW/SW
co-designed processors. TDV basically contains the infor-
mation about the static / dynamic instruction ratio (many
different perspectives) and the information about the in-
structions mix.

4.1 The contents of TDV
The TOL Description Vector (TDV) has the following

form:

TDV = [sd1, sd2, sp0, sp1, ..., sp9, ind, im1, im2, ..., im5].
(5)

where the fields are statistics that can be measured by any
instrumentation tool. We found that with just 19 statistics
TDV can lead to very accurate off-line phase classifications.
In contrast BBV consists of as many elements as the num-
ber of static basic blocks (which is in the order of several
thousand for some applications). Each such element counts
the dynamic contribution of the particular basic block to the
execution of the application. We classify these 19 statistics
into four subgroups, named as sd, sp, ind and im.

Whereas BBV view of the system is limited to the execu-
tion count of the basic blocks, TDV has a more descriptive
view. It is based on the estimation of the main execution
sources in HW/SW co-designed processors, which are Trans-
lation (Transl.), Look Up (LUP) and Code Cache execution
(CodeCache). Execution time of each sample is represented
as the summation of these main execution sources:

cyclessample = cyclesLUP + cyclesTransl. + cyclesCodeCache,
(6)

where cyclesLUP , cyclesTransl. and cyclesCodeCache stand
for the cycles spent during the Look Up, Translation and

Code Cache execution respectively. Equation 6 can be writ-
ten similar to Equation 3, in order to express CPIsample:

CPIsample = CPILUP + CPITransl. + CPICodeCache. (7)

CPILUP , CPITransl. and CPICodeCache stand for the cy-
cles spent during the Look Up, Translation and Code Cache
execution per guest instruction respectively. Each of these
summands is estimated using different high-level statistics.
The parts that follow explain how each of these factors is
estimated using high-level binary statistics.

4.1.1 Look Up estimation
Based on the previous studies [26], the most important

contributor to the TOL overhead is the Look Up (LUP).
LUP overhead is needed to guarantee forward progress of
the translated application. In particular it does look up in a
table of translated code regions in order to find the starting
address of the code region in the code cache. As we discussed
in Section 3.2, the absence of the linking between the code
regions in the code cache is the reason for LUP. Among
many sources of the possible cases in which the linking is
not possible, the branch indirection is predominated. Thus
LUP is estimated by the number of the indirect branches,
indirect calls and returns (ind field in Equation 5).

4.1.2 Translation estimation
The second TOL task is Code region translation and

optimization . The TOL invokes this process whenever a
block is encountered for the first time; the result of this pro-
cess is to create and store an optimized version of the spe-
cific code region. The metric which is used in the literature
to estimate this task is static / dynamic instruction ratio
(sd)[26]. Higher ratio implies higher translation overhead.
The rationale behind this is very straight forward. Lower
ratio means that code regions are repeated more often and
so the relative contribution of the translation overhead is
smaller.

Figure 5: Example which illustrates same static /
dynamic ratio, but different code region formation.

However, the previous metric estimates only roughly the
translation overhead and it might be very inaccurate when
the code regions are constructed using superblocks (single-
entry, multiple-exit code regions) - SBs. To target this we
introduce a metric called static percentage (sp). Static per-
centage expresses the percentage of static code needed to
cover X % of the dynamically executed code. Such a metric
is important to differentiate the behavior between two sam-
ples with same static / dynamic ratio, but different code
region formation. In order to explain this situation, con-
sider a scenario in Figure 5 where two samples have only
three basic blocks (BB1, BB2, BB3) and each basic block
has the same amount of instructions (e.g. 5). In the case of
the first sample BB1 is executed 100 times, BB2 90 times

and BB3 10 times; while in the case of the second sam-
ple BB1 is executed 100 times, BB2 50 times and BB3 50
times. Focusing only on sd metric these two samples are the
same, which is wrong because in the case of the first sample
branch BB1 → BB2 is biased and the superblock SB1 is
constructed, whereas in the second case that superblock is
not constructed. On the other hand sp metric differentiates
these two samples. The formal definition of sp is as follows:

sp(sample,X) = maxSX⊆Stotal

|static(SX)|
|static(Stotal)|

|dynamic(SX)|
|dynamic(Stotal)|

≤ X, (8)

where Stotal is the set of all instructions in a given sample,
while functions static() and dynamic() respectively corre-
sponds to number of static and dynamic instructions exe-
cuted by the sample. According to our experiments, the set
of values for X that optimizes the estimation of CPItransl
is: X = {90%, 80%, 70%, 60%, 50%}.

