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Abstract—Structural Health Monitoring is an area that its main objective

is the verification of the state or the health of the structures in order to

ensure proper performance and maintenance cost savings using non-

destructive tests.

Currently, in the CoDAlab group it is used an active piezoelectric

system which involves the use of piezoelectric transducers that are

attached to the surface of the structure in order to apply vibrational

excitations and collect dynamic responses at different points. As pattern

recognition technique, Principal Component Analysis is used to perform

the analysis, built a base-line model of the structure without damage

and, subsequently to compare the data of the current structure under

test. Different indices are calculated to determine how different is the

structure under test. Using these indices, it is possible to detect, classify

and locate the damage by means of the contribution of each sensor

to each index. These methodologies are tested using two different

structures, one aircraft turbine blade and one aluminium plate, which

were instrumented with seven and four Piezoelectric transducer discs

respectively. Seven simulated damages were made in the aircraft turbine

blade and four real damages in the aluminium plate.

Index Terms—SHM, Principal Component Analysis (PCA), Damage

Indices (DI), Damage Detection, Damage Localization, Damage Clas-

sification

1 INTRODUCTION

Structural Health Monitoring (SHM) is the integration
of elements of actuation and sensing with different
mathematics and computational techniques in order to
know the health of a structure using non-destructive
techniques. All the data obtained from the structure
are analyzed to detect abnormal characteristics and
to define the health of the structure. This is really
important because this monitoring can define if the
structure can work and in which conditions.
Different benefits are derived from the implementation
of SHM, some of them are: Knowledge about of the
behavior of the structure under different loads and
different environmental changes, Knowledge of the
current state in order to verify the integrity of the
structure and determine whether a structure can work
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properly or whether it need to maintain or replace,
and, therefore maintenance cost saving. The paradigm
of damage identification (comparison between the data
collected from the structure without damages and the
current structure in order to determine if there are
any changes) can be tackled as a pattern recognition
application.

2 PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis is a technique of multi-
variable and megavariate analysis [5] which may pro-
vide arguments for how to reduce a complex data set
to a lower dimension and reveal some hidden and
simplified structure/patterns that often underlie it. The
goal of PCA is to discern which dynamics are more
important in the system, which are redundant and which
are just noise [12]. This goal is essentially achieved
by determining a new space (coordinates) to re-express
the original data filtering that noise and redundancies
based on the variance-covariance structure of the origi-
nal data. PCA can be also considered as a simple, non-
parametric method for data compression and informa-
tion extraction, which finds combinations of variables or
factors that describe major trends in a confusing data
set [10]. Among their objectives it can be mentioned:
to generate new variables that could express the infor-
mation contained in the original set of data, to reduce
the dimensionality of the problem that is studied, to
eliminate some original variables if its information is
not relevant. In order to develop a PCA model it is
necessary to arrange the collected data in a matrix X this
m × n matrix contains information from n sensors and
m experimental trials [7]. Since physical variables and
sensors have different magnitudes and scales, each data-
point is scaled using the mean of all measurements of
the sensor at the same time and the standard deviation
of all measurements of the sensor. Once the variables
are normalized the covariance matrix Cx is calculated as
follows:

Cx ≡
1

m− 1
X
T

X (1)



Cx is a square symmetric m×m matrix that measures the
degree of linear relationship within the data set between
all possible pairs of variables (sensors). The subspaces in
PCA are defined by the eigenvectors and eigenvalues of
the covariance matrix as follow:

CxP = PΛ, (2)

where the eigenvectors of Cx are the columns of P , and
the eigenvalues are the diagonal terms of Λ (the off-
diagonal terms are zero). Columns of matrix P are sorted
according to the eigenvalues by descending order and
they are called the Principal Components of the data set.
The eigenvectors with highest eigenvalue represents the
most important pattern in the data with the largest quan-
tity of information. Choosing only a reduced number r

of principal components, those corresponding to the first
eigenvalues, the reduced transformation matrix could be
imagined as a model for the structure. Geometrically,
the transformed data matrix T (score matrix) is the
projection of the original data over the direction of the
principal components P.

