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Abstract. To measure the contribution of individual transactions inside the total risk of
a credit portfolio is a major issue in financial institutions. VaR Contributions (VaRC) and
Expected Shortfall Contributions (ESC) have become two popular ways of quantifying the
risks. However, the usual Monte Carlo (MC) approach is known to be a very time consum-
ing method for computing these risk contributions. In this paper we consider the Wavelet
Approximation (WA) method for Value at Risk (VaR) computation presented in [Mas10] in
order to calculate the Expected Shortfall (ES) and the risk contributions under the Vasicek
one-factor model framework. We decompose the VaR and the ES as a sum of sensitivities
representing the marginal impact on the total portfolio risk. Moreover, we present technical
improvements in the Wavelet Approximation (WA) that considerably reduce the computa-
tional effort in the approximation while, at the same time, the accuracy increases.

1. Introduction

Credit risk concerns the risk of loss arising from an obliglor’s inability to honor its obliga-
tions. Among other sources of risk, it is the most important one that a bank has to deal with
due to big exposures concentrated in the portfolios. Because of this, financial institutions
have to quantify credit risk at portfolio level.

We consider the Vasicek one-factor credit loss model as the default model which serves also
as the basis of the Basel II (Basel Committee on Bank Supervision) internal rating based
(IRB) approach. Under this model, defaults are driven by a latent common factor (business
cycle or state of the economy) assumed to follow a standard normal distribution. It is also a
one-period model, i.e., loss only occurs when an obligor defaults in a fixed time horizon.

The most common risk measures are Value-at-Risk and Expected Shortfall. As it is well
known, VaR is not a coherent risk measure in the sense that is not sub-additive, in con-
tradiction with the idea of diversification. In contrast, ES satisfies the four properties of a
coherent risk measure (see [Art99] for a definition of these axioms). Both VaR and ES can be
decomposed as a sum of sensitivities (see [Tas00]). These sensitivities, which are commonly
named risk contributions, can be understood as the marginal impact on the risk of the total
portfolio and are very important for loan pricing or asset allocation, to cite two examples.

In practice, each risk contribution is usually computed by means of MC calculated as the
expected value of the loss distribution conditioned on a rare event, the VaR value, which
represents an extreme loss for the credit portfolio. The usual Plain Monte Carlo presents
practical inconveniences due to the large number of simulations required to get the rare
events. Although in this context of MC simulation, [Gla05] develops efficient methods based
on importance sampling to calculate VaR and ES contributions in the Vasicek multi-factor
model, the computational effort is still very important. For this reason, analytical or fast
numerical techniques are always welcome. One of such analytical techniques for VaR and
VaRC computations is the saddle point (SP) method pioneered by Martin et al ([Mar01a] and
[Mar01b]). They apply the approximation to the unconditional Moment Generating Function
(MGF) and obtain accurate results at very small tail probabilities. This method is known to
perform well with big portfolios at high loss levels. [Hua07a] compute the risk measures and
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contributions implementing a higher order saddle point method in the Vasicek model and
apply the approximation to the conditional Moment Generating Function (MGF) instead of
the unconditional MGF, where the saddle point works better, with an extra computational
time. [Hua07b] present a comparative study for the calculation of VaR and VaRC with the
SP method, MC with importance sampling (IS) and the normal approximation (NA) method.
They conclude that there is not a perfect method that prevails among the others and the
choice is a trade-off between speed, accuracy and robustness. NA is an accurate method and
the fastest one but is not capable of handling with exposure concentration. IS is the most
robust method but is highly demanding from a computational point of view when estimating
the VaRC. The SP method preserves a good balance between speed and accuracy and is
better than normal approximation to deal with exposure concentration. However, if the
loss distribution is not smooth due to exceptional exposure concentration, a straightforward
implementation of SP may be insufficient, and an adaptive SP should be employed instead.
Alternatively, [Tak08] addresses the problem of calculating the marginal contributions using
a numerical Laplace transform inversion of the MGF in the multi-sector setting and provide
precise results in big size portfolios.

In this paper we extend the work undertaken with the estimation of the VaR value with
the WA method in [Mas10] and we develop a new methodology for the computation of the
ES, the VaR contributions and the ES contributions. We recall that this methodology ap-
proximate the credit loss cumulative distribution function (CDF) by a finite combination of
Haar wavelets basis functions in order to invert the Laplace transform of the unconditional
MFG. It was tested under the Vasicek one-factor model, showing accurate and fast results
for a wide range of portfolios at very high loss levels. We will show that WA can get very
accurate results even in presence of extremely exposure concentration when computing the
risk measures and contributions, where a straightforward implementation of SP would fail.
The key point for the calculation of the VaR, ES, VaRC and ESC is how to evaluate the
coefficients of the wavelet expansion and their derivatives with respect to exposures. In the
technical context, choosing a convenient path of integration in the Cauchy’s integral formula,
we can achieve more accurate results than [Mas10] at higher confidence levels without the
need of doubling the number of subintervals when applying the trapezoidal rule for their
calculation. Moreover, by means of truncating the integration variable in the Gauss-Hermite
quadrature representing the business cycle, we get the same accuracy with fewer nodes, ob-
taining also a proportional reduction in the computational time. We point out that although
we apply the WA method at scale ten in order to maintain accurate results in all the sample
portfolios, the WA performs very well with smaller scales with a considerable reduction in
the computational time (essentially is divided by two when moving from scale m to m− 1) .

The reminder of the paper is organized as follows. First we present the Vasicek model
taken as framework in section two. In section three we do a short review of the Haar wavelets
approach for the credit portfolio loss distribution. Section four is devoted to develop the new
methodology for the ES and risk contributions. In section five an improved version of the GH
formula is used to accelerate the algorithms, while numerical examples are shown in section
six. Finally section seven is left to conclusions.

2. The Model Framework

To represent the uncertainty about future events, we specify a probability space (Ω,F ,P)
with sample space Ω, σ-algebra F , probability measure P and with filtration (Ft)t≥0 satisfying
the usual conditions. We fix a time horizon T > 0. Usually T equals one year.

