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Abstract —Contam nated data  out ers can affect the resu ts of 
stat st ca  methods such as Pr nc pa  Component Ana ys s  An 
out y ng observat on  or out er  s one that appears to dev ate 
marked y from other members of the samp e n wh ch t occurs   
Out ers  usua y  appear due to exper menta  errors and cou d have 
undesr ab e nf uence on the resu t of the method  An effect ve way to 
dea  w th th s prob em s to app y a robust  e  not sens t ve to 
out ers  var ant of PCA  In th s rev ew  d fferent robust PCA methods 
are summer zed br ef y; then the most two mportant robust PCA 
methods are used nstead of c ass ca  PCA  The resu ts from both 
methodo og es robust and c ass c  are compared  The compar sons 
of the resu ts shows that  the use of the ment oned ndexes based on 
the robust mode s  d st ngu sh the damages much better than us ng 
c ass ca  one  and even n many cases a ows the detect on where 
c ass c PCA s not ab e to d scern between damaged and non-
damaged structure  As we  as compar son between c ass ca  and 
robust methods  two robust methods are a so compared w th each 
other and the r features are d scussed  Requ red data are co ected 
us ng an a rcraft turb ne b ade ut z ng p ezoe ectr c transducers as 
sensors and actuators and d fferent s mu ated damages  
 
Index Terms— SHM, PCA, Robust PCA

1    INTRODUCTION  

Billions of dollars are spent every year maintaining and
repairing buildings, bridges, aircraft, railroads, and other
infrastructure. In aerospace industry the health of the
structure plays a vital role. Research performed by Pyles
(2003) and Dixon (2006) have shown that the
maintenance costs of military and commercial aircraft
increases with the age of the aircraft. With high costs and
long down times associated with inspection of both
military and commercial aircraft, the frequency at which
aircraft are inspected is limited, and there exists a
greater possibility of not detecting faults, potentially
resulting in aircraft malfunction. According to the latest
National Transportation Safety Board data regarding
aviation accidents, there were two fatal flight accidents
of commercial aircraft in 2006 that resulted in a total of
50 deaths. In an effort to improve the safety and reduce

the maintenance costs of our aerospace infrastructure,
novel inspection and damage detection techniques need
to be developed, tested, and implemented on various
structures including buildings, bridges, aircraft, and
railroads. One such technique that has gained much
attention in the research and industrial communities
over the past two decades is structural health monitoring
[1].

Structural health monitoring (SHM) is a damage
detection technique that involves placing intelligent
sensors on a structure, periodically recording data from
the sensors, and using statistical methods to analyze the
data in order to assess the condition of the structure. The
field of SHM developed through the combination of
nondestructive evaluation (NDE) methods and novel
sensing and actuation techniques to create intelligent
monitoring systems permanently installed on structures,
in other words, SHM is a non-­‐destructive method aims to
give, at every moment during the life of a structure, a
diagnosis of the “state” of the constituent materials, of
the different parts, and of the full assembly of these parts
constituting the structure as a whole. It involves the
integration of sensors, possibly smart materials, data
transmission, computational power, and processing
ability inside the structures. It makes it possible to
reconsider the design of the structure and the full
management of the structure itself and of the structure
considered as a part of wider systems. Structural health
monitoring offers a powerful method of monitoring
structures with a promise of shifting time-­‐based
maintenance schedules, which can be costly, to
condition-­‐ based schedules, thus significantly reducing
maintenance and repair costs. Additionally, SHM has the
potential to reduce the human error involved in
monitoring structures and to improve the effectiveness
of monitoring systems and the overall safety of
structures. To achieve this aim there are several
potentially useful techniques, and their applicability to a
particular situation depends on the size of critical
damage admissible in the structure. The development of
practical monitoring systems that can be implemented
on real world structures faces several design challenges
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including the development of stand alone vibration
sensors/actuators, effective damage detection
algorithms, and low power wireless transmission
systems. Some SHM systems currently being developed
include vibration actuation, data acquisition, data
processing, and data transmission capabilities all in
stand alone wireless sensor units attached at various
locations along a structure. All of these techniques follow
the same general procedure: the pristine structure is
excited using appropriate actuators and the dynamical
response is sensed at different locations throughout the
structure. Any damage will change this vibrational
response, as well as the transient by a wave that is
spreading through the structure. Several methods have
been used to obtain this vibrational response, for
instance: using fiber-­‐optic or piezoelectric transducers.
In the next step, necessary data is collected and then, the
state of the structure is diagnosed by means of the
processing of these data. Correlating the signals to
detect, locate and quantify these changes is a very
complex problem, but very significant progresses have
been recently reported in conferences new scientific
journals and books. Among these methods, developing a
model using Principal Component Analysis (PCA) for
feature discrimination has been considered recently [2].
PCA is the most useful tool in dimensional reduction. The
central idea of PCA is to reduce the dimensionality of a
data set consisting of a large number of interrelated
variables, while retaining as much as possible of the
variation present in the data set. This is achieved by
transforming to a new set of variables, the principal
components (PCs), which are uncorrelated, and which
are ordered so that the first few retain most of the
variation present in all of the original variables. If the
data compression is sufficient, the large number of
variables is substituted by a small number of
uncorrelated latent factors which can explain sufficiently
the data structure. The new latent factors, also called
principal components (PCs) are obtained by maximizing
the variance of projected data. In the classical approach,
the first component corresponds to the direction in
which the projected observations have the largest
variance. The second component is then orthogonal to
the first and again maximizes the variance of the data
points projected on it. Continuing in this way produces
all the principal components, which correspond to the
eigenvectors of the empirical covariance matrix.
However, despite of these features, PCA is known to
possess some shortcomings. One of them is that both the
classical variance (which is being maximized) and the
classical covariance matrix (which is being decomposed)
are very sensitive to anomalous observations.
Consequently, the first components are often attracted