T = XP (3)

In the full dimension case, this projection is invertible
(since PPT = I) and the original data can be recovered
as X = TPT . Now, with the given T, it is not possible
to fully recover X, but T can be projected back onto the
original m-dimensional space and obtain another data
matrix as follow:

X̂ = TPT = X(PPT ) (4)

Considering X̂ as the projection of the data matrix X onto

the selected r principal components and X̃ as the pro-
jection onto the residual left components, the following
decomposition can be performed:

X = X̂ + X̃ (5)

X̂ = X(PPT ) (6)

X̃ = X(I − PPT ) (7)

3 DAMAGE DETECTION AND LOCALIZATION

PCA applied as a pattern recognition is useful because
permit to compare the state of a current structure with
a baseline in order to determine if exist some changes
and, besides whether these changes can be considered
as a damage or not. To do this is necessary the use of
different indices to localize and classify the different
possible damages in the structure under test. The
present section shown the mathematical formulation of
some indices currently used by the author and some
contributions methods based for damage localization

3.1 Damage indices for Detection

There are several kind of fault detection indices [2]. Two
well-known indices are commonly used to this aim: the
Q−index (or SPE−index), the Hotelling’s T 2−statistic

(D − statistic). The first one is based on analyzing the
residual data matrix X̃ to represent the variability of
the data projection in the residual subspace[9]. The
second method is based in analyzing the score matrix T

to check the variability of the projected data in the new
space of the principal components.

There exist another type of indices reported in the
literature as combined index [13] and I index [4].
The first one is a combination of the Q − index and
T 2 − index, the second one is used in meta-analisys and
can be interpreted as a percentage of heterogeneity. In
a general way, it is possible to define any index as it
appears in the equation 8.

Index = x
T Mx (8)

Where the vector x represents measurements from all
the sensors at a specific experiment trial, besides the
matrix M depends of the type of index as follows:

Q− index = x
T MQx = x

T (I − PPT)x (9)

T 2 − index = x
T MT x = x

T (PΛ−1PT )x (10)

φ− index = Q− index+ T 2 − index = x
T Mφx

φ− index = x
T (I − PPT + PΛ−1PT )x (11)

I − index = x
T MIx (12)

where:

MI =

{
0, for Q≤(k-1);
Q−(k−1)

Q
∗ 100%, for Q>(k-1).

(13)

3.2 Contribution Methods for Localization

According to [2] five methods can be used for fault
detection in process monitoring. Authors of this work
pretends to adapt and use these methods for damage
detection and localization in structures. These method-
ologies are used to calculate the contribution of each
sensor to each index in each experiment trial. In this
way, it is expected that the damage is located between
actuator and sensor with largest contribution.
All the indices can determine whether there are damages
and distinguish between them, however they does not
provide reasons for it. The main idea is to determine
which variable or variables are responsible. Variables
with the largest contribution value are considered major
contributors to the damage.

1) Complete Decomposition Contributions(CDC)
Complete decomposition Contributions also called
contribution plots are well known diagnostic tools



for fault identification[8] in process. In each index
indicate the significance of the effect of each vari-
able on the index. The contribution of the variable
(or sensor) j to the index is defined as:

Index = x
T Mx = ‖M

1

2x‖2 (14)

Index =

n∑

j=1

(ξTj M
1

2 x)2 =

n∑

j=1

CDC
Index
j (15)

CDC
Index
j = x

T M
1

2 ξjξ
T
j M

1

2 x (16)

where ξj is the jth column of the identity matrix.
2) Partial Decomposition Contributions (PDC)

This method decomposes a damage detection index
as the summation of variable contributions.

PDC
Index
j = x

T Mξjξ
T
j x (17)

3) Diagonal Contributions(DC)
The diagonal contribution remove the cross-talk
among variables. The DC is defined as:

DC
Index
j = x

T ξjξ
T
j Mξjξ

T
j x (18)

4) Reconstruction Based Contributions (RBC)
The Reconstruction-Based Contribution [1] is an
approach that uses the amount of reconstruction of
a damage detection index along a variable direction
as the contribution of that variable to the index. The
RBC is defined as:

RBC
Index
j = x

T Mξj(ξ
T
j Mξj)

−1ξTj Mx (19)

RBC
Index
j =

(ξTj Mx)2

(ξTj Mξj)
(20)

5) Angle-Based Contributions (ABC)

ξj = M
1

2 ξj (21)

x = M
1

2 x (22)

The ABC of Variable j is the squared cosine of the
angle between

ABC
Index
j = (

ξTj x

‖ξj‖‖x‖
)2 =

(ξTj Mx)2

ξTj Mξjx
T Mx

(23)

ABC
Index
j =

RBC
Index
j

Index(x)
(24)

According to [2] it is possible to group these five
methodologies in three general diagnosis methods.
These are General Decompositive Contributions, Recon-
struction Based Contributions, Diagonal Contributions.

The complete and partial decomposition can be de-
fined as special cases of this formulation. The General
Decomposition Contribution (GDC) is defined as:

GDC
Index
j = x

T M1−βξjξ
T
j Mβ

x, 0 ≤ β ≤ 1 (25)

When β = 0 PDC = GDC as is shown in the
equations 26 -29.