Consider a credit portfolio consisting of N obligors where each obligor n is characterized
by three parameters that we assume can be estimated by means of empirical default data:
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the exposure at default En, the loss given default, which without loss of generality we assume
to be 100%, and the probability of default Pn. The exposure at default of an obligor denotes
the portion of exposure of the obligor that is lost in case of default. Let Dn be the default
indicator of obligor n taking the following values.

Dn =

{
1, if obligor n is in default,
0, if obligor n is not in default.

Let L be the portfolio loss given by:

L =
N∑
n=1

Ln,

where Ln = En ·Dn.
To test our methodology we consider the Vasicek one-factor Gaussian copula model as

framework. The Vasicek model is a one period default model, i.e., loss only occurs when an
obligor defaults in a fixed time horizon. Based on Merton‘s firm-value model, to describe
the obligor’s default and its correlation structure, we assign each obligor a random variable
called firm-value. The firm-value of obligor n is represented by a common, standard normally
distributed factor Y component and an idiosyncratic standard normal noise component εn.
The Y factor is the state of the world or business cycle, usually called systematic factor.

Vn(T ) =
√
ρnY +

√
1− ρnεn,

where Y and εn, ∀n ≤ N are i.i.d. standard normally distributed.
In case that ρn = ρ for all n, the parameter ρ is called the common asset correlation. An

important point is that, conditional on the realization of the systematic factor Y , the firm’s
values and defaults are independent. From now on, we assume ρn to be constant.

Let us explain in detail the meaning of systematic and idiosyncratic risk. The first one
can be seen as the macro-economic conditions and affects the credit-worthiness of all obligors
simultaneously. The second one represents conditions inherent to each obligor and this is
why they are assumed to be independent of each other.

In the Merton model an obligor n defaults when its firm-value falls below a threshold level
Tn defined by Tn ≡ Φ−1(Pn) where Φ(x) is the standard normal cumulative distribution
function and Φ−1(x) denotes its inverse. The probability of default of obligor n conditional
to a realization of Y = y is given by

pn(y) ≡ P(Vn < Tn | Y = y) = Φ

(
Tn −

√
ρy

√
1− ρ

)
.

Consequently, the conditional probability of default depends on the systematic factor,
reflecting the fact that the business cycle affects the possibility of an obligor’s default.

3. Haar Wavelets Approach

Let F be the cumulative distribution function of L. Without loss of generality, we can
assume

∑N
n=1En = 1 and for a given E = (E1, . . . , EN) let us consider,

F (E, x) =

{
F (E, x), if 0 6 x 6 1,
1, if x > 1,
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for a certain F defined in [0, 1]. Following the work in [Mas10], we approximate the distribu-
tion function by a finite sum of Haar wavelets basis functions with convergence in L2([0, 1]),

(1) F (E, x) ' Fm(E, x), Fm(E, x) =
2m−1∑
k=0

cm,k(E)φm,k(x),

where m is the scale of the approximation and k is the translation parameter.
The unconditional moment generating function,

(2) M(E, s) ≡ E(e−sL) = E(E(e−sL | Y )) =

∫
R

N∏
n=1

[
1− pn(y) + pn(y)e−sEn

] 1√
2π
e−

y2

2 dy

is also the Laplace transform of the density function f of L,

(3) M(E, s) ≡ E(e−sL) =

∫ +∞

0

e−sxf(E, x)dx.

Integrating by parts the expression (3) and using the approximation in (1), the coefficients
cm,k are recovered by the Laplace transform inversion, giving us the expressions,

cm,0 =

∫
R
∏N

n=1 [1− pn(y)] 1√
2π
e−

y2

2 dy

2
m
2

and

(4) cm,k(E) =
2

πrk

∫ π

0

<(Q(E, reiu)) cos(ku)du, k = 1, ..., 2m − 1,

where

(5) Q(E, z) ≡
2m−1∑
k=0

cm,k(E)zk ' M(E,−2m ln(z))− z2m

2
m
2 (1− z)

.

In [Mas10] the coefficients cm,k are accurately computed by means of the ordinary trape-
zoidal rule and the MGF is evaluated using Gauss-Hermite formulae with 20 nodes. The
results show a fast convergence towards the value obtained by means of a Monte Carlo
method with five million sampling scenarios, which serves as a benchmark. However, the
speed of the algorithm is highly conditioned by the number of times that we have to evaluate
the MGF, i.e., the number of subintervals in the trapezoidal rule, the number of nodes used
in Gauss-Hermite integration and the size of the portfolio. It has been proved that 2m subin-
tervals are enough to integrate (4) using the trapezoidal rule, getting accurate VaR values at
99.9% and 99.99% confidence levels. However, for higher loss levels it is necessary to consider
more subintervals to get acceptable relative errors, and consequently this also increases the
computational time. In section 5 we present an improved version of the algorithm used in
[Mas10] which again reduces significantly the computational cost when a large number of
nodes of GH are required, or when the portfolio contains a big number of obligors. Moreover
more accurate results are found at very high confidence levels without increasing the number
of subintervals in the trapezoidal rule.

4. Credit Risk Measures and Contributions

In this section we recall the calculation of the VaR value and present a numerical formula
for the estimation of the Expected Shortfall using the wavelet approximation method of the
previous section. We also apply this method to compute the marginal contribution of the
obligors to the total risk at portfolio level.
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4.1. VaR and Expected Shortfall. Let us consider a portfolio with exposures E =
(E1, . . . , EN) and let α ∈ (0, 1) be a given confidence level. The α-quantile of the loss
distribution of L in this context, is called Value at Risk. This is,

VaR(E)α = inf{l ∈ R : P(L ≤ l) ≥ α} = inf{l ∈ R : F (E, l) ≥ α},

where the α of interest are usually very close to 1. This is the measure chosen in the Basel II
Accord for the computation of capital requirement, meaning that a bank, managing its risks
according to Basel II, must reserve capital by an amount of VaR(E)α to cover extreme losses.

