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Using the Fuzzy Inductive Reasoning
methodology to improve coherence in
algorithmic musical beat patterns
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Abstract. In the present work, the Fuzzy Inductive Reasoning methodology (FIR)
is used to improve coherence among beat patterns, structured in a musical A-B
form. Patterns were generated based on a probability matrix, encoding a particular
musical style, designed by experts. Then, all possible patterns were generated and
the most probables were selected. A-B musical forms were created and the coher-
ence of the sequence was evaluated by experts by using linguistic quantities. The
output pairs (A-B pattern and its qualification) were used as inputs to train a FIR
system, and the variables that produce “coherent” outputs and the relations among
them where identified as rules. The extracted rules are discussed in the context of
the musical form and from the psychological perception.
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Introduction

Automated algorithmic composition systems are now well-understood and documented
[2, 10]. On the search for designing more effective systems with greater expressiveness,
latest attempts have shown the need to extract representations for capturing and man-
aging high level musical features like coherence or composer personality [5]. However,
these appear commonly as a side effect of the research made in machine learning for
the construction of composition or interactive systems. The fact that machine learning
processes have effectively captured such features to a great degree is still object of dis-
cussion. Moreover, designed systems have not extensively incorporated perception and
semantics of the generated music, including the listener psychology sensation of the mu-
sical form. Attempts to do this often deal with machine listening technics that need high
computational capacity, using modules with a pre-established, symbolic domain for out-
put’s evaluation and adjustment [4]. Fuzzy systems require less amount of resources,
and are not restricted to pre-established structures for the evaluation modules, allowing
systems to include humans (with their psychological perspective) without having prede-
fined representations of the desired output. In this work, we used the Fuzzy Inductive
Reasoning Methodology [11] as a module to evaluate the coherence between two algo-
rithmically produced beat musical patterns. This allows the system to extract the musical
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representation of the expert and translate it in terms of combinations of variables, which
allow consistency between musical parts, through the subjective evaluation to listen com-
binations. The structure of the work is: Section 1 the basic concepts. Section 2 general
methodology. Section 3 results and presents the discussion.

1. Basic concepts: music coherence and Fuzzy inductive reasoning methodology

In this work we explored the musical coherence between two patterns arranged in an
A-B form. For methodological reasons we defined coherence as “how good A-B patterns
match together” when they are perceived by a listener. The evaluation was made by using
linguistic variables [9]. The coherence will depend on the contrast and repetition points
between A and B and on the moments on which those are situated.

A complete documentation of FIR can be found in [6,1]. The system is fed with raw data
from the system under study. It has four basic functions: The fuzzyfication process trans-
forms the data into triplet format. The qualitative modeling utilizes a fuzzy optimal mask
function, referring to the selection of which variables participate in the output prediction.
This process finds the qualitative relationships between the different input variables. This
analysis is performed by using either an exhaustive search or by means of search trees
or genetic algorithms. FIR uses Masks as qualitative models, by analyzing the episodical
behavior (recorded in the FIR data matrix) of the system for the identification of a quali-
tative modeling used for future forecasting. FIR creates the best mask for only one input
variable, the best for two, and so on. The masks are called of complexity one, two, etc.
The quality of the mask (Q) is determined by the uncertainty reduction measure based
on the entropy associated with the transition matrix of states associated with the set of
variables of the mask. The fuzzy simulation process allows the model to predict future
qualitative outputs based on past experiences by interpolation processes in the input vari-
ables to extrapolate the output. The regeneration module performs the inverse process of
fuzzyfication by transforming the triplet into the original data format.

2. System design and methodology

The beat patterns were created in the context of UK garage/two step [13] for 3 instru-
ments: kick, snare and hihat based on the analysis of [2]. The probability vectors below
describe the independent probability, in the interval [0,1], for each instrument to play
in a particular moment. Each vector represents a 4/4 bar where each quarter (1 unit) is
divided in four sixteenth notes (1/16 of unit).

[0.7,0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3] kick

[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.3] snare

[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7] hihat

To avoid the cases where more than one instrument play at the same time, we con-
sidered three (musical hierarchy) rules: If kick and snare, then kick. If kick and hi-
hat, then kick. If snare and hihat, then snare. From all possible patterns we selected
the 10 with highest probabilities which yielded a set of 20. Those were sequenced
in A-B form and reproduced to the listener at 120 beats per minute, in sequences of
4 times A followed by 4 times B, for psychological perception reasons. The coher-



ence between A-B patterns was evaluated using linguistic variables: low, medium or
high. We considered 105 different A-B forms. The data, was structured in the format:
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]
Where numbered variables correspond with each one of the 32 sixteenth in the A-B pat-
tern. Entrance 33 is the listener’s evaluation of the sequence, and is the output of the
system. The values of the entrances of the vector were defined as 4- non strike, 1- kick,
2- snare, 3- hihat. The output took coherence values of 1: low, 2: medium, and 3: high.
With these considerations we fed the FIR, setting the membership values at the center
of the bell membership functions in the fuzzyfication process to allowed the model to
manage the crisp data. To find the relations among variables we used a comprehensive
search based on Shannon entropy, i.e searching for the set of variables that make the
state-transition matrix as deterministic as possible. Those are the relevant variables. We
also used the Linguistic Rules in FIR algorithm (LR_FIR, [1]), which is a rule-extraction
algorithm, that starts from the set of pattern rules obtained by the FIR model previously
synthesized, and is able to derive linguistic rules from it.

