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Abstract

In this paper we consider the attitude synchronization problem for a swarm of spacecrafts flying in formation.
Starting from previous works on consensus dynamics, we construct a distributed attitude control law and derive ana-
lytically sufficient conditions for the formation to converge asymptotically towards a synchronized, non–accelerating
state (possibly defined a priori). Moreover, motivated by the results obtained on a particular consensus model, first
introduced by F. Cucker and S. Smale to modellize the translational dynamics of flocks, we numerically explore
the dependence of the convergence process on the dimension of the formation and the relative initial conditions of
the spacecrafts. Finally, we generalize the class of weights defined by the previous authors in order to dampen the
aforementioned effects, thus making our control law suitable for very large formations.

I. INTRODUCTION

Formation flying is a well estabilished concept in the
space community, with several missions relying on this
approach having been planned (examples include Darwin
and Proba 3 from ESA, TPF, Grace and Grail from NASA,
and the Swedish Prisma project). Theoretically, groups
of small, autonomous acting spacecrafts working in con-
cert offer several advantages over single, monolithic ones,
being not only cheaper, simpler and faster to build, but
also, due to the inherent distributed structure of a forma-
tion, offering a greater mission stability, since the loss of a
spacecraft does not necessarily compromise the efficiency
of the entire formation. Moreover, formation flying opens
up new mission possibilities, with optical interferometry
probably being the most famous. The latter, which in-
volves imaging reconstruction through super-imposition
of data collected by different sources, has led to imag-
ine formations (known as swarms) which are comprised
of huge numbers of spacecrafts, and therefore are spread
over surfaces which can be also hundreds of kilometers
wide. To mention just one example, quite recently NASA
has selected the “ Orbital Rainbows ” project (essentially,
a cloud of dust–like spacecrafts acting as an adaptive op-
tical imaging sensor) for a NIAC Phase II study.

One of the challenges of these formations lies in the
design of control techniques, both for translational and
attitude dynamics, which allow the spacecrafts to au-
tonomously accomplish the tasks of guidance, navigation
and control (for the translational context, interesting ex-
amples can be found in [1], [2], [3], [4]). In this paper we
focus on the problem of attitude alignment (also known

as synchronization), that is we want to design a control
law that allows the spacecrafts to asymptotically achieve
the same attitude and angular velocity. However, along
the way, we will see how many concepts and solutions are
very similar to those devised in the translational context.
In this last regard, [5] and [6] offer a good general view
on the matter.

In the literature, one of the simplest techniques de-
veloped to tackle this problem is the leader-follower ap-
proach ([7], [8]). In this, each follower of the formation
simply tracks the attitude of a designated leader, thus of-
fering the clear advantage of reducing the situation to well
known tracking problems. However, with no back–up
plans in tow, in this approach the leader becomes a single
point of failure. As a natural evolution of this technique,
in recent years several behavioral approaches ([9], [10])
have been developed. These involve designing the control
torque as a function of the attitudes and angular velocities
of the other spacecrafts in the formation (with the simplest
case given by arranging the spacecrafts in a bidirectional
ring [9]).

The approaches previously described can be collected
under the big hat of consensus dynamics ([11]), and
they arise from the great amount of work that has been
done both on single and double integrator dynamics ([12],
[13]). However, they generally focus on aspects related
to the asymptotic convergence of the formation under the
control torque, thus ignoring two aspects of this class of
controls: the dependence of the convergence speed on the
dimension of the formation and on the relative conditions
among the agents. In this regard, a series of steps has been
done starting from a consensus model introduced by F.
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Cucker and S. Smale back in 2007 to modellize the trans-
lational dynamics of flocks ([14], and also [15], [16], [17]
for some of the improvements done on this model). Mo-
tivated by the results obtained for this model, the contri-
bution of this paper is two–fold. First, we design a dis-
tributed attitude control law and we derive analytically
sufficient conditions in order for the formation to asymp-
totically achieve attitude alignment, possibly with a cus-
tomizable synchronization value. Secondly, we study nu-
merically the dependencies previously described and we
propose a dynamically changing definition for the feed-
back gains (inspired by the one of Cucker and Smale) in
order to compensate for these effects. Additional simu-
lations are performed to evaluate the goodness of our ap-
proach.

The remainder of the paper is organized as follows.
In Section 2, we lay down some basic notations, regard-
ing graphs and the associated matrix theory, that are used
throughout the paper. Furthermore, by using the lan-
guage previously introduced, we describe the Cucker–
Smale model and some of the results associated. In Sec-
tion 3, we introduce the notation used to describe the
attitudes of spacecrafts and we design our control law,
also proving our main analytical result. In Section 4, we
present some simulations aimed to describe the charac-
teristics of the convergence process associated with the
control law introduced. Finally, in Section 5 we briefly
summarize the results of the paper and individuate some
directions for future work.