Considering a wavelet approximation in a level of resolutionm, the VaR value at confidence
level α calculated by the WA method is of the form VaR(E)W (m)

α = 2k+1
2m+1 for a certain

k ∈ {0, 1, ..., 2m − 1}, where k is such that Fm

(
E,VaR(E)W (m)

α

)
' α, (see [Mas10] for a

detailed description of the method).
A crucial property for a coherent risk measure is the sub-additivity condition. As mentioned

previously, the VaR measure fails to satisfy this condition although the measure is widely
used in practice. This can be explained by the fact that when distributions are normal, or
close to normal, it can be shown that VaR and ES are quite close and behave similarly.
However, as soon as a distribution is characterized by a long tail behavior, the similarity
between VaR and ES does not hold anymore. In this case, employing the VaR measure may
lead to a considerable underestimation of risk.

By definition, the Expected Shortfall at confidence level α is given by,

ES(E)α =
1

1− α

∫ +∞

V aR(E)α

xf(E, x)dx.

Then, integrating by parts and using the approximation in (1) we have,

(6) ES(E)α =
1

1− α

(
1− αVaR(E)α −

∫ 1

V aR(E)α

F (E, x)dx

)
' ES(E)W (m)

α ,

where

ES(E)W (m)
α ≡ 1

1− α

1− αVaR(E)W (m)
α − 1

2
m
2

+1
cm,k(E)− 1

2
m
2

2m−1∑
k=k+1

cm,k(E)

 .

For sake of clarity, from now on the explicit dependence of all ES and VaR expressions that
appear in next sections with respect to E will be dropped.

4.2. VaR Contributions and Expected Shortfall Contributions. Let us consider how
to decompose the total risk into individual transactions. We carry out the allocation principle
given by the partial derivative of the risk measure with respect to the exposure of an obligor.
In this way we define the risk contribution of obligor i to the VaR value at confidence level
α by,

VaRCα,i ≡ Ei ·
∂VaRα

∂Ei
,

which satisfies the additivity condition,
∑N

i=1 VaRCα,i = VaRα (see [Tas00] for details).
Taking into account that F (E,VaRα) = α then,

(7) VaRCα,i ≡ Ei ·
∂VaRα

∂Ei
= −Ei ·

∂F (E,VaRα)
∂Ei

F (E,x)
∂x

∣∣∣
x=VaRα

= −Ei ·
∂F (E,VaRα)

∂Ei

f(E,VaRα)
.
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Now according to (1), F (E, x) '
∑2m−1

k=0 cm,k(E)φm,k(x). Taking partial derivatives with
respect Ei we get,

(8)
∂F (E, x)

∂Ei
'

2m−1∑
k=0

∂cm,k(E)

∂Ei
φm,k(x)

and evaluating this expression in VaRα and using the approximation to the VaR value given
by VaRW (m)

α , we have,
(9)
∂F (E,VaRα)

∂Ei
'

2m−1∑
k=0

∂cm,k(E)

∂Ei
φm,k(VaRα) '

2m−1∑
k=0

∂cm,k(E)

∂Ei
φm,k(VaRW (m)

α ) = 2
m
2

∂cm,k(E)

∂Ei
,

due to the fact that

φm,k(x) =

{
2
m
2 if k

2m
≤ x < k+1

2m
,

0 elsewhere.
Finally, considering the expressions (7) and (9) we obtain,

(10) VaRCα,i ' VaRCW (m)
α,i

where VaRCW (m)
α,i ≡ C ·Ei ·

∂cm,k(E)

∂Ei
and C is a constant such that

∑N
i=1 VaRC

W (m)
α,i = VaRW (m)

α .
In a similar way we define the ESC for the obligor i at confidence level α as,

ESCα,i ≡ Ei ·
∂ESα
∂Ei

,

satisfying the additivity condition
∑N

i=1 ESCα,i = ESα. For the computation of the expected
shortfall contributions we have taken the derivative of the expected shortfall expression in
(6) with respect to Ei and used the approximation (8). That is,

ESCα,i ≡ Ei ·
∂ESα
∂Ei

= Ei ·
1

1− α

(
−α∂VaRα

∂Ei
+
∂VaRα

∂Ei
F (E,VaRα)−

∫ 1

VaRα

∂F (E, x)

∂Ei
dx

)
' ESCW (m)

α,i ,

(11)

where

ESCW (m)
α,i ≡ −Ei ·

1

2
m
2

· 1

1− α
·

1

2

∂cm,k(E)

∂Ei
+

2m−1∑
k=k+1

∂cm,k(E)

∂Ei

 .

Later, in the numerical examples section, we will test the accuracy of the WA method for
the calculation of VARC and ESC by means of Monte Carlo estimates, which will serve us
as a benchmark. Under appropriate conditions the marginal VaR contribution at confidence
level α of the obligor i is

(12) VaRCα,i = E(Li|L = VaRα),

and the marginal contribution at confidence level α to the expected shortfall is,

(13) ESCα,i = E(Li|L ≥ VaRα).

Thus, in both cases, the marginal risk contributions are conditional expectations of the
individual loss random variables, conditioned on rare values of the portfolio loss L. Moreover,
it can be shown that,

N∑
i=1

E(Li|L = VaRα) = VaRα and
N∑
i=1

E(Li|L ≥ VaRα) = ESα.
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We estimate risk contributions by means of Monte Carlo simulations in two steps. First,
we compute the VaR value through an ordinary Monte Carlo simulation and then we use
the estimated VaR in (12) and (13). In this second step, for a given loss level l, we consider
the problem of estimating E(Li|L = l) and E(Li|L ≥ l). Both cases can be treated together
considering Ci = E(Li|L ∈ A) where A = l or A = [l,∞). For each sampled scenario we
proceed as follows,

(1) Generate the systemic factor Y .
(2) For each obligor generate the idiosyncratic component εi, i = 1, ..., N .
(3) Finally, generate the default indicators Di and the individual losses Li, i = 1, ..., N .