GDC
Index
j = x

T M1−0ξjξ
T
j M0

x (26)

GDC
Index
j = x

T M1ξjξ
T
j (I)x (27)

GDC
Index
j = x

T M1ξjξ
T
j x = PDCIndex

j , (28)

When β = 1:

GDC
Index
j = x

T M1−1ξjξ
T
j M1

x, IFβ = 1 (29)

Here, I = Σn
(j=1)ξjξ

T
j , then is possible to reorganize the

equation to obtain:

GDC
Index
j = x

T Mξjξ
T
j x = PDCIndex

j (30)

In the same way, when β = 1
2 is possible to obtain

CDC.

GDC
Index
j = x

T M1− 1

2 ξjξ
T
j M

1

2 x (31)

GDC
Index
j = CDCIndex

j (32)

Since ABC is a scaled version of RBC, it is possible
to use RBC as a general case for both diagnosis methods.

4 EXPERIMENTAL MOCKUPS

The approaches presented in this paper include the use
of vibration time based signals and piezoelectric trans-
ducers to analyze the data provided from the structure.
The analysis include the comparison between the signals
collected from the healthy structure and the structure
under test using statistical techniques.
In general terms, the Structural Health Monitoring lab-
oratory of the CoDAlab group utilized for doing the
experiments contains:

• A chasis of National Instruments (NI-PXI 1033):
This chasis contain 5 slots, in each slot is possible
to add cards of National instruments, for instance
generation cards, acquisition cards, switches cards
and other elements. The chasis can connect with a
computer using the PXI port by an express card.

• A NI PXI-5114 card, it is a 8-bit Digi-
tizer/oscilloscope of 250MS/s with 40mV to
40V input ranges.

• A card NI PXI-5412, it is a arbitrary waveform gen-
erator with 14-bit resolution and 100 MS/s sampling
rate.

• A Crosspoint Matrix Switch card. Using this card is
possible to define until 4×32 matrix configuration. It
is useful because depending of size of the structure
and the number of sensors is possible to reconfigure
the number of terminals to use.

• A laptop, to connect the chasis and to realize the
programs of acquisition and processing data.

• A shelf to hang-up the elements to test.



Using the elements described above, the signals from
the healthy and current structures are collected. The
methodology applied in each experiment is:

1) The instrumented structure is suspend to isolate it
from environment disturbances using elastic ropes.

2) One from all PZTs attached on the surface is chosen
as the one which work as actuator by mean of the
switch module.

3) An excitation signal is applied to the structure
(vibrational input) with the chosen PZT and using
the NI-generator card.

4) Vibrational responses at different points are
recorded by using the rest of PZTs (sensors) and
the digitizer card.

5) Actuator and sensors are changed using the switch
module, and the steps 2 to 4 are repeated. These
changes and repeats are automatically applied by
the program developed in Labview.

6) Data in text based format is saved and organized.
7) Simulate damages or to do some real damages and

repeat the steps 2 until 6.
8) Apply the strategy based on PCA to compare the

vibrational responses of the current and healthy
structures.

Fig. 1. Laboratory in SHM

Two different structures has been used. The first one
is an aircraft turbine blade (figure 2) of a material
with similar density that titanium (3.57 g/ml). The
importance of this structure is that due to has one
stringer in each phase is a complex structure with
irregular form. This blade was instrumented with seven
Piezoelectric transducer discs (PZT’s) attached on the
surface: three of them were distributed in one face and
the others on the other face.

Damages were simulated adding two masses in
different locations, 140 experiments were performed
and recorded: 50 with the undamaged structure, and 10
per damage. The PCA model was created using the 80
% of the whole dataset collected using the undamage
structure. Signals form other 20 % and the whole dataset
of the damaged structure were used for testing the
approaches.

Fig. 2. Aircraft turbine blade

The second structure is a smooth-raw aluminium 2015-
3501(figure 3). The dimensions of this plate is 25cm ×
25cm × 0.1cm. This plate was instrumented with four
Piezoelectric transducer discs (PZT’s) attached on the
surface as is shown in the figure 3. A real damage was
made between the PZT2 and PZT4, 300 experiments
were performed and recorded: 100 using the undamaged
structure, and 200 using the structure with different
size of damage (increasing the depth). The PCA model
was created using 100 % of the whole dataset of the
undamaged structure, 50 % of the dataset of undamaged
structure and the whole dataset of the damaged structure
were used for testing the approach.

