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Abstract 

The structural relaxation, glass transition and crystallization processes of Mg65Cu25Y10 

metallic glass are studied by Differential Scanning Calorimetry (DSC) and Mechanical 

Spectroscopy. The relaxation model derived from the mechanical measurements is compared 

with the kinetics of these transformations obtained from the DSC curves. The structural 

relaxation kinetics is found to be controlled by the glassy dynamics following an Adams-Gibbs-

Vogel function. The glass transition and crystallization kinetics are controlled by the dynamics 

of the supercooled melt following a Vogel-Fulcher-Tammann behaviour. The results suggest 

that the microscopic processes responsible of structural relaxation and aging below the glass 

transition correspond to the same processes generating the -relaxation peak.  
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1. Introduction 

Physical properties of metallic glasses (MG) can be deeply affected by the relaxation state 

attained during the previous thermal history [1]. The high cooling rates usually needed to bypass 

crystallization result in glasses with high fictive temperatures (Tf). This as-quenched state is 

characterized by large amounts of excess free volume and internal stresses in the glass structure 

and it can be stabilized through annealing or physical aging. In Mg, Ca and Ce-based metallic 

glasses, where the glass transition temperature (Tg) is found below 450 K, the structural 

relaxation processes are active even at room temperature. A clear understanding and description 

of the processes driving structural relaxation is then a fundamental knowledge in designing the 

annealing protocols in order to obtain the desired properties and in predicting the time evolution 

of the physical properties under working conditions. 

In Ref. [2] we described the relaxation spectrum of Mg65Cu25Y10 glass by means of 

mechanical spectroscopy. The elastic complex modulus measured in the multi-frequency tests 

was well described by considering that the system follows a Vogel-Fulcher-Tammann (VFT) 

function in the supercooled liquid state 

 

 

(1)

and an Adams-Gibbs-Vogel (AGV) function [3] in the out-of-equilibrium glassy state 

 

 

(2)

with parameters B=5750 and T0=260 K taken from viscosity data [4] and 0=2.4×10-15 s 

determined from the position of the maximum of the loss peak in the equilibrium supercooled 

liquid region. The fictive temperature changed from Tf2=437 K in the as-quenched state to 

Tf1=412 K in a relaxed state obtained by isothermal annealing. The onset of glass transition was 

observed by DSC at Tg=416 K when heating at 10 K/min. The relaxation time given by 

equations 1 and 2 correspond to the main structural relaxation time of the system (-relaxation). 

Below Tg, the dynamics of the glass are arrested in an Arrhenius behaviour while, above Tg, the 

VFT function reproduces the diverging slowing down of the dynamics when approaching glass 

transition. 

The microscopic processes leading to structural relaxation and physical aging of metallic 

glasses are not at all clear. Mechanical spectroscopy at low frequencies (0-200Hz) shows that 

the internal friction increases in the same temperature region were structural relaxation of as-
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quenched samples takes place [5][6]. In many systems it is considered that the structural 

relaxation is driven by secondary relaxations faster than the main relaxation of the glass [7] [8] 

[9]. Evident secondary relaxations have been found in Pd-based and La-based systems [6]. In 

other systems, the increase of internal friction is observed as a low temperature excess wing of 

the equilibrium -relaxation peak in the viscoelastic loss modulus [10] [11] [12]. In reference 

[2]  the excess wing of Mg65Cu25Y10 glass was well described as the high frequency tail of the 

-relaxation once arrested in the non-equlibrium dynamics given by equation 2. 

If the microscopic processes driving structural changes during annealing or aging of metallic 

glasses are the same processes generating internal friction in mechanical spectroscopy 

experiments, the determination of the relaxation model would be a useful tool for understanding 

such phenomena. In this paper we will compare results of Differential Scanning Calorimetry 

(DSC) and Dynamo-Mechanical Analysis (DMA) of Mg65Cu25Y10. The measurements were 

performed in samples with different relaxation states obtained by annealing or by room-

temperature aging. The aim of the work is to check if the structural changes occurring during 

annealing and aging of as-quenched samples are explained by the relaxation model proposed in 

reference [2] and, therefore, if they can be fundamentally described by equations 1 and 2.  