The sd and sp metrics are measured in two different ways:
in terms of instructions and in terms of basic blocks. The
number of the instructions estimates how costly translation
overhead will be per code region, while the number of basic
blocks estimates how many code regions will be constructed.
TDV includes both these fields, sd1 regards the static / dy-
namic instructions ratio whereas sd2 the static / dynamic
basic block metric. Similar applies for sp (sp0, sp1, ...sp9).

4.1.3 Code Cache estimation
Translated application is stored into the code cache. Al-

though the behavior of the Code Cache can be estimated
by the BBV, we found that using just the instruction mix
gives higher accuracy. Instructions are classified into five
main types: integer (INT), floating point (FP), load (LD),
store (ST) and branches (BR) and for each type the TDV
includes the number of dynamically executed instructions
(im1, im2, im3, im4, im5).

4.2 Correlation of TDV and CPI
In order to back up the assumptions taken in the esti-

mation of TOL particularities in previous section, we show
Figure 6. Y-axis presents the correlation between the sum-
mands in Equation 7 (CPILUP , CPITransl., CPICodeCache)
and each of the statistics used for TDV (X-axis). The higher
the correlation is, the strongest the dependency between the
particular summand and the particular field in TDV. For
example, the dependency between CPITransl. and static /
dynamic instruction ratio is quite strong with a correlation
of 0.48.

As can be observed the CPILUP correlates the most with
the number of indirect branches, indirect calls and returns
(correlation of 40%) which confirms the assumption from
Section 4.1.1. On the other hand, CPITransl. highly cor-
relates with static / dynamic ratio (sd0 and sd1). Other
metrics introduced in Section 4.1.2 (sp0 − sp9) also show
high correlation with CPITransl.. Finally, CPICodeCache

correlates the most with Instruction Mix (im1 − im5), as
proposed in Section 4.1.3.

4.3 TDV vs. BBV example
Table 1 shows an example where TDV clearly outperforms

BBV. It contains three samples (A, B, C), which correspond

Table 1: Three samples (A, B, C) of 410.bwaves application represented in different statistics space: (a)
TDV, (b) BBV and (c) CPI. The shaded lines refer to the similar samples for a given statistics space.

(a) TDV

sd1 sd2 sp0 sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 ind im1 im2 im3 im4 im5
A 691 131 0.57 0.72 0.42 0.60 0.30 0.47 0.22 0.39 0.16 0.29 0.22 0.01 0.23 0.42 0.13 0.00
B 739 131 0.54 0.72 0.37 0.58 0.25 0.43 0.17 0.27 0.11 0.20 0.24 0.01 0.59 0.08 0.08 0.00
C 721 133 0.56 0.73 0.39 0.58 0.28 0.45 0.20 0.36 0.13 0.24 0.23 0.01 0.38 0.28 0.09 0.02

(b) BBV

ω1 ω2 ω3 ω4 ω10 ω11 ω12 ω13 ω16 ω18 ω19

A 0.01 0.00 0.01 0.00 0.17 0.54 0.21 0.01 0.00 0.01 0.02
B 0.03 0.03 0.04 0.02 0.14 0.47 0.20 0.01 0.02 0.01 0.02
C 0.11 0.09 0.14 0.06 0.10 0.30 0.11 0.01 0.06 0.00 0.01

(c) CPI

CPI
A 1.72
B 2.27
C 1.96

Figure 6: Correlation of the each field of TDV
with three main components of CPI in HW/SW co-
designed processors.

to 410.bwaves application stream, in three different cases
(spaces): (a) TDV, (b) BBV and (c) CPI. This application
is chosen as the one which has relatively low number of static
BBs, so the BBV has a reasonably small length and it is easy
to manually compare all the fields in BBV, whereas at the
same time it has a relatively high TOL overhead compared
to other applications.