II. ANALYTICAL BACKGROUND

II.I Preliminary notions: graphs

In the previous section we have introduced the concept
of consensus dynamics, that is the processes by which a
collection of interacting agents achieve a common goal.
A natural way to model the information flow that char-
acterizes such dynamics is given by undirected/directed
graphs. In the present subsection we present the notions
associated to this topic that are used throughout the paper.
A graphical example encompassing entirely these notions
(and those at the beginning of the next subsection) is given
in Figure 1.

First, we define a graph as a pair (X ,Ω), where X
is a finite non–empty set of indexed nodes (the agents)
and Ω is a set of pairs of nodes, which we call edges
(the links determining the communication structure of the
formation). In an undirected graph these edges satisfy a
symmetry property, that is if the nodes xi and xj are con-
nected by an edge, then both nodes are passing informa-
tion to the other. In contrast, in a digraph (directed graph)
every edge has a direction determined by the order of the

pair (e.g., (xi, xj) means that xi is passing information to
xj but not vice-versa).

We say that a graph possesses a path if there
exists a subset of Ω comprised of consecutive
edges, that is there exists an ordered subset of
edges (xi1 , xi2) , (xi2 , xi3) , . . . ,

(
xiN−1

, xiN
)
, with

{i1, . . . , iN} denoting the indexes of the distinct nodes
connected by the edges, where the order relation is de-
termined by the first (parent) node of every edge being
equal to the second (child) of the preceding one. We refer
to this path as directed (undirected) if the corresponding
graph is directed (undirected). Furthermore, we define as
root the first node of the path.

Figure 1: Examples of weighted graphs, with an undi-
rected connected one on the left and a directed one, pos-
sessing a directed spanning tree and derived form the first
by assigning directions to the edges, on the right.

Starting from the concept of path, it is possible
to identify several ways in which the information flow
spreads across the graph. In particular, we say that a di-
rected (undirected) communication graph is strongly con-
nected (connected) if there is a directed (undirected) path
between any distinct pair of nodes. Moreover, we call di-
rected tree a digraph where every node has exactly one
parent, except for the root which we assume to have none.
Finally, we say that a directed spanning tree of a digraph
is a directed tree formed by edges that connect all the
nodes in the graph. Obviously, such a structure is also
a subgraph of the directed graph, that is a graph whose
nodes set is a subset of the digraph one, and whose edges
set equals that of the digraph restricted to the previous
subset. Note that having a directed spanning tree is a
weaker condition than being strongly connected, while in
the case of an undirected graph the existence of an undi-
rected spanning tree is actually equivalent to the graph
being connected.

II.II Preliminary notions: matrices

Once a graph outlining the communication structure of a
group of agents has been constructed, positive weights can
be assigned to the edges of the graph in order to specify
the strength of each edge. This kind of graph is known
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as a weighted graph. Obviously, the notions introduced in
the previous subsection can be applied to weighted graphs
in a straightforward manner.

In order to catch in a unitary fashion all the infor-
mations embedded in a graph, it is useful to switch to
the matrix language. In particular, we define the adja-
cency matrix A = (aij) of a weighted graph as the matrix
whose entries are the weights assigned to the edges of the
graph, with the rows corresponding to the parent nodes
and the columns to the child ones. Furthermore, we define
the Laplacian matrix L = (lij) associated to a weighted
graph as the matrix with diagonal entries lii =

∑N
j=1 aij

and out–of–diagonal ones lij = −aij , with N denoting
the number of nodes in the graph. Do note that the Lapla-
cian matrix is symmetric positive definite in the case of
undirected graphs. However, this is not true in the case of
digraphs (where the matrix is non–symmetric).

The way in which the information spreads across the
graph is obviously reflected in the spectral properties of
the associated Laplacian matrix. In particular, in the case
of an undirected communication graph, the Laplacian has
a simple zero eigenvalue if and only if the graph is con-
nected [18]. In the case of a digraph instead, the condi-
tion of the Laplacian possessing a simple zero eigenvalue
is equivalent to the graph having a directed spanning tree
[19]. In both cases, the eigenvector associated with the
zero eigenvalue is the one having entries all equal to one.
As we are going to see in the next section, these properties
are crucial in order to construct a distributed control, both
for translational and attitude dynamics.

Note that the previous statements hold regardless of
the dimension of the space in which the agents live. That
is, let x denote the vector x =

(
xT0 , . . . , x

T
N

)T
, where

xi ∈ Rm. Then, under the conditions previously men-
tioned, (L⊗ Im)x = 0 if and only if x = 1 ⊗ α (i.e,
x0 = · · · = xN = α), with α ∈ Rm and 1 = (1, . . . , 1)

T

belonging to R(N+1), and where⊗ denotes the Kronecker
product.