These steps are repeated tillK independent scenarios are generated. Let L(k) = L
(k)
1 +...+L

(k)
N

be the total portfolio loss on the k-th replication. To estimate the risk contributions Ci, we
use,

Ĉi =

∑K
k=1 L

(k)
i χ{L(k)∈A}∑K

k=1 χ{L(k)∈A}
.

To measure the variability of this estimator we use the following proposition (since Ĉi is a
ratio estimator, we can not use a simple standard deviation to measure its precision. For a
detailed explanation of the MC method for risk contributions see [Gla05]).

Proposition 1. Suppose P(L ∈ A) > 0 and let

σ̂2
i =

K
∑K

k=1(L
(k)
i − Ĉi)2χ{L(k)∈A}(∑K

k=1 χ{L(k)∈A}

)2 ,

taking the ratio to be zero whenever the denominator is zero. Then the distribution of Ĉi−Ci
σ̂i/
√
K

converges to the standard normal and (Ĉi−zδ/2σ̂i/
√
K, Ĉi+zδ/2σ̂i/

√
K) is an asymptotically

valid 1− δ confidence interval for Ci, with Φ(zδ/2) = 1− δ/2.

5. An Improved Gauss-Hermite Integration Formula

An important issue regarding the computation of the coefficients cm,k in (4) and ∂cm,k(Ei)

∂Ei

in (8) is the way to compute <(Q(E, reiu)) and ∂<(Q(E,reiu))
∂Ei

for a fixed loss level u. In this
section we present, in addition, a simplification in the GH formula that considerable reduces
the computational effort.

5.1. Fast computation of cm,k(E) . Let us explain in detail the computation of the coef-
ficients in the WA method. First we take the expression (5),

Q(E, reiu) =
M(E,−2m ln(reiu))− (reiu)2m

2m/2(1− reiu)
,

where M is the unconditional Moment Generating Function.
If we define z1 = M(E,−2m ln(reiu))− (reiu)2m and z2 = 2m/2(1− reiu) then we have,

(14) <(Q(E, reiu)) =
<(z1)<(z2) + =(z1)=(z2)

(<(z2))2 + (=(z2))2
,

where

<(z1) = <(M(E,−2m ln(reiu)))− r2m cos(2mu), <(z2) = 2m/2(1− r cos(u)),

and
=(z1) = =(M(E,−2m ln(reiu)))− r2m sin(2mu), =(z2) = −2m/2r sin(u).



8 LUIS ORTIZ-GRACIA AND JOSEP J. MASDEMONT

Proceeding this way we have to find an expression for <(M(E,−2m ln(reiu))) and
=(M(E,−2m ln(reiu))). Introducing the change of variable y =

√
2x in (2) we obtain,

M(E, s) =

∫
R

N∏
n=1

[
1− pn(

√
2x) + pn(

√
2x)e−sEn

] 1√
π
e−x

2

dx.

We can approximate this integral by means of a Gauss-Hermite formula,

M(E, s) '
l/2∑
j=1

aj
(
M̄(E, s;x−j ) + M̄(E, s;x+

j )
)

where M̄(E, s;x) = 1√
π

∏N
n=1

[
1− pn(

√
2x) + pn(

√
2x)e−sEn

]
and x−j = −x+

j and aj are re-
spectively the nodes and weights of the quadrature. This is, we can compute,
(15)

<(M(E,−2m ln(reiu))) '
l/2∑
j=1

aj
(
<(M̄(E,−2m ln(reiu);x−j )) + <(M̄(E,−2m ln(reiu);x+

j ))
)
,

and
(16)

=(M(E,−2m ln(reiu))) '
l/2∑
j=1

aj
(
=(M̄(E,−2m ln(reiu);x−j )) + =(M̄(E,−2m ln(reiu);x+

j ))
)
.

We notice that,

M̄(E,−2m ln(reiu);x)=
1√
π

N∏
n=1

[
1− pn(

√
2x)+pn(

√
2x)r2mEn(cos(2mEnu)+i sin(2mEnu))

]
.

So using polar coordinates this expression casts into,

M̄(E,−2m ln(reiu);x) =
1√
π

N∏
n=1

(Rn)θn =
1√
π

(
N∏
n=1

Rn

)
∑N
n=1 θn

where Rn = |zn|, θn = arctan
(
=(zn)
<(zn)

)
and

zn = 1− pn(
√

2x) + pn(
√

2x)r2mEn(cos(2mEnu) + i sin(2mEnu)).

Finally, expanding these expressions we conclude,

Rn =

√
(1− pn(

√
2x))2 + r2m+1Enp2

n(
√

2x) + 2pn(
√

2x)(1− pn(
√

2x))r2mEn cos(2mEnu),

θn = arctan

(
r2mEnpn(

√
2x) sin(2mEnu)

1− pn(
√

2x) + pn(
√

2x)r2mEn cos(2mEnu)

)
.

(17) <(M̄(E,−2m ln(reiu);x)) =
1√
π

(
N∏
n=1

Rn

)
cos

(
N∑
n=1

θn

)
,

(18) =(M̄(E,−2m ln(reiu);x)) =
1√
π

(
N∏
n=1

Rn

)
sin

(
N∑
n=1

θn

)
.
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There are three key points that essentially determine the computational complexity of the
Wavelet Approximation method. The first one is the portfolio size, N , which is fixed. The
second one is the number of times that the MGF must be evaluated (2m+1) and the last one
the number of nodes (l) to be used in the GH quadrature every time the MGF is computed
at a loss level u. Let us show in the following paragraphs an interesting fact regarding this
last point.

We remark that, in practice, financial companies tend to calibrate the parameter of proba-
bility of default of a company from their rating systems and they get in this way several pools.
This means that portfolio obligors are classified in rating categories, being the parameter Pn
identical for all the obligors inside the same group, and distinct among different groups.

For sake of simplicity, and without loss of generality, let us assume that we have a unique
rating category over the whole portfolio. This is Pn = P for all n = 1, ..., N , and consequently,
pn(y) = p(y) for all n = 1, ..., N . We observe that under this hypothesis,

lim
p→0

Rn = 1, lim
p→0

θn = 0,

and
lim
p→1

Rn = r2mEn , lim
p→1

θn = 2mEnu.