Table 1 shows that samples A and C are similar in the
TDV and CPI space. Similarity between the samples is cal-
culated as Euclidean distance. For instance, if samples A
and B have smaller Euclidean distance between each other
than samples A and C, we say that A and B are more sim-
ilar than A and C. Having a careful look at TDV we can
notice that among all fields, sample C is closer to sample A
than to sample B. Across all TDV fields the values collected
for the sample C are closer to the values of the sample A
than the values of the sample B.

On the contrary, in BBV space samples A and B are
similar, which is against the CPI space. Consequently BBV
will give worse similarity analysis than TDV in this case.
The reason why in BBV space samples A and C are not
similar is that BBV considers all basic blocks equally, while
for HW/SW co-designed processors basic block which ends
with an indirect branch is more important than the others.
In particular in Table 1 basic blocks with indirect branches
are BB4, BB12 and BB16, with the BBV coefficients ω4, ω12

and ω16 respectively.

5. EXPERIMENTAL METHODOLOGY

5.1 Simulation Infrastructure
All the studies have been performed using DARCO [26],

an infrastructure designed for research in HW/SW co-design-
ed processors. DARCO uses QEMU [1] support for its TOL
design and it models a HW/SW co-designed processor which
executes x86 applications on top of a PPC-like CPU through
TOL. PowerPC (PPC) has been chosen as an internal host
ISA because it is a typical 3-input RISC ISA with broad
tool support (such as QEMU, gcc and others). In addition,
the PPC ISA is extended with new instructions specific for
HW/SW co-design processors and our intention is to add
more extensions in the future.

DARCO uses a TOL with 3 levels of execution and opti-
mization: interpretation mode (IM), basic block translation
mode (BBM) and superblock optimization mode (SBM). Ac-
cording to sensitivity studies [26], the optimal promotion
thresholds are 5 (THIM→BBM) and 10000 (THBBM→SBM)
respectively.

At the basic block translation level, the TOL only stores
code regions consisting of a single basic block and it does
not apply optimizations to them. On the contrary, at the
superblock optimization level, superblocks are created by in-
cluding basic blocks until the probability to reach the end of
the superblock is below 80% based on profiling information.
At this optimization level, superblocks pass through several
optimizations (copy/constant propagation, constant folding,
common sub-expression elimination, dead code elimination,
register allocation, instruction scheduling and control and
data speculation). DARCO’s TOL also supports typical
run-time optimizations, such as code region linking [5] and
devirtualization of indirect branches [14].

The cycle-accurate simulator of DARCO models a config-
urable PPC-like in-order core. This CPU is a multi-way in-
order processor with 9 pipeline stages, 3 levels of the mem-
ory hierarchy, a prefetcher and scoreboard scheduling logic.
The main microarchitectural parameters are given in Table
2. The closest industrial processor to the modeled processor
is PPC 450 [17].

For our experiments, we used the SPEC2006 benchmark
suite [2].

5.2 HW-only processor model
In order to study how the different clustering schemes ap-

ply to HW-only versus HW/SW co-designed processors, we
modeled the former as a HW/SW co-designed processors

Table 2: Microarchitectural Parameters
General

Issue width 2; Issue queue size 16
Units

ALU INT 1 cycle latency
MUL INT 2 cycles latency
ALU FP 2 cycles latency
MUL FP 5 cycles latency

Caches
I$ 32KB, 4way, line:64b, LRU, 1 cycle
D$ 32KB, 4way, line:64b, LRU, 1 cycle
L2 512KB, 8way, line:128b, LRU, 16 cycles
Main Mem. hit: 128 cycles

TLB
L1 64 entries, 8way, hit 1 cycle
L2 256 entries, 8way, hit 16 cycles
Main Mem. miss: 512 cycles

Branch predictor (G-share)
Size of history register 12

Stride Prefetcher
Number of entries 32

with only BB translation and without feeding the cycle-
accurate simulator with TOL instructions. In such a sce-
nario, we closely model a HW-only processor, as the main
particularities of HW/SW co-designed processors are skipped
(staged compilation and TOL overhead).