II.III The augmented Cucker–Smale model

In this subsection we introduce the model to be used as
reference in the next section. While we describe this
model in an unified fashion (in light of the language pre-
viously introduced), it is actually the sum of two differ-
ent works, thus justifying the attribute “ augmented ” in
the title. On one side we have the original paper of F.
Cucker and S. Smale [14], where the case of an all–to–all
communication structure (corresponding to an undirected
connected graph) is analyzed, while on the other we have
the work of J. Shen [15], which tweaks the original model
in order to accommodate for a non–symmetric structure
of the Laplacian and contains analytical results similar to

those of Cucker and Smale.
Let xi and vi denote the three–dimensional position

and velocity of the i–th element in a flock ofN+1 agents.
Then, the equations of motion for this agent under the
augmented Cucker–Smale model (with the time depen-
dence dropped for readability) can be written as

ẋi = vi, v̇i = −
∑
j∈L(i)

aij (vi − vj) , (1)

where the leadership sets L (i) and the weights aij
determine respectively the communication structure and
the edges weights associated to the underlying graph. Be-
fore defining them more precisely, let us transform the
previous system in matrix form. By denoting with x =(
xT0 , x

T
1 , . . . , x

T
N

)T
and v =

(
vT0 , v

T
1 , . . . , v

T
N

)T
the vec-

tors whose components are respectively the positions and
velocities of the agents, it is easy to check (see [14], for
example) that the previous system can be rewritten as

ẋ = v, v̇ = −Lxv, (2)

where the operator Lx denotes the Laplacian operator
acting on R3(N+1) (or better, the Kronecker product of the
Laplacian matrix with the three dimensional identity one).
For brevity, we use this notations throughout the paper.

The distributed structure that we have defined before
is rather standard for controls based on consensus dy-
namics [5]. However, two things distinguish the Cucker–
Smale model from the rest. First, the weights aij are not
constant, but are defined as

aij (t) =
K

(σ2 + ‖xi (t)− xj (t) ‖2)
β
, (3)

whereK > 0, σ > 0 and β ≥ 0 are a given set of non-
negative constants. In the context of the Cucker–Smale
model, scaling the weights with respect to the relative dis-
tances between the agents, ensures that every agent pays
more attention to the companions which are closest to it.
We will see at the beginning of Section 4 how, in the con-
text of attitude, this idea can be slightly tweaked in order
to enhance consensus.

The second aspect lies in the leadership sets L (i).
These can satisfy either #L (i) = N (that is the case of a
connected, undirected communication graph), or

• aij 6= 0⇒ j < i,

• ∀i > 0, L (i) 6= ∅,

where the latter conditions define a hierarchical lead-
ership for the flock in the following sense. If we look at
the second condition, this is saying that every element in
the flock has to communicate with someone. However
, consider the natural order induced by the indexation of
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the flock as [0, 1, . . . , N ]. Then, according to the first con-
dition, every element i in the flock can communicate only
with the elements j such that j < i and it must do so
at least with one of them. Do note that this is not true
for the element 0 which, according to the second condi-
tion, acts independently from the rest of the flock, thus
justifying the name of hierarchical leadership. When cou-
pled, these conditions obviously imply the existence of a
directed spanning tree, whose root is exactly the leader of
the formation. Finally, from a control point of view, the
presence of a hierarchical leadership serves two purposes:
on one side, the presence of a leader (either real or virtual)
ensures that a predefined trajectory for the formations to
follow can be defined; on the other, it allows the formation
to reach consensus with a low computational load for ev-
ery spacecraft, due to the reduced number of connections
among the agents.

The following result describes the main features of the
augmented Cucker–Smale model and, indirectly, those of
an entire class of controls.

Theorem 1. Consider the equations of motion (2). Then
the following results hold:

• For β < 1
2 , global exponential convergence of the

flock velocities to a consensus value is achieved
both in the case of #L (i) = N and in the pres-
ence of a hierarchical leadership

• For β ≥ 1
2 and #L (i) = N , the same exponen-

tial convergence is achieved under additional con-
straints on the initial conditions

As a consequence, fixed values for the relative dis-
tances are reached exponentially fast. In addition, when
a hierarchical leadership is present, it can be proved that
the consensus velocity is indeed the one of the leader. For
additional details, we refer the reader to [14] and [15].

It is worth to briefly look at least at the case #L (i) =
N . If we define

Λ (t) =
1

2

∑
i 6=j

‖vi − vj‖2, (4)

then, for β < 1
2 (and similarly for the other case), it

results

Λ (t) ≤ Λ (0) exp
− νK
U
β
0

t
, (5)

where U0 is a function of the initial conditions and
ν > 1

3(N+1) . The importance of this result lies in the fact
that it arises directly from the properties of the Laplacian.
In particular, the exponential convergence and the pres-
ence of the factor ν in the exponential are a direct conse-
quence of the Laplacian being a symmetric, positive defi-
nite matrix, while the other factors are related to definition

of the weights aij . This actually highlights the issues that
we mentioned in the introduction, that is the dependence
of the convergence process from the initial conditions and
from the dimension of the flock are connaturated in the
class of controls to which the model belongs. Of course,
similar conclusions can be drawn for the non–symmetric
case (though the analysis is much more difficult).

Before concluding, it is also worth mentioning that a
result similar to the previous can be stated for discrete
time (and of course a discrete model) and, additionally,
consensus can be reached also in the presence of an accel-
erating leader [15] (provided the acceleration is decaying
and not too great in magnitude with respect to the dimen-
sion of the formation).