towards outlying points, and may not capture the
variation of the regular observations. Therefore, data
reduction and modeling based on classical PCA (CPCA)
becomes unreliable if outliers are present in the data. A
way to deal with this problem is to remove the outlying
objects observed on the score plots and to repeat the
PCA analysis again. Another, more efficient way is to
apply a robust, i.e. not sensitive to outliers, variant of
PCA. In this review, different robust PCA methods are
briefly summerized and then two important robust PCA
methods [3, 4] are implemented instead of classical PCA
to detect damage on a structure. Experimental results
have been compared and it has been proved that using
robust PCA is prior to using classical PCA in presence of
contaminated data.

2.  PCA and Damage Detection Indices (T2  
and Q-statistics) Definition 

Principal Components Analysis and its specification are
discussed in many articles and books [5,6]. PCA model is
calculated using the collected data in a matrix form of X
(n × m) containing information from n experimental
trials and m sensors. Since physical variables have
different magnitudes and scales, each data-­‐point is scaled
using the mean of all measurements of the sensor at the
same time and the standard deviation of all
measurements of the sensor. Once the variables are
normalized the covariance matrix CX calculated as
follows:

XXC T

1
1

X −
≡
n

                          (1) 

CX is a square symmetric matrix (n × n ) that measures
the degree of linear relationship within the data set
between all possible pairs of variables (sensors). The
subspaces in PCA are defined by the eigenvectors and
eigenvalues of the covariance matrix as follow:

!!! = !Λ                               (2)  
Where the eigenvectors of CX are the columns of P and
the eigenvalues are the diagonal terms of Λ (the off-­‐
diagonal terms are zero). Columns of matrix P are sorted
according to the eigenvalues by descending order and
they are called the Principal Components (PCs) of the
data set. The eigenvector with the highest eigenvalue
represents the most important pattern in the data with
the largest quantity of information. Choosing only a
reduced number r of principal components, those
corresponding to the first eigenvalues, the reduced
transformation matrix could be imagined as a model for
the structure. Geometrically, the transformed data matrix
T (score matrix) is the projection of the original data
over the direction of the principal components P.

XPT =                                  (3) 
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In addition to score matrix, other statistical
measurements based on PCA model (P matrix) could be
used as damage detector indexes. Two well-­‐known are
commonly used to this aim: the Q-­‐statistic and the T2-­‐
statistic. The first one is based on analysing the residual
data matrix to represent the variability of the data
projection in the residual subspace. The second method
is based in analysing the score matrix T to check the
variability of the projected data in the new space of the
principal components. Q and T2-­‐statistic of the i-­‐th
sample (or experiment) are defined as follows:

T
ii x)(x= TPPI −iQ                   (4) 
T
i

1
i

2 xx TPP −Λ=iT                     (5) 

Where, xi as the m-­‐row vector that represents the
measurements from all sensors in the ith-­‐experiment.

1.1.  Damage detection using PCA 

To generate the PCA model appropriate signal is
recorded based on healthy structure. The quantity of
experiments can be as much as we want, but the
numbers of sensors and collected samples (data-­‐points)
must be the same that were used in the modeling phase.
Then data from the current structure (damaged or not)
are projected on the model (see Figure 1). Projections
onto the primary principal components (scores), T^2-­‐
statistic and Q-­‐statistic can be used as indexes to
compare the structure status, identify and classify the
probable damages.