Fig. 3. Aluminium plate

5 PRELIMINARY RESULTS

5.1 Damage Detection

The damage detection is a methodology previously
reported in [10], and uses the scores and the indices T 2

and Q (figure 4), for this, one PCA model is built in
each phase (PZT1 as actuator, PZT2 as actuator, and so
on) using the signals recorded by sensors during the
experiments with the undamaged structure. Data from
the experiments using the current structure (damaged
or not) are projected on the model. Projections onto
the first principal components (scores), T2-statistics and
Q-statistics are calculated by each PCA model.

Each PCA model by itself is used as tool for damage,
for this, the scores and T vs Q plots are performed for



Fig. 4. Damage detection methodology

each PCA model and the analysis is developed. Figures
5 and 6 show the scatter plots of score 1 vs score 2
and T 2 vs Q, respectively for the PZT 1 in the aircraft
turbine blade.

Fig. 5. Scores with the PZT1 as actuator

Fig. 6. T 2 vs Q plot with the PZT1

As seen in the figures 5 and 6, some damages are

clearly distinguished from undamaged structure, also it
is possible to distinguish damages between them in both
plots.
The same methodology has been applied using other
indices (see figures 7, 8).

Fig. 7. Q vs Phi with the PZT1 as actuator

Fig. 8. Q vs I2 with the PZT1 as actuator

5.2 Damage Classification

The damage classification methodology (see figure 9)
was previously reported by Mujica et al. [10] to analyze
one phase, now authors extended this methodology in
2010 [3] to include the combination of all the phases in
order to use the information collected of each PZT.

The goal of this work is to organize, to combine and
to contrast the information obtained from all models in
order to provide a general diagnosis of the structure.
To do that, any classification tool can be used, author
have chosen Self Organizing Maps (SOM). This Artificial
Neural Network (ANN) is an unsupervised algorithm
known also as Kohonen Map [6]. Inputs to the SOM
are the projections onto the new space, T 2 − index and
Q− index of each phase.



Fig. 9. Damage classification Methodology

Figure 10 shown the result of this methodology applied
to the aircraft turbine blade using nine different sim-
ulated damages. The best configuration for the dam-
age classification was found using two 2 scores and
DI’s by each phase and a 8x6 SOM. Identical damages
are grouped in the same cluster, similar damages are
grouped in neighbouring clusters, test using the undam-
aged structure are well separated from the others.

Fig. 10. Classification in the cluster output

5.3 Damage Localization

The damage localization methodology used in this work
has been previously suggested in [10], this methodology
only include the analysis for one phase and one
actuator, currently the authors of this paper extended
this methodology to make a combined analysis of all
phases and all sensors [11].

In the methodology (see fig. 11), one PCA model is
built in each phase as was done in the damage detection
and the projections onto the first principal components
(scores), T 2 − index,Q− index, ϕ− index and I − index

are calculated by each PCA model.
To localize the damage, the contribution of each sensor
in the different phases to each index in each phase
is calculated and finally are accumulated in order to

Fig. 11. Damage localization methodology

obtain one measure that show the region with more
abnormalities, this contribution is a measure of the level
of influence of the damage to the sensor. In each phase,
a region of the structure is selected as the region where
the damage is located. Considering all phases, a general
diagnosis could be performed (intersection of all the
regions).

• Aircraft Turbine Blade

Figures 12,13,14 and 15 show the contribution
of each PZT (1 to 7) to each index (T 2, Q, φ and I)
at a specific trial (experiment using the structure
to diagnose). In this case, the structure has the
damage 3 (D3 is a damage located near to PZT 4,
see fig. 17 ).
Analyzing Figure 12 (contributions to Q − index)

Fig. 12. Contributions of each PZT to Q− index

it is possible to observe the following: During the
phase 1 (PZT1 as actuator), the highest contribution
is obtained in the PZT4. Therefore, the damage
is located between PZT1 and PZT4. A similar
situation is founded in phases 2,3,5,6 and 7; so, the
damage is located between PZT2 and PZT4 (phase
2), PZT3 and PZT4 (phase 3), PZT5 and PZT4
(phase 5), PZT6 and PZT4 (phase 6), and PZT7 and
PZT4 (phase 7).



In a general way, the region or area of the damage
can be defined as the intersection of the different
areas found in each phase. In this case, it can be
concluded that the damage is nearby to PZT4.