III. ATTITUDE DYNAMICS

III.I Preliminaries

In this subsection we introduce some preliminaries and
notations regarding attitude dynamics to be used in what
follows. We use unitary quaternions q = (q̄, q̂) to describe
the attitude of a spacecraft, with q̄ = cos

(
θ
2

)
represent-

ing the scalar part of the quaternion and q̂ = n̂ sin
(
θ
2

)
the

vectorial part. The unitary vector n̂ individuates the Eu-
ler axis, while θ denotes the instantaneous rotation angle
about this axis. As well known, the same attitude can be
represented by a quaternion q and its opposite. However,
uniqueness can be achieved by restricting θ to the interval
0 ≤ θ ≤ π so that q̄ ≥ 0 [23].

The product of two unitary quaternions, which de-
scribes the composition of two rotations, is defined as

qp = q̄p̄− q̂ · p̂, q̂p = q̄p̂+ p̄q̂ + q̂ × p̂. (6)

Of course, by definition, the product is still an unitary
quaternion. Furthermore, we define the conjugate of a
quaternion q as the quaternion q? = (q̄,−q̂). The latter
describes the inverse rotation with respect to q, as it is
easy to see from the fact that q?q = qq? = q I , where
q I = (1, 0, 0, 0). Finally, given two quaternions q and p,
it results (qp)

?
= p?q?.

The attitude dynamics of a spacecraft can be described
by the equations [23]

˙̄q = −1

2
ω · q̂, ˙̂q = −1

2
ω × q̂ +

1

2
q̄ω,

Iω̇ + ω × Iω = τ,
(7)

where I denotes the tensor of inertia of the spacecraft,
ω its angular velocity and τ the torque due to external
and control forces. The dynamical equations are the so
called Euler’s equations, which describe the dynamics of
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the spacecraft in its own principal frame, a rotating frame
centered on the center of mass of the spacecraft and with
axes parallel to the principal axes of inertia. In what fol-
lows, we assume that all the vectors mentioned are re-
ferred to the same reference frame.

III.II The control law

In this section we construct our distributed attitude con-
trol law and we prove that, under this law, a group of
spacecrafts asymptotically achieve attitude synchroniza-
tion. Before proceeding, it is worth to discuss some char-
acterisitcs that distinguish the attitude consensus prob-
lem from its equivalents in situations modeled by stan-
dard single and double integrator dynamics [6] (take the
augmented Cucker–Smale model described in the previ-
ous section as an example).

The greatest difference lies in the nonlinear kinemat-
ics of the problem. On one side, in order to achieve mean-
ingful results, it is no longer possible to control just the ve-
locities of the spacecrafts and then automatically achieve
some bound on the relative positions, but both attitude and
angular velocities need to be controlled in order for the
spacecrafts to point in the same (specified) direction and
to continue to do so during a certain time interval. On the
other, the inherent non linear kinematics makes it difficult
to repeat the qualitative analysis of the convergence pro-
cess done by Cucker and Smale (and even more, that of
Shen), even if, as we are going to see, a similar approach
to prove the asymptotic convergence is adopted.

Another matter which is worth mentioning lies in
the fact that the Cucker–Smale model has been designed
in free space, while in our case (and more in general,
throughout the astrodynamics field) we have a vector field
to take into account. Since we are designing a continuous
control, the easiest thing to do is to cancel the natural dy-
namics and add the control term itself. This is standard for
feedback like controls and has sense in the context of atti-
tude, where the relative conditions among the spacecrafts
have more or less the same order of magnitude of their
absolute ones. However (see [20] and [21] for a more ex-
tended discussion), attention must be paid when trying to
apply this kind of strategy under the presence of different
vector fields, and the dynamics exploited in order for the
control to perform adequately.

In light of what has been discussed before we define
the control torque for the i–th spacecraft as

τi = ωi × Iiωi − Ii
N∑
j=0

gij

[
aij q̂?j qi + bij (ωi − ωj)

]
,

(8)
where the weights aij and bij are real positive, while
gij = 1 if agents i and j are connected by an edge and

gij = 0 otherwise. Do note that, since our results are
slightly more general than those of Shen, and Cucker and
Smale, a different language has been used. Furthermore,
as already stated, for now we do not give a precise defini-
tion of the weights. In the next section, we will see how
we can define them in an advantageous way, starting from
the idea of Cucker and Smale.

Before stating our theorem, we need a preliminary
lemma in order to justify some of the computations. The
proof of the theorem relies on the construction of a Lya-
punov function, and the next lemma will be useful in order
to construct such a function.

Lemma 1. [22] If (qi, ωi) and (qj , ωj) satisfy the quater-
nion kinematics, then also (q?i qj , ωi − ωj) 0 that. In ad-
dition, if Vq = ‖q?i qj −q I‖2, then V̇q = (ωi − ωj) · q̂?j qi.