Then, given a tolerance ε,

<(M̄(E,−2m ln(reiu);x)) ' 1√
π
, =(M̄(E,−2m ln(reiu);x)) ' 0,

for all x ≥ x1 where x1 is such that p(
√

2x1) < ε. This is, when y > Φ−1(P )−
√

1−ρΦ−1(ε)√
ρ

.
In a similar way,

<(M̄(E,−2m ln(reiu);x))' 1√
π
r2m cos(2mu), =(M̄(E,−2m ln(reiu);x))' 1√

π
r2m sin(2mu),

for all x ≤ x2 where x2 is such that p(
√

2x2) > 1− ε, i.e. when y < Φ−1(P )−
√

1−ρΦ−1(1−ε)√
ρ

.
Taking into account these facts we have that (15) and (16) can be computed as,

<(M(E,−2m ln(reiu))) '

'
l/2−n2∑
j=1

aj<(M̄(E,−2m ln(reiu);x−j )) +

l/2−n1∑
j=1

aj<(M̄(E,−2m ln(reiu);x+
j ))+

+
1√
π

(n1 + n2r
2m cos(2mu)),

(19)

and
=(M(E,−2m ln(reiu))) '

'
l/2−n2∑
j=1

aj=(M̄(E,−2m ln(reiu);x−j )) +

l/2−n1∑
j=1

aj=(M̄(E,−2m ln(reiu);x+
j ))+

+
1√
π
n2r

2m sin(2mu),

(20)

where n1 (respectively n2) is the number of nodes in the Gauss-Hermite quadrature greater
(respectively smaller) or equal than x1 (respectively x2). Thus, given a tolerance ε we have
truncated the left and right tails of the integration variable representing the business cycle
making use of the limit behavior instead of continuing with the quadrature. In the section
devoted to numerical examples we show the large amount of computation time saved this
way, while the accuracy remains the same.
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5.2. Fast computation of ∂cm,k(E)

∂En
. Let us explain the computations of the partial deriva-

tives of the coefficients of the WA with respect to the exposures. Again in this case we
perform a truncation of the integration variable in a similar way as in the previous section.

Taking the derivative of (4) with respect to En we get,

∂cm,k(E)

∂En
=

2

πrk

∫ π

0

∂<(Q(E, reiu))

∂En
cos(ku)du.

Then taking into account (14) we have,

∂<(Q(E, reiu))

∂En
=

∂<(M(E,−2m ln(reiu)))
∂En

<(z2) + ∂=(M(E,−2m ln(reiu)))
∂En

=(z2)

(<(z2))2 + (=(z2))2
,

and again using the Gauss-Hermite quadrature we have,

(21)
∂<(M(E,−2m ln(reiu)))

∂En
'

l/2∑
j=1

aj

(
∂<(M̄(E,−2m ln(reiu);x−j ))

∂En
+
∂<(M̄(E,−2m ln(reiu);x+

j ))

∂En

)
,

and

(22)
∂=(M(E,−2m ln(reiu)))

∂En
'

l/2∑
j=1

aj

(
∂=(M̄(E,−2m ln(reiu);x−j ))

∂En
+
∂=(M̄(E,−2m ln(reiu);x+

j ))

∂En

)
.

Now following steps similar to the former section one obtains,

∂<(M̄(E,−2m ln(reiu);x))

∂En
=

1√
π

(
N∏
n=1

Rn

)[
1

Rn

∂Rn

∂En
cos

(
N∑
n=1

θn

)
− ∂θn
∂En

sin

(
N∑
n=1

θn

)]
,

∂=(M̄(E,−2m ln(reiu);x))

∂En
=

1√
π

(
N∏
n=1

Rn

)[
1

Rn

∂Rn

∂En
sin

(
N∑
n=1

θn

)
+
∂θn
∂En

cos

(
N∑
n=1

θn

)]
,

∂Rn

∂En
=

2mr2mEn

Rn

(
r2mEnp2

n(
√

2x) ln r + pn(
√

2x)(1− pn(
√

2x)) (ln r cos(2mEnu)− u sin(2mEnu))
)
,

∂θn
∂En

=

2mr2mEnpn(
√

2x)(θDn (ln r sin(2mEnu)+cos(2mEnu)u)−θNn (ln r cos(2mEnu)−u sin(2mEnu)))

(θNn )2+(θDn )2
,

with,
θNn = r2mEnpn(

√
2x) sin(2mEnu),

θDn = 1− pn(
√

2x) + pn(
√

2x)r2mEn cos(2mEnu).
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Again we try to reduce the computational effort in the Gauss-Hermite quadratures (21)
and (22). To this end we take into account that,

lim
p→0

∂Rn

∂En
= 0, lim

p→0

∂θn
∂En

= 0,

and

lim
p→1

∂Rn

∂En
= 2mr2mEn ln r, lim

p→1

∂θn
∂En

= 2mu.

Then, given a tolerance ε we have,

∂<(M̄(E,−2m ln(reiu);x))

∂En
' 0,

∂=(M̄(E,−2m ln(reiu);x))

∂En
' 0,

for all x ≥ x1 where x1 is such that p(
√

2x1) < ε, i.e. y > Φ−1(P )−
√

1−ρΦ−1(ε)√
ρ

.
Also,

∂<(M̄(E,−2m ln(reiu);x))

∂En
' 1√

π
2mr2m(ln r cos(2mu)− u sin(2mu)),

∂=(M̄(E,−2m ln(reiu);x))

∂En
' 1√

π
2mr2m(ln r sin(2mu) + u cos(2mu)),

for all x ≤ x2 where x2 is such that p(
√

2x2) < ε, i.e. y < Φ−1(P )−
√

1−ρΦ−1(ε)√
ρ

.
Taking into account these facts, (21) and (22) can be computed by means of,

∂<(M(E,−2m ln(reiu)))

∂En
'

'
l/2−n2∑
j=1

aj
∂<(M̄(E,−2m ln(reiu);x−j ))

∂En
+

l/2−n1∑
j=1

aj
∂<(M̄(E,−2m ln(reiu);x+

j ))

∂En

+
1√
π
n22mr2m(ln r cos(2mu)− u sin(2mu)),

(23)

and

∂=(M(E,−2m ln(reiu)))

∂En
'

'
l/2−n2∑
j=1

aj
∂=(M̄(E,−2m ln(reiu);x−j ))

∂En
+

l/2−n1∑
j=1

aj
∂=(M̄(E,−2m ln(reiu);x+

j ))

∂En

+
1√
π
n22mr2m(ln r sin(2mu) + u cos(2mu)),

(24)

where n1 (respectively n2) is the number of nodes in the Gauss-Hermite quadrature greater
(respectively smaller) or equal than x1 (respectively x2). Again, given a tolerance ε, we have
truncated the left and right tails of the quadrature in the variable of the business cycle and
used the limit behavior instead.