Fig. 13. Contributions of each PZT to T 2 − index

Fig. 14. Contributions of each PZT to ϕ− index

Fig. 15. Contributions of each PZT to I − index

From Figure 13 (contributions to T 2 − index) it
can be seen that some contributions are negative.
Negative contributions do not have any physical
sense and therefore, they are not considered in the
analysis. Results are similar to obtained by using
Q− index. The main difference appears in phase 6,
the highest contribution is obtained by PZT7.
Contributions to ϕ − index(Figure 14) and to
I − index (Figure 15) show similar results. The
highest contribution is carry out by PZT4.
In order to show the final diagnosis (considering

contributions at all phases) it is necessary to specify
areas in the structure that consider paths between
actuator and sensors. The contribution of each
sensor in each phase defines the weight of the path
(region between actuator and sensor). Finally, the
sum of all the weighted regions establishes the
region where the damage is located.

Fig. 16. Interface of Localization of damage

Fig. 17. Localization of the damage 3 using contributions

to Q− index

From Figure 16 it can be seen the software appli-
cation developed in Matlab. Here, the image of the
structure is loaded, and the position of every PZT
is manually defined (using the mouse). A typical
path-planning algorithm is implemented to define
the areas between PZT’s. The final diagnostic of
the current structure (with damage 3) using contri-
butions to Q − index presented in Figure 17 (the
higher the value of the color, the more probability
of the localization of the damage). As it is expected,
the damage is located near to PZT4. Additionally,
performing experiments with damage 1 present in
the structure, the approach identifies the localization
of the damage near to PZT1 as is shown in Figure
13.

• Aluminium plate



Fig. 18. Localization of the damage 1 using contributions

to Q− index

The five methods explained in concepts section
were applied to each index and compared using
the damage located between PZT 2 and PZT 4
(fig. 19) with different depth, figures 20-24 shows
the results of using the DC, CDC, PDC, ABC and
RBC for the Q − index and damage 1, the higher
the value of the color, the more probability of the
localization of the damage. As it is expected, the
damage is located between PZT2 and PZT4.

Fig. 19. Damage in the aluminium plate

Fig. 20. Damage localization: using DC

Fig. 21. Damage localization: using CDC

Fig. 22. Damage localization: using PDC

Fig. 23. Damage localization: using ABC

Figure 31 shows the contributions obtained for each
path between the different PZT’s for the five meth-
ods. As shown, in each method, the path between
PZT 2- PZT 4 contains the highest values of contri-
bution, this is because the damage is located in this
path. With all the methods is possible to locate the
damage with different values, the lowest contribu-
tion is found with CDC method, additionally, it is
possible to see that in all the methods the difference



Fig. 24. Damage localization: using RBC

Fig. 25. damage 1: comparison of methods

Fig. 26. damage 2 using diagonal contributions

between the values of each path for each method
are significantly greater for the path between PTZ 2
and PZT 4 except for CDC method where the values
are similar.

The same five methodologies are applied for the
T 2−index in the same damage with different depth,
results are shown in figures 26-30, the higher the
value of the color, the more probability of the local-
ization of the damage. As it is expected, the damage
is located between PZT2 and PZT4 . Figure 15 shows
the contributions obtained for each path between

Fig. 27. damage 2 using complete decomposition contri-

butions

Fig. 28. damage 2 using partial decomposition contribu-

tions

Fig. 29. damage 2 using angle based contributions

the different PZT’s for the five methods. As for the
Q − index, in each method, the path between PZT
2- PZT 4 contains the highest values of contribution,
this is because the damage is in this path. In this case
compared with the results for Q− index exist more



Fig. 30. damage 2 using reconstruction based contribu-

tions

Fig. 31. damage 2: comparison of methods

differences between the different paths using CDC
method.

6 CONCLUSION

The application of PCA to detect, localize and classify
damages in structures were presented. Each application
include the use of a methodology which include an
active piezoelectric system, PCA and some statistic
indices.
A novelty multiactuator piezoelectric system for
localization of damages has been developed. The
approach combines strategies to study: (i) The dynamic
or vibrational response of the structure at different
exciting and receiving points. (ii) The correlation of
these dynamical responses when some damage is
presented in the structure by using PCA and some
statistical measures that can be used as indices of
damage. (iii) The influence of every sensor in the
indices, this contribution can be used to localize the
origin of the change in the vibrational characteristic
(damage).
The approach proposed for classifying were tested with
excellent results using PCA analysis (first two scores,
T2 statistics and Q-statistics) of the seven phases and
contrasting the information by means of a SOM for a
damage classification.

Just two scores allows a good classification of the
damages on the structure, this two scores contains
the information more relevant. Five different methods
(DC,RBC,ABC,PDC,CDC) for damage localization
were presented using T 2, Q, φ and I − index. The
methodology developed to localize damages is based
in PCA models built from vibrational responses of the
structure using a active system [3].
The region which contain the damage is obtained by
finding the highest value area, for this, the sum of the
contributions obtained for each sensor to each index is
calculated.
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