With this lemma in tow, we are ready to prove asymp-
totic convergence for our control. We want to point out
that part of the following theorem has been stated already
in [22]. Here we observe how this theorem can be ex-
tended in order to accommodate for a wider range of sit-
uations, thus eliminating the need to modify the control
law itself. Of course, also the proof can be found in [22].
We will limit ourselves to clarify and extend some points.

Theorem 2. Consider the control torque defined by equa-
tion (8). Furthermore, assume that one of the following
hypotheses on the underlying communication graph hold
true

• The graph is undirected and connected [22]

• The graph is directed and it possesses a directed
spanning tree whose root does not receive informa-
tions from the other spacecrafts

Then, there exist q̃ and ω̃ such that qi → q̃ and
ωi → ω̃, ∀i ∈ {0, . . . , N}.

Before proceeding with the proof, some things should
be noted. First of all, while for applications we will con-
tinue to work with the communication structures intro-
duced along with the augmented Cucker–Smale model,
we want to point out that the previous theorem actually
encompasses a slightly more general class of communica-
tions. Furthermore, in [22] it is requested for the cardinal-
ity of the edges set to be at most equal to the dimension
of the formation. While not explicitly stated in that pa-
per, this is clearly a minimal hypothesis (valid also in the
case of a digraph, but with only N edges), which (along
with the connection) is simply stating that the information
flow needs to reach every spacecraft in order for them to
synchronize on the same value. With that said, we can
proceed with the proof.

Proof. The proof rests on the LaSalle’s invariance princi-
ple. Consider the Lyapunov function candidate
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V =
1

2

N∑
i,j=0

gijaij‖q?j qi − q I‖2 +
1

2

N∑
i=0

‖ωi‖2. (9)

By keeping in mind the expression (8) of the control
torque, from Lemma 1 the derivation of the function
(III.II) yields (see [22] for more details)

V̇ = −1

2

N∑
i,j=0

gijbij‖ωi − ωj‖2 ≤ 0. (10)

Do note that, since V̇ does not depend from the qi’s, it
is not possible to apply directly Lyapunov’s second crite-
rion.
Now, let Γ =

{(
q?j qi, ωi

)
|V̇ = 0

}
. Also, let Γ̄ be the

largest invariant set contained in Γ. Obviously, on Γ̄ it
results V̇ = 0, which in turn implies ωi = ωj , ∀i, j.
This follows from the weights bij being strictly positive
and the connection hypotheses that we made. As a con-
sequence, we see that ω̇i = ω̇j , and therefore the vector
ω = (ω0, . . . , ωN ) can be written as ω = 1 ⊗ η, with
η ∈ R3.

Now, in the case of a digraph the hypothesis of the
root (leader) being isolated implies ω̇0 = 0. This is be-
cause either the root is cancelling its natural acceleration
or it is not moving at all (which probably corresponds to
the case of a virtual state to track). As a consequence of
what has been said before, this implies that all the other
derivatives are zero on Γ̄.

In the case of an undirected connected graph instead,
since ωi = ωj , it follows from the controlled equations of
motion that

ω̇i = −
N∑
j=0

gijaij q̂?j qi, i = 0, . . . , N. (11)

We also know that

N∑
i=0

η · ω̇i = −
N∑
i=0

η ·

 N∑
j=0

gijaij q̂?j qi

 = 0, (12)

since the graph is connected and q̂?j qi = −q̂?i qj . There-
fore, since ω̇ is orthogonal to η, it results that ω̇i = 0,∀i.
In both cases, we can therefore state that

N∑
j=0

gijaij q̂?j qi = 0, i = 0, . . . , N. (13)

It is easy to see [24] that the previous expression can be
rewritten in matrix form as

(L⊗ I3) q̂l = 0, (14)

with I3 denoting the three dimensional identity matrix,
⊗ the Kronecker product, q̂l =

(
q̂T0 , . . . , q̂

T
N

)T
and L =

(lij) being the Laplacian with diagonal entries lii =∑N
j=0 gijaij q̄i and out of diagonal ones lij = −gijaij q̄i.

From our hypotheses (and the unitarity of the quaternion)
follows directly qi = qj ,∀i, j. Finally, the thesis follows
by applying the LaSalle’s invariance principle.

Before concluding, we want to point out that the set
Γ̄, in the case of the second hypothesis, obviously shrinks
down to the coordinates of the root, thus proving that this
point is an asymptotically stable equilibrium.

IV. NUMERICAL SIMULATIONS

IV.I Preliminaries

In this subsection we give an introduction to the simu-
lations performed with the designed control, explaining
how they are done and what are their specifics.
The main purpose of these simulations is to understand
the performance of the control defined in equation (8)
(both with constant weights and CS–like weights) under
some real life limitations, in particular a maximal value
for the torque applied. This analysis is carried out mainly
as a function of the convergence time since, as we are
going to show in the next subsections, this quantity is sen-
sible to many others, in particular to the dimension of the
formation.