2. Materials and methods 

Samples were produced as thin ribbons by melt-spinning. Cu and Y pure metals were pre-

alloyed by arc-melting under Ti-gettered Ar atmosphere. Pure Mg was added in an induction 

furnace in order to prevent its volatilization. The melt was then injected on the Cu wheel 

spinning at 40 m/s perimeter velocity producing rapidly quenched metallic ribbons with 

thickness of 33±4 m. Differential scanning calorimetry (DSC) was performed on a NETZSCH 

DSC 404 F3 Pegasus and in a Perkin Elmer DSC-7. In order to assess the kinetics of the 

reactions the DSC curves were performed with heating rates from 5 to 60 K/min on the as-

quenched sample and from 0.5 to 60 K/min on the aged samples. Mechanical spectroscopy was 

performed on a TA-instruments Q800 DMA. Tests were carried on in tensile geometry applying 

a preload (static force) of 0.08 N at a frequency of 1 Hz. Oscillating strains of 1 m amplitude 

were applied by loading and unloading around this static value with the required dynamic force. 

The length of the ribbon pieces was of 10mm. 

 The measurements were performed on as-quenched, relaxed and aged samples. The as-

quenched samples were stored several weeks at room temperature before the measurements, the 

fast physical aging observed during the first days after the production of rapidly-quenched 

Mg65Cu25Y10 glass [13] is then expected not to affect the results. The relaxed samples measured 



by DMA were obtained by annealing isothermally during 30 min at 410 K while being under 

tensile constant load of 0.08 N. This procedure is expected to release most part of quenched-in 

internal stresses and suppress sensible structural changes when annealing with the heating rates 

used in the DSC and DMA experiments (0.5 – 60 K/min). The aged samples were obtained by 

keeping the ribbons in a humidity-free environment during 20 and 24 months.  

3. Results 

Figure 1 shows the signature of structural relaxation of as-quenched samples measured by 

DSC and DMA. The blue lines correspond to the as-quenched samples. Above 365 K, the 

increase of the loss modulus measured at 1 Hz corresponds well with the onset of the 

exothermic signal of the structural relaxation. Between 365 K and 400 K the loss modulus 

E’’(,T) shows an evident hump in the same region where the structural relaxation is detected 

by the DSC signal. Here it should be noted that the change of frequency in DMA experiments, 

and the change of heating rate in both DSC and DMA would shift the temperatures were the 

different phenomena are observed. However, from the comparison of DSC and DMA 

measurements, it seems plausible that the same microscopic events generating internal friction 

are also responsible of the structural changes stabilizing the system. 

For the 5 K/min DSC scan depicted in the figure, the glass transition region is detected 

between 408 K and 428 K. Above this temperature the system reaches internal equilibrium. The 

maximum of the loss modulus peak, which would mark the dynamic glass transition 

corresponding to a frequency of 1 Hz, is observed near 440 K well above the glass transition 

detected by DSC, which would correspond to the dynamic glass transition at frequencies 

approximately 100 times lower [14]. 

For the relaxed samples (red lines) the release of heat during annealing is completely absent 

in the DSC signal, this means that the system remains basically in the same isoconfigurational 

state below Tg. In the loss modulus, the low temperature hump is suppressed but the increase of 

internal friction is still observed as a low-temperature wing of the equilibrium. This means the 

microscopic processes generating internal friction are also activated in the relaxed state but, in 

this case, they do not lead the system to a change of state.  

Figure 2 shows the change in the intensity and onset of structural relaxation between as-

quenched samples and samples stored 20 months. It can be observed that, after the fast physical 

aging observed during the first weeks after production [13], Mg65Cu25Y10 is continuously 

evolving towards more and more stable states due to aging at room temperature. Figure 2 inset 

shows the change in the onset temperatures of structural relaxation and glass transition when 



applying different heating rates. In this case the measurements correspond to samples stored 24 

months. 

The activation energies of the structural relaxation, glass transition and crystallization 

processes have been calculated by the Kissinger method, the calculated values are Er=148 

kJ/mol, Eg=303 kJ/mol and Ex=208 kJ/mol respectively. Figure 3 shows the Kissinger plots of 

as-quenched, 20-months and 24-months samples. The temperatures used to obtain the Kissinger 

plots correspond to the maximum of heat release detected by DSC for the structural relaxation 

and crystallization processes and to the inflection point in the specific heat curve during the 

glass transition. As expected, the crystallization temperatures depend on the kinetics of the 

metastable equilibrium melt and hence they are not affected by the aging of the samples. 