 

Figure 1: Damage detection using PCA model [2] 

 
Using PCA modeling and mentioned indexes is described
in details in [2]. Despite of the fact that PCA model and its
derivatives (Q and T) could be used as a damage
indicators, they are sensitive to atypical observations in
which exist during the real experiments; so appropriate
methods are necessary to improve the PCA robustness
against outliers.

2.  Outliers 
It happens quite often that, in the data sets, outliers are
present. Outlying observations are observations that lie
at a considerable distance from the bulk of the
observations or do not conform to the general pattern

the observations exhibit. The presence of outliers in the
data can be due to two main reasons. One of them is an
experimental error; the other reason is the unique
character of a few objects. In measurement experiments,
sensor inaccuracy or error may result outliers. Outliers
are categorized to 3 different types depending to their
distance from PCA subspace. First type is good leverage
points that lie close to the PCA space but far from the
regular observations, such as the observations 1 and 4 in
Figure 2. We can also have orthogonal outliers whose
orthogonal distance to the PCA space is large but which
we cannot see when we only look at their projection on
the PCA space, like observation 5. The fourth type of data
points are the bad leverage points that have a large
orthogonal distance and whose projection on the PCA
subspace is remote from the typical projections, such as
observations 2 and 3.

Figure 2: Influence of outliers on PCA modelling, a) without 
outliers b) with outlier 

Regardless of their source and depending on their position, 
outlying observations may or may not have a large effect on the 
results of the analysis. For instance, existence of outliers could 
change the direction of PCA components and result in model 
inaccuracy, see Figure 3. 

 

Figure 3: Influence of outliers on PCA modeling, a) without 
outliers b) with outlier 

Given that certain observations are outliers or
influential, it may be desirable to adapt the
analysis to remove or diminish the effects of
such observations; that is, the analysis is made
robust.

3.  Robust PCA 
The goal of robust PCA methods is to obtain
principal components that are not much
influenced by outliers. To achieve this goal,
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many methods have been proposed. These
methods are generally based on three different
approaches:

• taking the eigenvectors of robust
covariance matrix

• projection pursuit
• Combination of both.

Minimum covariance determinant (MCD) [7] and fast
version [8] S-­‐estimators [9] and minimum volume
ellipsoid (MVE) [10] are some methods in which belong
to first approaches. The result of these methods are more
robust rather than classical approach but unfortunately
limited to small to moderate dimensions where the
number of variables ,m, are larger than half the number
of observations ,n.
From the Projection Pursuit point of view, PCA uses the
variance of the projected data as a projection index. It
means that, if the data contain outliers, PCA will find
directions (principal components, PCs) mainly
influenced by them. However, the main disadvantage of
the method is the lack of robustness. The reason is that
the variance itself is not robust. When in Projection
Pursuit, a robust scale (not sensitive to the outliers'
presence) is used as a projection index, robust principal
components (RPCs) and robust dispersion matrix can be
obtained. The goal of robust PCA methods is to obtain
principal components that are not much influenced by
outliers. To achieve this goal, many methods have been
proposed. These methods are generally based on three
different approaches: (i) taking the eigenvectors of
robust covariance matrix, (ii) projection pursuit, (iii)
combination of both. In [11, 12] a method has proposed
belong to second approach. In this method, robust
components are getting by calculating the candidate
directions for the first component via all directions from
each data point through the center of the data cloud
using L1-­‐median estimate. Subsequent components are
then estimated in a similar way, but the search process is
done in the orthogonal complement of the previously
identified components.
Hubert et al [13] has proposed a method belong to third
approach in which uses both robust estimation and
projection pursuit. Projection pursuit part is used for the
initial dimension reduction and then MCD estimator is
applied to this lower-­‐dimensional data. It yields more
accurate estimates at non-­‐contaminated data and more
robust at contaminated data. In addition, this method can
handle high dimensional data.
In this work, because of huge dimension of data m>> n,
two last methods have been used to estimate the robust
PCA model. Then the new robust model is used to
calculate T2 and Q damage indices. In next part, these two
methods are described briefly.

3.1.  Robust PCA algorithm of Croux and Ruiz-
Gazen  

In this method, to center data around the mean, L1-­‐
median is used instead of classical mean in PCA. The L1
median is defined to be any point which minimizes the
sum of Euclidean distances to all points in the data set. In
literature this estimator is often called “median center”.
The breakdown point of the L1 median has been found to
be 50%. This is evident by noticing that if we place just
over 50% of the data at one point, then the median will
always stay there. The breakdown point is the most
popular measure of robustness of an estimator. It
measures the smallest fraction of outliers in the data that
is needed to drive the scale estimators to their extreme
values, i.e., zero for breakdown to zero and infinity for
explosion breakdown (14). In the next step, instead of
variance in classic PCA a robust scale, first quartile of the
pairwise differences between all data points (15), is used
to find all directions.