Regarding the specifics of the simulations, the first
thing that needs to be mentioned lies in the definition of
the weights aij and bij . We have seen in Theorem 3.1 that
a sufficient condition for asymptotic convergence is for
the weights to be strictly positive. However, as seen for
the Cucker–Smale model, something more can be done.
In particular, in the context of that model, it can be ob-
served that the weights are increasing for decreasing rela-
tive distance, that is if

‖xi (t)− xj (t) ‖ ≤ ‖xi (t̄)− xj (t̄) ‖, (15)

for certain t, t̄ ∈ R, then

aij (t) =
K

(σ2 + ‖xi (t)− xj (t) ‖2)
β
≥ aij (t̄) . (16)

In the context of attitude, this behaviour can be ex-
ploited in order to increase the convergence rate, espe-
cially for a great number of spacecrafts, where, as shown
by the Cucker–Smale model, the convergence may be-
come quite slow for large dimensions. In fact, it is easy
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to observe that, since our objective lies in attitude syn-
chronization (that is we want to bring to zero relative at-
titudes and angular velocities), replacing the relative dis-
tance with a scaling factor which goes to zero at consensus
can be used to increment the convergence rate due to the
increasing of the weight value as consensus approaches.
Of course, this scaling factor should be related in some
way to the linear term that accompanies the weight.

For example, the results presented in this section as-
sume two different scaling factors for the weights aij and
bij . In the first case, we take as scaling factor the instanta-
neous rotation angle given by the quaternions. According
to the notations of Section 3.1, the weights will then read
as

aij (t) =
K

(σ2 + ‖θi (t)− θj (t) ‖2)
β
. (17)

This choice reflects the fact that, while in the con-
trol itself we are just working with the vector part of
the relative quaternion, as a consequence of the unitarity,
the scalar parts of the quaternions referred to the agents
will achieve asymptotically the same value. Do note that,
due to the ambiguity inherent in the quaternions, we have
avoided using the scalar part itself (which may end up giv-
ing the effect opposite to the one intended).

For the angular velocities instead, assuming a spher-
ical coordinates point of view, either the polar or the az-
imuthal angle can be chosen (remember that we are as-
suming all the vectors described in the same reference
frame). This choice is due, of course, to the fact that, as
consensus approaches, the angular velocity vectors will
lie on the same line. In particular, we use the azimuthal
angle in Section 4.2 and the polar one in Section 4.3. Do
note however that no explicit comparison between the two
choices has been done, since it lies beyond the goals of
this paper (although it is expected that using the angle cor-
responding to a minimum axis of inertia may yield better
results than the other one, due to the increased rate of con-
vergence along that direction).

Finally, all the simulations that we present here have
a couple of common elements. First of all, they are all
conducted assuming that the formations considered are
comprised of standard 3U–cubesats (10 × 10 × 30 cm,
4 kg). Secondly, unless differently noted, the initial con-
ditions for the simulations are randomly generated follow-
ing an uniform distribution appropriate for the simulation
performed (except for the first spacecraft, which is as-
sumed always having coordinates q0 = (1, 0, 0, 0) and
ω0 = (0, 0, 0)). In particular, a custom made C routine,
based on the functions rand() (modified to generate real
numbers in an interval) and srand(), has been employed to
generate these random initial conditions, with the seed for
the srand() function chosen semi–randomly through the

time(NULL) instruction. However, the initial conditions
used have been stored and can be provided on request.

That said, for every simulation, the values of the
weights in the constant case are selected in order to be
equal to those of the CS–like case at the initial time, so to
allow for a precise estimation of the efficiency of the adap-
tive process in weights definition. As a last note, conver-
gence to a synchronized state is assumed achieved in the
plots when, both for attitudes and angular velocities, all
the spacecrafts are inside a cube of side 10−4.

In what follows, first we are going to analyze the case
N = 2, where a complete description (in terms of ini-
tial relative conditions) of the convergence rate is possi-
ble. We will then move to the case N > 2, where the
dimension and the underlying communication graph take
the lead role in affecting the convergence rate. Explana-
tions on relevant details for the generation of the plots are
provided in pointed lists.

IV.II The two dimensional case

In this subsection we are going to briefly analyze the case
of two spacecrafts (subject to the dynamics defined in (7)
and the control torque (8)) synchronizing under the effects
of an undirected communication graph. We will see in the
next subsection what happens in the other case.

Without imposing any limitation on the control torque,
the analysis is pretty straightforward and it essentially in-
volves understanding only a couple of concepts.

Figure 2: Convergence time comparison between CS–
like weights (left) and constant ones (right) for a two
spacecraft formation under an undirected communication
graph. The weights parameters are K = 5, σ2 = 10−2

and β = 0.4. Details on how to generate these plots can
be found in the pointed list of Section 4.2.