4. Discussion 

The loss modulus peak measured in constant heating rate DMA tests is composed of a non-

equilibrium (T<Tg,R) and an equilibrium region (T>Tg,R), where Tg,R is the glass transition 

temperature at the corresponding heating rate R. In tensile DMA experiments, the frequency 

response to the mechanical perturbations is described by a complex Young modulus 

E*(,T)=E’(,T)+iE’’(,T). In ref. [2] the frequency response of Mg65Cu25Y10 was found well 

described by a Cole-Cole (CC) relaxation function 

 

 

(3)

with broadening parameter =0.4-0.5 for both the supercooled liquid (equilibrium region) and 

the relaxed glass, and =0.7 for the as-quenched glass. The empirical CC-function is commonly 

used to rationalize the frequency response of glasses [15]. In the case of Mg65Cu25Y10 this 

function was able to describe the high-frequency (or equivalently the low-temperature) side of 

the loss peak, which is the side accessible in the tensile experiments used in this work. 

Figure 1 (thin solid lines) shows the theoretical E’’(0,T) functions obtained from equation 3 

substituting 0=2 s-1 and (T)=ne(T) (equation 2). The fictive temperatures and broadening 

parameters are 1=0.5, Tf1=412 K and 2=0.7, Tf2=437 K for the relaxed and as-quenched states 

respectively. For the relaxed samples, the combination of equations 2 and 3 follows the 

experimental E’’(0,T) behaviour until the system enters the glass transition region above 

Tg,1K/min=401 K. The loss modulus of the relaxed glass is then well described by a unique fictive 

temperature Tf1 very close to the temperature of the isothermal relaxation treatment. In the 

equilibrium region above the glass transition, E’’(0,T) corresponds to a CC-relaxation function 
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with (T) following a VFT behaviour (combination of equations 1 and 3) with the maximum of 

the loss peak at the temperature were e(T)=1/0. 

For the as-quenched samples, the combination of equations 2 and 3 only describes the 

response of the system during a short region between 360 K and 370 K. Above this region, the 

irreversible structural relaxation drives the system through different glassy states and a constant 

fictive temperature is not able to describe the E’’(0,T) behaviour anymore. The change in the 

broadening exponent  between as-quenched and relaxed states may be an artifact due to the 

short fitting region available in the as-quenched samples. However, a change in the exponent of 

the correlation functions for different relaxation states was also observed by X-ray Photon 

Correlation Spectroscopy in the same material [16]. 

The activation energies for the different processes are obtained from the T2/R vs 1/T curves 

shown in figure 3 as 

 

 

(4)

where A is a constant value. The use of the transformation curves T2/R vs 1/T for calculating 

activation energies is based on considering that the activation energy is constant over 

temperature and time. Although this is not fulfilled in the case of the reactions studied here, it is 

a robust method for estimating average activation energies. The coincidence between the 

activation energies of viscous flow and the ones calculated from the rate of thermal 

measurements by equation 3 is a well-known fact and it is used in metallic glasses since the 

work of Chen [17]. 

Now we will compare the kinetics measured by DSC with the relaxation scheme proposed 

by equations 1, 2 and 3 and the parameters B and T0 reported above. The glass transition and 

crystallization kinetics are controlled by the melt viscosity. The local activation energies are 

then given by the VFT function and can be calculated as E/kB=BT2/(T-T0)
2. Substituting the 

temperatures corresponding to the inflection point of the glass transition, Tgi,20K/min=430 K, and 

the maximum of the crystallization peak, Tx,20K/min=480 K, the local activation energies are 

Eg,VFT=305 kJ/mol and Ex,VFT=227 kJ/mol. These are in agreement with the average activation 

energies Eg=303 kJ/mol and Ex=208 kJ/mol obtained by the Kissinger method and reported 

above. The kinetics of the structural relaxation is controlled by the non-equilibrium relaxation 

times given by equation 2, the activation energy can be calculated as E/kB=B/(1-T0/Tf). The 

activation energies for the relaxed (Tf1) and as-quenched (Tf2) states go from Er,Tf1=129 kJ/mol to 
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Er,Tf2=118 kJ/mol. This is also close to the activation energy Er=148 kJ/mol calculated from the 

DSC temperatures. 