5.3 Experimental setup
Different phase classifications are evaluated using 100 sam-

ples per each application spread uniformly up to 200B x86
instructions (Figure 7). Each sample is 10M x86 instruc-
tions long. This amount of samples is used for the simulation
time reasons. SPEC2006 is a very large benchmark suite, at
least an order of magnitude bigger than SPEC2000, so cycle-
accurate simulation of whole dynamic application stream is
almost not feasible.

In order to ensure that using 100 samples per each appli-
cation does not restrict the conclusions we did experiments
for the case of 1000 samples per application for HW/SW
co-designed processor. The error curves and the conclusions
are similar to the case in which we simulate 100 samples.
This means that in the case of taking into the consideration
1000 samples per application we do not catch many new
phases in comparison with 100 samples scenario. In order
to be consistent thought the paper, all results are based on
the case of 100 samples per application.

Figure 7: Experimental setup - studied samples.

5.4 Definition of the simulation metrics
The accuracy of the simulation technique is expressed by

the average error of the estimation of gCPI2 among all appli-
cations. The accuracy of gCPI is calculated as the relative
error between the estimated gCPI (Equation 1) and the real

2gCPI refers to the guest CPI, where instructions refer to
guest instructions (in our case x86 instructions) error. This
is the metric that allows comparing two different TOL con-
figuration executions and is the typical metric used for stud-
ies for HW/SW co-designed processors.

gCPI (Equation 2):

gCPIre = abs(gCPIreal − gCPIest)/gCPIreal. (9)

Finally, the average error is computed across all applications
as the arithmetic mean:

error = avgapplication(gCPIre) (10)

6. RESULTS

6.1 BBV: HW/SW vs. HW-only
Figure 8 shows the simulation error of BBV phase clas-

sification for two cases: HW-only and HW/SW co-designed
processors. X-axis presents the normalized number of sam-
ples selected for simulation, while the Y-axis presents the
average relative error. As the figure shows, for the BBV
phase classification scheme, the HW/SW co-designed pro-
cessors suffer from significantly higher error compared to
the HW-only designs. Moreover it backs up initial assump-
tion made in this paper, that BBV phase classification does
not provide a good trade-off between accuracy and number
of samples.

Figure 8: Average relative error vs. number of
selected samples for BBV phase classification in
two different scenarios: HW-only and HW/SW co-
designed processor.

For instance, for 20 samples per application (which makes
normalized the number of samples equal to 0.2), we have
an average simulation error of 13% for HW/SW co-designed
processors and 5% for HW-only architectures; a difference
of 2.5X. On the other hand, in order to have a simulation
error of 5% HW/SW co-designed processors need 2X more
number of samples than the HW-only processors. As already
mentioned, the main reason for such behavior is the TOL
overhead. Our results also show that the applications with
the highest simulation error are the ones with the high TOL
overhead (higher than 10% of the entire execution).

To eliminate the Random Linear Projection (Section 3.1)
from being the reason behind the high inaccuracy of the
BBV we performed studies with different lengths for the
Random Linear Projection (RLP) vector. In particular we
studied the effect of increasing the default value of the RLP
length from 15 to 20, 30, 50 and 100 respectively. On the

contrary to the expected behavior, having bigger length of
the RLP vector introduces higher errors and thus cannot be
the reason for high error in the case of BBV phase classifica-
tion. Such behavior is due to the nature of RLP, where the
lower dimensionality of RLP makes statistical space more
spherical and easier for clustering.

6.2 HW/SW: BBV vs. TDV
The results presented in Figure 9 compare the BBV and

the TDV phase classification in the case of HW/SW co-
designed processor. Similar to Figure 8, X-axis presents the
normalized number of samples, while the Y-axis presents the
average relative error.

Figure 9: Average relative error vs. number of se-
lected samples for BBV and TDV phase classifica-
tion in the case of HW/SW co-designed processor.

The first observation from Figure 9 is that TDV has er-
rors smaller than BBV. For 20 samples per application, TDV
delivers a simulation error of 3%, whereas BBV delivers an
error of 13%, an improvement of more than 4X. As can be
observed, when the number of samples is between 10 and
40 (between 0.1 and 0.4 in Figure 9) the average simulated
error in the case of TDV is around 2-4X smaller than in the
case of BBV. The benefit of TDV can be also seen from a
different perspective, which is the simulation time reduction.
In order to reach the relative error of 3%, which is the typ-
ical threshold used in the literature, TDV requires 3X lees
number of samples than BBV.