This method is specially suitable for very big portfolios or when the GH quadrature would
require a considerable number of nodes. The improvements will be shown in the next section
devoted to numerical examples.
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6. Numerical Examples

We test1 the methodology for the computation of ES, VaRC and ESC developed in the
previous sections considering four different portfolios. All them with exposure concentrations
and ranging from 10 to 10000 obligors. The common set of parameters used for the Wavelet
Approximation method are: scale m = 10, 2m intervals for the trapezoidal quadrature in the
coefficients formula (4) and r = 0.9995.

Portfolio 1. This portfolio has N = 10000 obligors with ρ = 0.15, Pn = 0.01 and En = 1
n

for n = 1, ..., N , as in [Mas10].

Portfolio 2. This portfolio has N = 1001 obligors, with En = 1 for n = 1, ..., 1000, and one
obligor with E1001 = 100. Pn = 0.0033 for all the obligors and ρ = 0.2 as in [Hua07b].

Portfolio 3. This portfolio has N = 100 obligors, all them with Pn = 0.01, ρ = 0.5 and
exposures,

En =


1, n = 1, ..., 20
4, n = 21, ..., 40
9, n = 41, ..., 60
16, n = 61, ..., 80
25, n = 81, ..., 100

as in [Gla05].

Method l/2− n2 l/2− n1 α = 0.9999 α = 0.99999

VaRMα 0.2267 0.2973

VaRAα 0.1683 (-25.76%) 0.2322 (-21.91%)

VaRW (10)
α (20) ([Mas10]) 10 10 0.2280 (0.60%) 0.3306 (11.18%)

VaRW (10)
α (20) 10 10 0.2261 (-0.26%) 0.2935 (-1.30%)

VaRW (10)
α (20, 4 · 10−1) 9 0 0.2261 (-0.26%) 0.2944 (-0.97%)

VaRW (10)
α (20, 6 · 10−1) 7 0 0.2261 (-0.26%) 0.2944 (-0.97%)

Table 1. VaR values at 99.99% and 99.999% confidence levels for portfolio 1.
Errors relative to Monte Carlo are shown in parenthesis.

Portfolio 4. This portfolio has N = 10 obligors, all them with ρ = 0.5, Pn = 0.0021 and
En = 1

n
for n = 1, ..., N as in [Mas10].

For practical purposes and without loss of generality, in all cases we normalize dividing En
by
∑N

n=1 En to meet the condition
∑N

n=1En = 1.
From now on, let VaRM

α , ES
M
α be the VaR and ES values computed by means of a Plain

Monte Carlo simulation with 5 million scenarios and VaRCM
α,i, ESC

M
α,i the VaRC and ESC

values computed by means of a Plain Monte Carlo simulation with 100 million scenarios to
be used as a benchmark.

In what follows let us denote by VaRW (m)
α (l), ESW (m)

α (l),VaRCW (m)
α,i (l), ESCW (m)

α,i (l) the
result of the Wavelet Approximation method for computing risk measures and contributions,
1Computations have been carried out sequentially in a personal computer Dell Vostro 320 under GNU/Linux
OS, Intel CPU Core 2 E7500, 2.93GHz, 4GB RAM and using the gcc compiler with optimization level 2.
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Method l/2− n2 l/2− n1 α = 0.99 α = 0.999 α = 0.9999

ESMα 0.1290 0.1895 0.2553

ESW (10)
α (20) 10 10 0.1290 (-0.02%) 0.1895 (-0.01%) 0.2556 (0.12%)

ESW (10)
α (20, 4 · 10−1) 9 0 0.1289 (-0.12%) 0.1895 (-0.01%) 0.2556 (0.12%)

ESW (10)
α (20, 6 · 10−1) 7 0 0.1289 (-0.11%) 0.1896 (0.00%) 0.2559 (0.25%)

Table 2. ES values at 99%, 99.9% and 99.99% confidence levels for portfolio 1.
Errors relative to Monte Carlo are shown in parenthesis.

remarking that, we use a Gauss-Hermite quadrature with l nodes for the integrals (15)
and (16) in the case of VaR and ES, and also for the integrals (21) and (22) in the case
of VaRC and ESC. Analogously, VaRW (m)

α (l, ε), ESW (m)
α (l, ε), VaRCW (m)

α,i (l, ε), ESCW (m)
α,i (l, ε)

denote Wavelet Approximation results when computing risk measures and risk contributions
considering l-nodes in the Gauss-Hermite quadrature, but using the expressions (19) and (20)
in the case of VaR and ES, and (23), (24) in the case of VaRC and ESC.
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Figure 1. Tail probability approximation of portfolio 1 with WA using a 20-
nodes GH formula and ε = 6 · 10−1.