Following ref. [17], in figure 4 we depict a visual image of the degree of agreement between 

the activation energies calculated from the Kissinger plots and the relaxation times given by 

equations 1 and 2. With a proper time constant shift A, the transformation curves T2/R vs 1/T are 

compared with the equilibrium and non-equilibrium relaxation times (T). Figure 4 shows all 

the measurements performed in as-quenched and aged samples. The different degree of aging 

results in the scatter of the data corresponding to the structural relaxation temperature while it 

has not significant effect on the glass transition and crystallization temperatures. 

Another common way of determining the kinetics of glasses and melts from the 

characteristic temperatures measured by DSC is considering that the inverse of the heating rate 

1/R is proportional to the characteristic time of the detected process [18] [19]. For instance, the 

relation between 1/R and the onset of glass transition detected by DSC is commonly used to 

estimate the fragility parameter of glass-forming metallic liquids [20]. Figure 5 shows the 1/R vs 

T curves corresponding to the onset of structural relaxation and the inflection point of the glass 

transition, in this case without any shifting parameter. Diamonds correspond to the experimental 

values of (T) obtained for the relaxed samples by multi-frequency DMA tests [2]. The solid 

lines correspond again to the (T) functions given by equations 1 and 2. 

The 1/R vs T curves for the onset of structural relaxation correspond well with the non-

equilibrium dynamics given by equation 2, the shift due to the aging can be explained as a 

decrease in the fictive temperature reaching Tf3~422 K for the samples aged 24 months. The 

curve corresponding to the inflection point of the glass transition is parallel to the equilibrium 

dynamics given by equation 1. The dashed lines mark the limits of the dynamic glass transition 

region estimated by equation 3, the 1/R vs T curves for the onset and end of glass transition 

temperatures measured in the DSC scans (not shown in the figure) correspond well with this 

limits. Finally, the extrapolation of the map to lower temperatures shows that the relaxation 

times at room temperature are =9 days for the as-quenched samples, and =130 days for the 

aged samples. 

5. Conclusions 

The analysis of mechanical spectroscopy data suggest the relaxation of Mg65Cu25Y10 glass 

can be understood by a single -relaxation process following VFT behaviour in the metastable 

equilibrium region and an Arrhenius behaviour below Tg. The comparison of equations 1, 2 and 



3 with DMA and DSC data shows that the kinetics of structural relaxation, glass transition and 

crystallization of Mg65Cu25Y10 can be understood by the proposed relaxation model. 
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Figure captions 

Figure 1. DSC and DMA runs obtained for the as-quenched (blue) and relaxed (red) samples. 

Thin lines correspond to the E’’(T)/E0 calculated from the CC-function and the proposed non-

equilibrium dynamics ne(T,Tf). 

Figure 2. DSC curves obtained for as-quenched (blue), 20-months aged (purple) and 24-

months aged (magenta). The inset shows the temperature shift of structural relaxation and glass 

transition as function of the applied heating rate. 

Figure 3. Kissinger plots for the temperatures of the crystallization peak (downwards 

triangles), glass transition inflection point (circles) and structural relaxation maximum (upwards 

triangles). The temperatures are obtained from DSC curves of as-quenched (blue symbols), 20-

months aged (purple symbols) and 24-months aged (magenta symbols) samples. 

Figure 4. T2R-1 vs 1/T curves for crystallization peak (downwards triangles), glass transition 

inflection point (circles) and structural relaxation maximum (upwards triangles). In the case of 

structural relaxation the colours correspond to as-quenched (blue symbols), 20-months aged 

(purple symbols) and 24-months aged (magenta symbols) samples. Solid lines correspond to the 

equilibrium and non-equilibrium dynamics given by equations 1 and 2. The T2R-1 vs 1/T curves 

are shifted by appropriate values of the A constant for each one of the three processes. 

Figure 5. Relaxation times of the relaxed samples obtained by DMA (diamonds). 1/R vs T 

curves for the glass transition inflection point (circles) and the onset of structural relaxation 

(upwards triangles). In the case of structural relaxation the colours correspond to as-quenched 

(blue symbols), 20-months aged (purple symbols) and 24-months aged (magenta symbols) 

samples. Solid lines correspond to the equilibrium and non-equilibrium dynamics given by 

equations 1 and 2. 

 



 

Figure 4 
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