Figure 10 shows the simulation error across all applica-
tions from SPEC2006 benchmark suite in the case of 20 sam-
ples selected for each application. Across all samples TDV
phase classification is almost always better than BBV phase
classification. Only in two cases (453.povray and 471.on-
mentpp) BBV gives better accuracy then TDV. However,
these cases are cases with small error (up to 3%). In these
cases the TOL overhead is minimal and the behavior of the
application executed on the HW/SW co-designed processors
is similar to the execution on the HW-only processor.

Moreover, notice that BBV has a maximum error of 50%,
whereas TDV bounds the maximum error to 16%. For these
benchmarks in order to have acceptable error, more samples
have to be simulated. For instance for 400.perlbench, if we
simulate 35 samples, the error for TDV is 4%. Finding the

number of the samples needed to deliver a given simulation
error is out of the scope of this paper. However the approach
used in SimPoint, based on Bayesian Information Criterion
[29], can be used.

There are 11 applications with really high simulation error
(more than 10%) in the case of BBV phase classification. It
is important to notice that in all of these cases TDV signifi-
cantly outperforms BBV. Moreover, only for one application
(400.perlbench) TDV gives an error more than 10%. The
reason behind it is based on the fact that 400.perlbench has
high number of static SBs which makes its behavior very un-
predictable under a HW/SW co-designed execution scenario
[6].

6.3 HW/SW: Different Configurations
This subsection explores the accuracy of the TDV phase

classification for different configurations. A successful clas-
sification scheme should be tolerant to such variations; es-
pecially for the HW/SW co-design architectures where the
design space is wider compared to HW-only architectures.

We study the variations for both components: microarchi-
tectural (HW) and TOL (SW). For the variations of TOL,
we studied the following configurations: (i) default, (ii)
without Optimizations and (iii) without Linking. For the
variations of microarchitecture we studied: (i) doubled data
cache, (ii) half data cache, (iii) double second level cache,
(iv) half second level cache and (v) four times smaller branch
predictor history.

Figure 11: Average relative error vs. number of
selected samples for BBV and TDV phase classifi-
cation in the case of different TOL in HW/SW co-
designed processor: (i) default, (ii) without Opti-
mizations and (iii) without Linking.

The results for TOL variation are presented in Figure 11.
Two things can be observed. First, for every TOL configu-
ration and when less than 40 samples are selected, TDV still
has 2-3X smaller error than BBV. The second observation
is that the accuracy depends on the specific configuration.
For instance TOL without Linking has around 3-4% bigger
error then default TOL. This is the case for both, BBV and
TDV phase classification. Therefore, these studies show that
for different configurations different numbers of samples are
needed to deliver particular error.

Figure 10: Relative error per application (SPEC2006) for BBV and TDV phase classification in the case of
HW/SW co-designed processor for a fixed (k=20) samples per application.

The error of the variation in the case of different microar-
chitectural configurations is negligible. In other words, the
error curve is the same like the one presented in Figure 9.
Such a behavior is expected, since the host hardware is a
simple in-order processor, so for different microarchitectural
configurations, the amount of cycles is just scaled similarly
up or down across all samples. Therefore, the error remains
almost the same.

6.4 HW/SW: Other Statistics
Researchers usually do not pay attention only to gCPI,

but also to some other relevant statistics. There are many
scenarios in which two simulations may give similar gCPI,
but different behavior. Imagine the following scenario. The
real application behavior is such that big part of the code
is in the highest optimization level, but it is not linked ef-
ficiently due to a large number of indirect branches. Then
after applying the sampling technique, we choose the sam-
ples which have less code regions in the highest optimiza-
tion level, but these code regions are efficiently linked. The
amount of cycles lost by having worse code generation is
compensated by avoiding the TOL LUP execution, so sum-
marizing we would have the similar number of samples for
both simulations (authoritative and sampled simulation).
Just based on gCPI accuracy, we could say that sampling is
accurate, whereas in reality it is not.