Let VaRA
α ,ES

A
α ,VaRC

A
α,i,ESC

A
α,i be the risk measures and contributions evaluated by the

Asymptotic Single Risk Factor (ASRF) model (further details about this method can be found
in [Lut09]). Table 1 presents the very high confidence VaR values for portfolio 1 computed
by means of Monte Carlo, ASRF and the Wavelet Approximation method. For comparison
we provide the results obtained with WA reported in [Mas10] (and denoted by VaRW (10)

α (20)

([Mas10])) which differs from VaRW (10)
α (20) in the choice of the parameter r. The number of

negative (l/2−n2) and positive (l/2−n1) nodes where the conditional MGF is evaluated are
also specified. The relative error presented for the VaR value at 99.999% confidence level is
about −1% when using the WA method with r = 0.9995 in contrast with the error reported
in [Mas10] which is 11.88%. Figure 1 represents the loss distribution for the WA method
with a 20-nodes GH formula and ε = 6 · 10−1, which only requires the evaluation of the
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Figure 2. Risk contributions to the ES at 99% confidence level for the portfolio 1.

MGF in the first 7 negative nodes to achieve a high precision. We also provide the result
for the ASRF method and Monte Carlo (which, as always, give us as the benchmark). The
estimation of VaR by means of the VaRW (10)

α (20, 6 ·10−1) approximation requires 25.3 seconds
of CPU time, while the VaRW (10)

α (20) and VaRW (10)
α (20) ([Mas10]) approximations need of

71.5 seconds. This is, the implementation of the asymptotic truncation of sections 5.1 and 5.2
represents an important improvement. It is also worth to underline that VaRW (9)

0.9999(20, 6·10−1)

and VaRW (8)
0.9999(20, 6·10−1) give also very accurate results (with relative errors equal to −0.47%

and −0.90% respectively) and computation times of 12.7 and 6.4 seconds respectively. We
also want to remark that the ASRF method clearly underestimates the risk due to the
presence of name concentration.
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Figure 3. Risk contributions to the ES at 99.9% confidence level for portfolio 1.
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The expected shortfall calculated at several confidence levels with ESW (10)
α (20, 6 · 10−1) is

presented in table 2 (we omit the computational time because there is almost no difference
between VaR and ES calculation in terms of computational effort). As the results show
again, a high precision is achieved in terms of the relative error. Figures 2 and 3 represent
the contributions to the expected shortfall at 99% and 99.9% confidence levels respectively
by means of the WA method with a 20-nodes GH formula and ε = 10−4 (we present the
ESC instead of the VaRC due to the robustness of plain Monte Carlo simulation for the
first measure). For sake of clarity in the plots, we have only represented the 250 biggest
and smallest risk contributions. The convergence towards Monte Carlo is clear and the sum
of the risk contributions shown in table 3 are very close to the ES values given in table 2.
ESCW (10)

α,n (20, 1 · 10−4) takes 622.5 seconds of CPU to evaluate the partial derivative of the
MGF in 14 nodes, while the ESCW (10)

α,n (20) method needs of 671.8 seconds.

Method l/2− n2 l/2− n1 α = 0.99 α = 0.999∑N
n=1 ESC

M
α,n 0.1290 0.1892∑N

n=1 ESC
W (10)
α,n (20) 10 10 0.1293 0.1891∑N

n=1 ESC
W (10)
α,n (20, 1 · 10−4) 10 4 0.1293 0.1890

Table 3. Comparison of the total ES contributions at 99% and 99.9% confi-
dence levels for portfolio 1.

Next we consider portfolio 2 which is a well diversified portfolio where a big exposure (rep-
resenting about 9% of the total portfolio exposure) has been added. So it presents exposure
concentration. As pointed out in [Hua07b], a straightforward saddle point approximation
fails for all the quantiles preceding the point of non smoothness. However, WA method is
capable to deal with this problem as we illustrate in figure 4.
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Figure 4. Tail probability approximation for portfolio 2 with WA using a
64-nodes GH quadrature and ε = 5 · 10−1.

We also note that we obtain the same accuracy with the evaluation of only 15 nodes of
the asymptotic formulae (which needs only 5.6 seconds of CPU time) and using the full one
with 64 nodes (which needs of 23.4 seconds). The risk contributions to the 99.9% ES are
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Method l/2− n2 l/2− n1 α = 0.999 α = 0.9999

VaRMα 0.1077 0.1532

VaRAα 0.0679 (-37.00%) 0.1195 (-21.99%)

VaRW (10)
α (64) 32 32 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 10−8) 32 13 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 10−4) 30 3 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 10−2) 25 0 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 5 · 10−1) 15 0 0.1079 (0.18%) 0.1538 (0.41%)

ESMα 0.1274 0.1809

ESW (10)
α (64) 32 32 0.1273 (-0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 10−8) 32 13 0.1273 (-0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 10−4) 30 3 0.1273 (-0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 10−2) 25 0 0.1273 (-0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 5 · 10−1) 15 0 0.1273 (-0.02%) 0.1810 (0.09%)

Table 4. VaR and ES values at 99.9% and 99.99% confidence levels for port-
folio 2. Errors relative to Monte Carlo are shown in parenthesis.

also provided in table 5 using different ε. We present only the biggest and the smallest risk
contributions. Relative errors are almost identical with 33 and 64 nodes and the computation
times are 78.4 and 103.5 seconds. It is important to mention that, in practice, we only need
to compute the contributions for two different exposures. However, we have performed the
calculations for the whole portfolio in order to have an idea of the computational effort for a
portfolio of this size.

Let us consider now the portfolio 3. The plot of figure 5 shows the portfolio loss distribu-
tion approximated with the WA method with a 64-nodes GH formula and ε = 10−1. Table 6
contains different scenarios changing the parameter ε. It is remarkable the high precision
achieved when using ε = 10−1, which means that the conditional MGF has been just eval-
uated in 12 negative nodes. The VaRW (10)

α (64) approximation needs 2.3 seconds while the
approximation VaRW (10)

α (64, 10−1) needs only 0.6 seconds. The 99.9% VaR contributions are
presented in table 7 and plotted in figure 6. To compute the VaR contributions by means of
Monte Carlo simulation we have considered A = (VaRM

α − 5 · 10−4,VaRM
α + 5 · 10−4) instead

of A = VaRM
α , due to the fact that VaR is a rare event. Moreover, we have generated 99%

confidence intervals for the risk contributions as detailed in proposition 1. The risk contribu-
tions calculated by the WA method using a 64-nodes GH formula and ε = 10−4 lie in the 99%
MC confidence intervals, showing again the excellent accuracy of the method. The ES con-
tributions at 99.9% and 99.99% confidence levels are presented in tables 8 and 9 respectively
(and plotted in figure 7). The ESCW (10)