!!(!!,… ,!!) = !.!!"# ∗ !! ∗ !! − !! ; ! <
!
(!)

                                         (6) 

Where ! = ℎ
2 ≈

!
!
!
, ℎ = !

!
+ 1 and !! a correction

factor which tends to 1 when the number of objects,!,
increases. The algorithm can be summarized as follows
[4]:
Let ! is the data matrix with elements !!" , ! = 1, . . . , !
(observation) and ! = 1, . . . ,! (variables)

1. Center ! around L1 -­‐median. It
leads to the new centered data
matrix !! .

2. For ! = 1 to !!, where !! is the number
of robust principal components to be
extracted, construct a data matrix
containing normalized rows of !! (all
possible eigenvectors).

3. Project all objects onto the
eigenvectors.

4. Calculate the projection index of
all eigenvectors.

5. Select the eigenvector with
maximal value of the projection
index.

6. Update the !! by its orthogonal
complement.

7. Go to step 2 until !! robust PCs
are found. Project all objects onto
the eigenvectors found.

3.2.  ROBPCA: 
The ROBPCA method utilizes ideas of both projection
pursuit (P.P.) and robust covariance estimation. The P.P.
part is used for the initial dimension reduction and MCD
estimator is applied to this lower-­‐dimensional data
space.



 

 

If original data are stored in an !×! data matrix, ! =
!!,!, the ROBPCA method proceeds in three major steps.
The first step of ROBPCA consists of performing a
singular value decomposition of the data in order to
project the observations on the space spanned by them.
If ! ≫ ! this step yields to huge dimension reduction
with not losing information. Next, a preliminary
covariance matrix !! is constructed that is used for
selecting the number of components ! that will be
retained in the sequel, yielding a !-­‐dimensional subspace
that fits the data well. Then the data points are projected
on this subspace where their location is robustly
estimated and their scatter matrix, of which we compute
its ! non-­‐zero eigenvalues !!,… . , !! . The corresponding
eigenvectors are the ! robust principal components [3].

4.  Experimental setup 
This specimen is a turbine blade of a commercial aircraft.
It could be determined that the blade is manufactured by
a homogenous material with a similar density like
titanium (3.57 g/ml). Seven PZT sensors are distributed
over the surface to detect time varying strain response
data. Three of the sensors are on one face and four on the
other face as can be seen in Figure 4-­‐a.

 

Figure 4: Experimental setup a) PZT’s location b) damage location 
c) simulated damages 

 
Blade is suspended by elastic ropes. The actuators are
excited by a burst signal of three peaks and 350 KHz of
frequency (see Figure 5-­‐a). A measured signal in one of
the PZTs is shown in Figure 5-­‐b.

 

Figure 5 : a) Signal excitation, and b) Dynamical 
response   

    
Damages are simulated adding masses at several
locations as shown in Figure 4-­‐b and Figure 4-­‐c.
Data are arranged in two parts. First training data in
which contains signals from non-­‐damaged structure and
second, test data that contains signals from non-­‐damaged
and damaged structure. 140 experiments were
performed and recorded: 50 with the undamaged
structure and 10 per each damage. The 80% of the data
set collected using the undamaged structure was used
for building the baseline. For diagnosis testing, the other

20% of the data set of the undamaged structure and the
whole data set of the damaged structure were used.

5.  Classic PCA vs. Robust PCA [16] 
To build the baseline, when structure is healthy, PCA is
applied to the data matrix that contains dynamical
responses to a known excitation at different locations.
The projection matrix !, which offers a better and
dimensionally reduced representation of the original
data X, is calculated. This matrix is used as a model to
apply Test data in which contain data from both
damaged and non-­‐damaged structure.
Using T and Q index based on PCA model, 10 patterns are
presented; One for non-­‐damaged and 9 for different
damages. The rest of paper is dedicated to compare how
these indexes can distinguish between patterns from
damaged and non-­‐damaged structure when they are
based on classic PCA or robust PCA. Figure 6 shows Q-­‐T
scatter graph illustrating mentioned patterns. As it is
shown, robust PCA can eliminate existed outlier,
mentioned by arrow, and present more aggregate
pattern for non-­‐damaged structure. Moreover, non-­‐
damaged pattern keeps more distances from others in
which shows that it is distinguished better by robust
method. Colors represent different conditions of the
specimen (healthy, damages 1, 2,.. etc.). As ! ≫ ! the

 

Figure 6:Classic PCA and Robust PCA a) Classic PCA 
b) Robust PCA 

Hausdroff distance is used to compare the performance
of PCA methods with robust PCA to distinguish damaged
and non-­‐damaged structure [15].