First of all, let’s look at Figure 2. In these plots
we represent the convergence time for the control (con-
stant weights on the right, CS–like on the left) in terms
of the relative attitude (denoted by the scalar part of
the relative quaternion on the y axis) and angular veloc-
ity (x axis) between the spacecrafts. For every couple(
q0r (0) , ‖∆ω (0) ‖

)
, initial conditions are generated anew

in the following manner:
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• Starting from the values of
√

1− (q0r (0))
2 and

‖∆ω (0) ‖, random values along the three axes,
comprised between these values and their opposite,
are generated through the modified rand() routine
described in the previous section;

• The norms corresponding to the vector part of
the quaternion and the angular velocity defined by
these quantities are then computed, and the latter
vectors are normalized by dividing the components
for these norms;

• Multiplication of the components by the nominal

norms (
√

1− (q0r)
2 and ‖∆ω (0) ‖) finally follows

to achieve the conditions used in the simulations;

• The values of q0r (0) and ‖∆ω (0) ‖ are then updated
with steps 5×10−3 for the quaternion and 5×10−4

for the angular velocity (starting value is 0 in both
cases).

Now, if we look at the plot on the left, we can observe
that, in general, the closer the spacecrafts are in terms of
relative attitude and angular velocity, the faster is the con-
vergence. However, there is a quite significant random
component (which can be observed if one look at the val-
ues for either a fixed relative attitude or a fixed relative
angular velocity) in the specific values of the convergence
times. This seem to be mainly due to the fact that there is
a minimum axis of inertia, which determines a direction
where the convergence of the control is faster. In addi-
tion, if we now consider also the plot on the right, it can
be noted that constant weights, besides offering a worse
performance than the CS–like weights (the convergence
time can in fact surpass the 60 seconds, although the plot
is cut at 20 for comparative reasons), also seem to cause
the convergence to be mainly affected by the relative atti-
tude between the spacecrafts.

Finally, as we can see on the left of Figure 3, the ad-
vantage in convergence velocity offered by the CS–like
weights, is achieved at the expense of a control torque that
exceeds the capabilities of a 3U–cubesat. However, this
problem can be easily avoided by modifying the feedback
gains. Of course, as can be seen in the plots on the right
of Figure 3, reducing the magnitude of the weights lowers
the amount of torque required, but also leads in general to
a slower convergence, which is also characterized by an
increased number of oscillations around the convergence
state.

IV.III The case N > 2

In the previous subsection we have seen the behaviour of
a formation comprised of only two spacecrafts. In this one

instead, we investigate what happens in the case N > 2.
In light of the random element outlined in the previous
subsection, this analysis is conducted through the use of a
series of Monte–Carlo simulations.

Figure 3: Comparison between the torques for CS–like
weights with the parameters defined before (left) and a
new set (K = 0.5, σ2 = 1 and β = 5.5). The ini-
tial conditions correspond to those of Figure 2 associ-
ated to q0r (0) = 0.9 and ‖ω (0) ‖ = 0.05. From top
to bottom, the torques corresponding to the x, y and z
axis are depicted. In orange we have the total torque
while for the rest, following the colors order in the plots,
we have the contributions of the natural dynamics, the
quaternions control term and the corresponding angular
velocities one.

As a starting point, additional informations are in or-
der so to understand the plots presented here. In particu-
lar, the initial conditions are the same for all the plots in
this section and are generated in the following manner:

• As stated in Section 4.1, the first spacecraft is al-
ways assumed having coordinates q0 = (1, 0, 0, 0)
and ω0 = (0, 0, 0);

• As for the rest, let N̄ denote the maximal dimension
for the plots. Then, for every value ofN , a value for
q̄ (1−

(
N/N̄

)
) and one for ‖ω‖ (10−1 ×

(
N/N̄

)
)

are selected and 2500 corresponding initial condi-
tions are generated in the same way of the previous
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section (although in this case quaternion and angu-
lar velocity are absolute quantities and not relative
ones);

• Additionally, for a growing N , the conditions gen-
erated up to N − 1 are retained and the simulations
are performed with different underlying communi-
cation graphs;

• For every dimension, the convergence times are ob-
tained from the average of the convergence times
corresponding to the various initial conditions. The
latter means that, of the 2500 sets of initial condi-
tions per spacecraft, the first for every spacecraft
is collected and together they are used to compute
a convergence time; the same is then done for the
second, the third and so on, and the average is then
done on these times.

In addition, a maximal time of convergence has been
imposed and, correspondingly, a certain maximal amount
of simulations (250 for the plots in Figure 6, 100 for the
rest) exceeding this time is allowed in order to catch ex-
tremal conditions due to the different growing of the var-
ious graphs (with the average done on the conditions that
do not exceed the maximal time allowed). In conclusion,
we want to point out that the choice for the initial con-
ditions previously described is not casual, but it arises
from what has been observed in the two dimensional case.
In fact, in that situation we have observed that closeness
brings faster convergence times, so it is only natural to
ask if the same can be said for an arbitrary dimension (of
course, keeping in mind that the number of factors to take
into account has increased).