3. Results and discussion

We were interested in modeling the different configurations from the relevant variables
that produce a coherent perception in the listener. These are consistent with the musical
structure of the style. The results allow us to change the rhythmic motives so that a new
system produces parts perceived as more coherent. Extracted rules showed that either
V4 nor V20 variate. This should be attributed to the fact that the probability of having a
strike in these variables is determined by the kick with probability of 0.1. This result left
only the variables: 1, 8, 10, and 16 creating variation in part A, and 17, 24, 26, and 32
in part B. The extracted rules using the LR_FIR in cases 1) considering the 8 variables
and 2) considering the most relevant variables obtained by FIR, which correspond to the
variables 17, 24 and 32, are displayed in Figure 1 Left and Right, respectively. The rules
describe which is the value (instrument) of a particular variable (e.g V17-1 should be
read: “variable 17 was in 1 (kick)”), and how the combination of variables produces a
particular output. The third rule of Figure 1 should be read as: IF V16 IS 1 AND V26 IS
2 AND V32 1S 1 THEN V33 1S 3.

va-3 vaa-1 THEN V33- 3 Spec— 1 Sens—0.13 Acc-0.74 PPV_ 1
vie-2 vi7-1 vea-2 V32-2 THEN V33- 3 Spec- 1 S 65 72

vie-1 V26-z V3Z-1 THEN V33- 3 Spec= 1 Sei

vio-z Vi6-z V32-2 THEN V33- 3 Spec= 1 Sei

Vi6-4 V17-1 V26-z V3z-Z THEN V33- 3 Spec= 1 Ser

v24-a V32 2- 4 THEN V33 IN 1 Spec=0.91 Sens=0.21 Acc=0.G5 PPV=0.57
ViF-4  Vz4 1-3 V32 3- 4 THEN V33 IN 1 Spec=0.86 Sens=0.33 Acc=0.G67 PPV=0.59
viz-1  vza 2 V3z 4 THEN V33 TN 1 Spec=n.98 Sens=n.18 ACC=0.69 PPV=0.&8
vi‘s-a  vza 3 viz 1 THEN V33 IN 1 Spec=0.9/ Sens=0.1 Acc=0.65 PPV=0.6/
Viet V32-3 THEN V33~ 2 Specm 1 Sensed.14 ACO=d.71 PPVm 1 viz-1  vza 2 v3z Zz THEN V33 IN 1 Spec- 1 Sens=0.077 Acc=0.66 PPV= 1
Vi7-a vZa-3 V32-7 THEN V33 2 Shecm 1 Senced.0SB AComd. 7 Five 1 viz 1 vz4 3 wv3z 1 THEN V33 IN 1 Spec-0.01 Scns—0.051 Acc—0.59 PPV=0.25
Vi

vi6-4 vza-z V32-1 THEN V33- 3 Spec= 1 Ser
va-L vza-3 V32-2 THEN V33- 3 Spec= 1 Ser

NNNNNN S

vis-1 vza-4

vie-a vie-1 vza-3 vsz-2

Vio-4 V164 Vi7-1 V243 vi2-1
v

JOINT QUALITY OF THE ACTUAL CLASS --- SPEC 0.82 SENS 0.66 ACC 0.77 PPV=0.61

viz 1 v3z 1- 2 THEN V33 IN 2 Spec-0.53 Sens-0.6 Acc-@.55 PPV-0.39
viz 4 vz 3 v3z 1-3 THEN V33 IN 2 Spec-0.89 Sens-0.26 Acc-0.68 PPV-0.53
Vio 4 vie 1 V213 vee 2