5.1.  Hausdorff distance 
Hausdorff distance is the maximum distance of a set to
the nearest point in the other set. More formally,
Hausdorff distance from set A to set B is a maximum
function, defined as

! !,! =!"#!∈!{!"#!∈!{!(!,!)}}       (7) 
Where ! and ! are points of sets A and B respectively,
and !(!, !) is any metric between these points; for
simplicity, the Euclidian distance between a and b is
selected as !(a, b). Mentioned index is used in two ways.
First Hausdorff distance could be used to show the
distance between members of two different patterns and



secondly could be used to show distances between all
members of one pattern. Second usage of Hausdorff
distance is used to show how much a pattern is united.
Figure 7 shows that robust methods propose patterns in
which are more united.

 

Figure 7: Hausdroff distance between members of one pattern, 
Classic PCA and Robust PCA 

5.2.  Adding simulated outliers 
Pure data, directly from the experiments, may have
natural outlier but to have a more accurate comparison,
some artificial outliers are added to training data.
Training data are contaminated using data from different
damages. Philosophy behind this procedure is that the
gathered data from damaged structure does not belong
to the baseline so they could behave as outliers.
Percentage of outliers is changing to pursue the ability of
robust methods to ignore outliers in different
percentages.

5.2.1.  Comparing robust PCA methods with 
Classical PCA [15] 
Figure 8 shows that when training data are contaminated,
classical PCA is not able to distinguish between
undamaged and damaged structure. In other words,
pattern of non-­‐damaged structure in classical PCA is
conflicted with pattern of damaged structure but in
ROBPCA (Figure 8-­‐b) undamaged pattern is completely
separated. As it is declared in Figure 8-­‐a and b, the
nearest pattern to pattern of non-­‐damaged structure is 3
times farther in ROBPCA rather than classic PCA.
The same result could be seen comparing classical PCA
with Croux PCA (Figure 8-­‐c). In this case, the minimum
distance is 6 times farther. Number written beside each
pattern in Figure 8 is Housdroff distance between
different patterns to pattern of non-­‐damaged structure.
These numbers are shown in Figure 9.

 

Figure 8: Q-T scatter graph, a) Classic PCA b) Croux PCA c) 
ROBPCA 

As could be seen, Croux and ROBPCA have farther
distance in majority of patterns. This means that these
methods can separate patterns of damages from non-­‐
damaged much better. Beside, Croux PCA shows that in
almost all patterns it could separate undamaged pattern
even better than other robust method.

 

Figure 9: comparing distance of different damages to non-damaged 
pattern 

 

Figure 10: Ratio between robust methods to classic one of the 
average distance between test patterns to non-damaged pattern 

 
It is expected that by increasing percentage of outlier,
robust methods can distinguish pattern of non-­‐damaged
structure from patterns of different damages better than
classic method. Figure 10 confirm this claim. For each
quantity of outlier the average of Hausdorff distance of
all patterns from pattern of non-­‐damaged structure is
calculated. This average is repeated 100 times. Each
repeat means selecting a new group of outliers. Then the
ratio of this average for robust methods is computed
rather than classic one. As it could be seen, this ratio is
increasing rapidly when the percentage of outliers is
increased.

 

Figure 11: ratio of Croux PCA to ROBPCA in different outlier 
percentages 



 

 

Figure 11 compare two robust PCA methods. It could be
seen that for instance, in the presence of 30% outliers
Croux method is 15% better than ROBPCA and goes on.
As it is declared, although there is no specific trend
during increasing the outliers, Croux method almost in
all percentages has better results rather than ROBPCA.
From speed point of view, Croux PCA is faster than its
competitor but both robust methods are much slower
than classic one (about 63 % to 80 %). According to
Table 1 , not depending on percentage of outliers, Croux
PCA is 11 % faster than ROBPCA. All calculations have
been done on a PC with 3.5 GHZ CPU and 4 GB ram.

Table 1: Speed comparison of different PCA methods 
second

Classic PCA 22 ms
ROBPCA 41 ms
Croux PCA 35 ms

6.  Conclusion 
Classical PCA has been used widely in SHM field. In this
work, two robust PCA methods have been used instead
of classic one to generate damage indices, Q and T2.
Using mentioned indices simulated damages are
detected in a real part of commercial aircraft. Robust
methods are compared with each other and also with
classical method. According to the result, although robust
methods are slower than classical one, they distinguish
damages much better than classic one in presence of
outliers.
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