Now, let’s look at Figure 4. In the plots, no limita-
tions on the torque magnitude have been imposed. The
communication structures instead are defined a s follows:

• “ Full ” corresponds to an all–to–all communication
(and therefore to a simple synchronization individ-
uated by an undirected communication graph);

• The others use the first spacecraft (which again,
may also represent only a state to track) as a leader,
while the rest of the spacecrafts communicate with
a certain number of their companions preceding
them in the indexation of the formation.

• This number is either a maximal one (indicated in
the plot and with “ Chain ” corresponding to 1) or
the number of preceding spacecrafts available.

The previous choices help us to describe what is the per-
formance of the control with a formation that is increas-
ingly spread across space (so much so, that the number

of available spacecrafts from which deriving data for the
synchronization may drop up to one spacecraft only).

Figure 4: Convergence time with respect to formation di-
mension for different communication structures using CS–
like weights (left) and constant ones (right) without re-
striction on the torque magnitude. The weights parame-
ters are K = 2, σ2 = 10−2 and β = 0.4, while the maxi-
mal convergence time is 60 seconds. See the first pointed
list of Section 4.3 for how the initial conditions have been
generated and the paragraph below for an explanation of
the different structures.

The first thing that it’s interesting to note is the fact
that, both for CS–like weights and constant ones, there
appears to be a sharp difference among the communica-
tion structures, with the ones possessing a leader (with the
notable exception of “ Chain ”) tightly grouped on the bot-
tom parts of the plots and performing better than a simple
synchronization. Furthermore, it can be noted that, in the
plot for constant weights, all the graphs exhibit the same
concavity. However, for the CS–like weights, this concav-
ity changes for some of the graphs, seemingly indicating
an excessive push given by the weights for dimensions
greater than 40. However, further analysis (at least up to
the second derivative and for greater dimensions) is re-
quired in order to draw more meaningful conclusions.

Clearly, when a limitation on the torque magnitude
is imposed, this behaviour changes drastically. In Figure
5 (next page), we have calculated again the convergence
times of Figure 4, but with an additional constraint on the
magnitude of the torque (which cannot exceed 1 mN). As
expectable, both for CS–like weights (left) and for con-
stant weights (right), the convergence times increase dras-
tically, since the control cannot express its full capability.
That said however, a clear advantage given by the use of
the scaled weights in place of the constant ones can be
observed. In particular, let’s look at the plot with con-
stant weights. Obviously (and this is true also for the be-
haviours observed in the previous paragraph), in this case
there is no damping effect given by the scaling. There-
fore, it can be inferred with reasonable certainty that the
behaviour of the profiles associated with the various com-
munication structures is due to the particular structure of
the control law (see the example of Section 2.1). Scaling
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the weights slows down this behaviour, and it is easy to
guess that, for greater dimensions, its importance is even
more pronounced due to the different growings observed
when using the same communication structures.

Figure 5: Convergence time with respect to formation di-
mension for different communication structures using CS–
like weights (left) and constant ones (right), with an im-
posed maximal torque magnitude of 1 mN. The weights
parameters are K = 0.5, σ2 = 10−2 and β = 0.4, while
the maximal convergence time is 600 seconds. The plots
are generated in the same way of Figure 4.

A second point that can be observed is the dependence
from the communication structures. In particular, differ-
ently from what happened in the case with no limitation
on the torque magnitude, it seems that the “ fullest ” is
the communication structure (in the sense of a growing
number of parent nodes for a child one) the lower is the
convergence time. Furthermore, it can be observed that,
both for constant weights and CS–like weights, there is
a distinct difference between the “ Full ” profile (which is
very similar in the two cases) and the other ones (besides
the damping effect previously described). This actually
seems to indicate that an all–to–all communication struc-
ture is solid enough to not require any improvement to
obtain reasonable convergence times, which however be-
comes fundamental when weaker communication struc-
tures (especially for very large formations) are employed
due to the natural stretching of a formation over a large
surface and/or in order to decrease the computational load
for the spacecrafts.

V. CONCLUSION

In the present paper we have proposed a distributed atti-
tude control law aimed to achieve attitude synchroniza-
tion among spacecrafts belonging to a formation. We
have studied analytically under which conditions this goal
is reached. Motivated by the work of F. Cucker and S.
Smale, we have also analyzed numerically the depen-
dence of our control law from the dimension of the forma-
tion and the relative initial conditions of the spacecrafts.
Finally, following again the work of the previous authors,
we have proposed a scaling of the feedback weights in or-

der to compensate for the previously outlined dependen-
cies. The simulations performed show the goodness of
our approach in order to design a control law suitable for
swarms of spacecrafts.

Do note however, that a question remains for the case
N > 2. The initial conditions for the spacecrafts have
been selected in order for the latter to be very close to each
other in terms of relative attitude and angular velocity
with respect to the communication structures employed.
Is this again an optimal configuration in terms of conver-
gence time, as in the case N = 2? What happens when,
keeping fixed the values of attitude and angular velocity
for every spacecraft (and therefore the associated initial
conditions), we switch the positions of the spacecrafts in
the formation in order to modify the relative data? In fu-
ture works we aim to answer (at least) these questions.
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