Figure 12 shows the error of other statistics such as: the
number of the host instruction and the SB coverage, for
TDV and BBV phase classification. This shows that the
errors are smaller than the error of gCPI, and that TDV has
around 2X better accuracy than BBV. The results also show
that even though BBV in some cases estimates accurately
the code cache behavior, it does not express accurately SB
coverage. This means that sp0 - sp9 fields in TDV express
more accurately the SB coverage than BBV. This is due to
the fact that BBV does not have any information about SB
estimation.

7. CONCLUSIONS
Evaluation techniques in traditional microprocessor de-

sign are mostly based on simulating a few samples across
whole application. Samples are usually specified by off-
line phase classification. However, traditional phase clas-
sification is not applicable to HW/SW co-design processors,

Figure 12: Average relative error vs. number of
selected samples for BBV and TDV phase classifi-
cation in the case of HW/SW co-designed processor
for number of host instructions (#host) and SB cov-
erage (SB%).

in which a Transparent to the entire software stack Opti-
mization Layer (TOL) dynamically translates and optimizes
guest instructions to an internal host ISA.

In short the contributions of this paper are the following:
(i) we show that traditional Basic Block Vector (BBV) phase
classification is not suitable for HW/SW co-designed proces-
sors, (ii) we propose a novel phase classification called TOL
Description Vector (TDV). On average, TDV phase classifi-
cation reaches the same error like BBV with 3X less number
of samples. Such a trend does not depend on different TOL
neither on microarchitectural configurations.

8. ACKNOWLEDGMENTS
This work is partially supported by the Generalitat de

Catalunya under grant 2009SGR1250, the Spanish Ministry
of Education and Science under contract TIN2010-18368,
and Intel Corporation. Aleksandar Branković was partially
funded by the Generalitat de Catalunya with a FI-AGAUR
grant.

9. REFERENCES
[1] Quick EMUlation tool (http://http://www.qemu.org/).

[2] Standard Performance Evaluation Corporation. SPEC
CPU2006 Benchmarks. (http://www.spec.org/cpu2006/).

[3] M. Annavaram, R. Rakvic, M. Polito, J. Y Bouguet,
R. Hankins, and B. Davies. The Fuzzy Correlation between
Code and Performance Predictability. In 37th International
Symposium on Microarchitecture, pages 93–104, 2004.

[4] E. Argollo, A. Falcon, P. Faraboschi, M. Monchiero, and
D. Ortega. Cotson: Infrastructure for full system
simulation. SIGOPS Oper. Syst. Rev., 43(1):52–61, January
2009.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
Transparent Dynamic Optimization System. In Proceedings
of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, PLDI ’00, pages
1–12, 2000.

[6] A. Branković, K. Stavrou, E. Gibert, and A. González.
Performance Analysis and Predictability of the Software
Layer in Dynamic Binary Translators/Optimizers. In
Proceedings of the ACM International Conference on
Computing Frontiers, CF ’13, pages 15:1–15:10, 2013.

[7] T.E. Carlson, W. Heirman, and L. Eeckhout. Sampled
simulation of multi-threaded applications. In Proceedings of
the 2013 IEEE International Symposium on Performance
Analysis of Systems and Software, pages 2–12, 2013.

[8] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson. The Transmeta Code
Morphing Software: Using Speculation, Recovery, and
Adaptive Retranslation to address real-life challenges. In
Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’03, pages 15–24, 2003.

[9] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye.
Dynamic Binary Translation and Optimization. IEEE
Transactions on Computers, 50(6):529–548, 2001.

[10] K. Ebcioglu and E. R. Altman. Daisy: Dynamic
Compilation for 100% Architectural Compatibility. In
Proceedings of the 24th annual International Symposium
on Computer Architecture, ISCA ’97, pages 26–37, 1997.

[11] A. Georges, D. Buytaert, L. Eeckhout, and
K. De Bosschere. Method-Level Phase Behavior in Java
Workloads. In Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’04, pages
270–287, 2004.

[12] N. Hardavellas et al. Simflex: A Fast, Accurate, Flexible
Full-System Simulation Framework for Performance
Evaluation of Server Architecture. SIGMETRICS Perform.
Eval. Rev., 31(4):31–34, March 2004.