vie 3 viz 2

I0TNT QUALTTY OF THE ACTUAL CLASS --- SPEC .66 SENS @.45 ACC @.58 PPV=0.47
Va3 VZe 4 v3z-4

vie-+ V264 V3z-4

vio-4 V24-z V2G4 Viz-4

vie-z vea-z vaz-4

va-z Vi6-4 vza-4 THEN V33- 1 Spec= 1 Ser

vi6-4 V32-3 THEN V33- 1 Spec= 1 Ser

vza-4 V32-4 THEN V33- 1 Spec= 1 Ser

Vi7-4 vza-z V32-2 THEN V33- 1 Spec= 1 Ser

vis-7 V767 V374 THEN V33- 1 Spec= 1 Ser

Vie-z Vra-5 V/bed VA2 THEN Vi- 1 Spec— 1 Ser

Via-s vra-s Vi7-4 THEN V34 1 Spec= 1

vie-z vie-a V32-2 THEN V33- 1 Spec= 1 Sens=0 051 Acc=8.65 PPV= 1

vi-a vis-z v26-2 THEN V33- 1 Spac= 1 Sens=0.051 Acc=0.65 PPV= 1

viz 1 viz1 oz THEN V33 IN 3 Spec=0.78 Sens—=0.43 Acc=0.66 PPV=0.5

JOINT QUALITY OF THE ACTUAL CLASS |- SPEC 0.78 SENS 0.43 ACC .66 PPV=0.5
RulesModeMetricsTrain —
MODEL RULES METRICS TRAIN:--- SPEC 0.75 SENS 0.52 ACC 0.51 PPV=0.51

NNNN NN BB

Figure 1. Extracted rules for the input data by using LR_FIR considering 8 input variables and one output.

In left down, are the rules for evaluated low coherent patterns LC (i.e. the output of
V 33 is 1). We found a great amount of silences (Variables in 4), specially in V32. If we



compare this behavior with rules for medium coherent MC patterns (center of the figure)
and with high coherent HC patterns (top) for the same variable, we can say in general,
that silences in V32 affect the coherence of the perceived sequence. An explanation for
this is given in terms of the subjective perception of patterns. Given that the patterns are
composed by 4 times A followed by 4 times B, the sensation of periodicity of B will
be produced in great amount by the variable that completes the cycle by connecting it
with their repetition, which is V32, in this case connected with variable 17, from which
we know (from the probability matrix) that 70% of the cases will be 1 (kick). As we
said, this behavior is expected from the point of view of the subjective perception of
rhythm. In this case, if pattern “A” has been interesting enough, the focus in searching
coherence will be on pattern B. And to perceived B as cyclically coherence we need to
look at V 32. The previous hypothesis can be also supported by the rules: V10-2 V17-1
V24-2 V32-2 THEN V33- 3 and V16-4 V17-1 V26-2 V32-2 THEN V33- 3. Belonging
to patterns evaluated as HC. In both cases, V17-1 and Vd32-2. These two rules represent
approximately 4/16 of the cases evaluated as HC. Moreover, if we look into the different
masks (Tablel) when we looked for the mask for one input variable, we obtained V32.
Also, sequences evaluated as MC (Left center), do not have silences in V32. In the right
are the extracted rules considering three Variables. We can see that we only have one
rule describing the HC evaluating cases: V17-1 V32 1- 2 THEN V33 IN 3. In which
the behavior described above is clearly expressed. V17 most be 1, and V32 could be 1
or 2. As said, those variables determine the cycle sensation in B. Also all silences, with
one exception, are found in patterns evaluated as LC. The different masks created by
LR_FIR for one to eight variables are shown in Table 1. They represent the variables that

Table 1. Masks created by LR_FIR for one to eight variables. The quality of the masks is denoted by Q

Vi V8 V10 V16 V17 V24 V26 V32 Q
- - - - * 0.14-Ql
- - * - - * 0.27 - Q2
- - - * * * 0.30-Q3
- - - * * * * 0.28 - Q4
* * * * * - - - 0.27 - Q5
* * * * * - * - 0.21 - Q6
* * * * * * * - 0.22-Q7
* * * * * * * * 0.20 - Q8

have more influence in the prediction of the output [1]. At the top the mask for only a
single variable “Q1” contains the V32. As discussed, we can explain this by considering
this variable as the one who, together with V17 (which is 1 in 70% of the cases), give
a cyclic sensation to the pattern B. Q2 is in terms of V16 and V32. This selection can
be explained considering the role of V32, and that V16 plays for A-patterns the same
role of V32 for B-patterns, so we can understand this in terms of the cyclic sensation
they produce. Also, V16 is a connection variable between parts A and B of the pattern,
so it gives V16 another important role in the perception of the whole. In the case of Q3,
the selected variables were 17, 24 and 32 which are related with the cyclic perception of
the B-pattern (17 and 32). V24 is playing a role in increasing the rhythmic interest. The
same idea explains Q4, where 24 and 26 were selected. However, an interesting behavior
appears in Q5, when, with exception of V17, all selected variables belong to pattern A.
The following masks add 26, 24 and 32, respectively. This is explained because when
new variables are added to the mask, the new variables together, can explain a great
amount of the overall perception in comparison with the original ones.
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