[13] M. Hauswirth and A. Diwan. Phases in Branch Targets of
Java Programs. Technical Report CU-CS-983-04, 2004.

[14] J. D. Hiser and D. Williams et al. Evaluating Indirect
Branch Handling Mechanisms in Software Dynamic
Translation Systems. ACM Trans. Archit. Code Optim.,
8(2):9:1–9:28, June 2011.

[15] S. Hu and J. E. Smith. Reducing Startup Time in
Co-Designed Virtual Machines. In Proceedings of the 33rd
annual international symposium on Computer
Architecture, ISCA ’06, pages 277–288, 2006.

[16] T. Huffmire and T. Sherwood. Wavelet-based phase
classification. In Proceedings of the 15th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’06, pages 95–104, 2006.

[17] IBM. The PowerPC 440 Core. White-Paper, IBM
Microelectronics Division Research Triangle Park NC,
1999.

[18] H. Kim and J. E. Smith. Hardware Support for Control
Transfers in Code Caches. In Proceedings of the 36th
annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 36, pages 253–, 2003.

[19] A. Klaiber. The Technology Behind the Crusoe Processors.
White paper, January 2000.

[20] K. Krewell. Transmeta gets more efficeon. Microprocessor
Report, 2003.

[21] N. Kumar and N. Neelakantam. Indirect Branches in the
Transmeta Efficeon Processor. In Proceedings of the 2011
Workshop on Infrastructure for Software/Hardware
co-design, WISH ’11, 2011.

[22] J. Lau, S. Schoemackers, and B. Calder. Structures for
phase classification. In Proceedings of the 2004 IEEE
International Symposium on Performance Analysis of
Systems and Software, ISPASS ’04, pages 57–67, 2004.

[23] P. Nagpurkar and C. Krintz. Phase-based Visualization and
Analysis of Java Programs. In Elsevier Science of
Computer Programming, Special issue on Principles of
programming in Java, volume 59, Number 1-2, pages
131–164, 2006.

[24] N. Neelakantam, D. Ditzel, and C. Zilles. A Real System
Evaluation of Hardware Atomicity for Software
Speculation. In Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming
languages and operating systems, ASPLOS XV, pages
29–38, 2010.

[25] G. Ottoni et al. AstroLIT: enabling simulation-based
microarchitecture comparison between Intel and Transmeta
designs. In Proceedings of the 8th ACM International
Conference on Computing Frontiers, CF ’11, pages
21:1–21:2, 2011.

[26] D. Pavlou, A. Brankovic, R. Kumar, M. Gregori,
S. Kyriakos, E. Gibert, and A. Gonzalez. DARCO:
Infrastructure for Research on HW/SW co-designed Virtual
Machines. In Proceedings of AMAS workshop, in
conjuction with ISCA, 2011.

[27] D. Pavlou, E. Gibert, F. Latorre, and A. Gonzalez.
DDGacc: Boosting Dynamic DDG-based Binary
Optimizations through Specialized Hardware Support. In
Proceedings of the 8th ACM SIGPLAN/SIGOPS
conference on Virtual Execution Environments, VEE ’12,
pages 159–168, 2012.

[28] S. Sathaye et al. BOA: Targeting multi-gigahertz with
Binary Translation. In Proceedings of the 1999 Workshop
on Binary Translation, IEEE Computer Society Technical
Committee on Computer Architecture Newsletter, pages
2–11, 1999.

[29] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS X, pages
45–57, 2002.

[30] J. Smith and R. Nair. Virtual Machines: Versatile
Platforms for Systems and Processes. The Morgan
Kaufmann Series in Computer Architecture and Design.
2005.

[31] Y. Wu, S. Hu, E. Borin, and C. Wang. A HW/SW
co-designed Heterogeneous multi-core Virtual Machine for
energy-efficient general purpose computing. In Proceedings
of the 2011 IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’11, pages 236–245,
2011.

[32] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical sampling. In Proceedings of the 30th
annual International Symposium on Computer
Architecture, ISCA ’03, pages 84–97, 2003.

[33] C. Wung, Y. Wu, and M. Cintra. Acceldroid: Co-designed
acceleration of Android bytecode. In Proceedings of the
2013 IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’13, pages 1–10, 2013.