α,n (64, 10−4) approximation shows very accurate results
except for the 20 smallest exposures at confidence level 99.99% which considerably under-
estimates the risk. The ESCW (10)

α,n (64) method takes 8 seconds for the computations while
ESCW (10)

α,n (64, 10−4) needs of 4.5 seconds. Like in the previous example, we have calculated
all the risk contributions.
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Method l/2− n2 l/2− n1 α = 0.999

ESCMα,1001 0.082016

ESCW (10)
α,1001(64) 32 32 0.081075 (-1.15%)

ESCW (10)
α,1001(64, 10−8) 32 13 0.081075 (-1.15%)

ESCW (10)
α,1001(64, 10−6) 32 9 0.081075 (-1.15%)

ESCW (10)
α,1001(64, 10−4) 30 3 0.081075 (-1.15%)

ESCMα,1 0.000045

ESCW (10)
α,1 (64) 32 32 0.000046 (2.04%)

ESCW (10)
α,1 (64, 10−8) 32 32 0.000046 (2.04%)

ESCW (10)
α,1 (64, 10−6) 32 9 0.000046 (2.04%)

ESCW (10)
α,1 (64, 10−4) 30 3 0.000046 (1.92%)∑N

n=1 ESC
M
α,n 0.1274∑N

n=1 ESC
W (10)
α,n (64) 32 32 0.1274 (-0.01%)∑N

n=1 ESC
W (10)
α,n (64, 10−8) 32 32 0.1274 (-0.01%)∑N

n=1 ESC
W (10)
α,n (64, 10−6) 32 9 0.1274 (-0.01%)∑N

n=1 ESC
W (10)
α,n (64, 10−4) 30 3 0.1273 (-0.05%)

Table 5. ES contributions at 99.9% confidence level for portfolio 2. Errors
relative to Monte Carlo are shown in parenthesis.

Method l/2− n2 l/2− n1 α = 0.999 α = 0.9999

VaRMα 0.4350 0.6859

VaRAα 0.4209 (-3.25%) 0.6661 (-2.89%)

VaRW (10)
α (64) 32 32 0.4341 (-0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−8) 22 6 0.4341 (-0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−4) 17 1 0.4341 (-0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−2) 14 0 0.4341 (-0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−1) 12 0 0.4341 (-0.21%) 0.6870 (0.16%)

ESMα 0.5445 0.7576

ESW (10)
α (64) 32 32 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−8) 22 6 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−4) 17 1 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−2) 14 0 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−1) 12 0 0.5450 (0.09%) 0.7624 (0.63%)

Table 6. VaR and ES values at 99.9% and 99.99% confidence levels for port-
folio 3. Errors relative to Monte Carlo are shown in parenthesis.
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Figure 5. Tail probability approximation for portfolio 3 using WA with a
64-nodes GH formula and ε = 10−1.
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Figure 6. VaR contributions at 99.9% confidence level for portfolio 3 using
the WA method and GH integration formulas with 64 nodes and ε = 10−4.

Finally we present the results for portfolio 4. The computation of the 99.99% ES and
99.99% ESC have been carried out by means of the plain WA method with a 20-nodes
GH formula, since this portfolio is extremely small and the computational effort is tinny
to consider other improvements. The results are presented in tables 10 and 11. With this
example we just want to remark that the WA method is very versatile and it can also deal
with very small portfolios.

7. Conclusions

This paper extends a previous work undertaken in [Mas10]. It is based on a Haar wavelet
approximation to the cumulative distribution of the loss function with the computation of the
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Figure 7. Expected Shortfall contributions at 99.9% (left) and 99.99% (right)
confidence levels for portfolio 3 using the WA method and GH integration
formulas with 64 nodes and ε = 10−4.

Method α = 0.9999

ESMα 0.6833

ESW (10)
α (20) 0.6814 (-0.29%)

Table 10. ES at 99.99% confidence level for portfolio 4. Relative error to
Monte Carlo is shown in parenthesis.

ES as an alternative coherent risk measure to VaR. Moreover, a detailed procedure for the
calculation of the risk contributions to the VaR and the ES in a credit portfolio is provided.
The risk contributions are known to be very computationally intensive to be estimated by
means of MC because they are the expected value of the individual loss conditioned on a
rare event. Therefore, analytical or fast numerical methods are welcome to overcome this
problem. The model framework is the well known Vasicek one-factor model, a one-period
default model, which is the basis of the Basel II Accord.

There are technical points taken into account that contribute to a considerable improve-
ment of the WA method. We avoid the evaluation of the MFG in all the nodes of the
Gauss-Hermite formulas by means of using its asymptotic behavior. Proceeding this way the
speed of the WA method increases while accuracy is even improved with the choice of the
parameter r. These improvements are also applied to the computation of risk contributions
to VaR and ES, although the impact in the speed of the algorithm is much more relevant for
risk measures than for risk contributions.

This new methodology has been tested in a wide sized variety of portfolios, all them with
exposure concentration, where the Asymptotic Single Risk Factor Model fails due to the
name concentration. The results presented show that the Wavelet Approximation method is
highly competitive in terms of robustness, speed and accuracy being a very suitable method
to measure and manage the risks that arise in credit portfolios of financial companies.
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Obligor ESCW (10)
0.9999,n(20) ESCM0.9999,n Relative error

1 0.340472 0.338706 0.52%

2 0.128672 0.128885 -0.17%

3 0.059568 0.059426 0.24%

4 0.041619 0.042070 -1.07%

5 0.028044 0.028805 -2.64 %

6 0.023233 0.022825 1.79%

7 0.019335 0.019348 -0.06%

8 0.016606 0.015935 4.21%

9 0.014527 0.014614 -0.60%

10 0.012971 0.012227 6.08%∑N
n=1 ESC

W (10)
0.9999,n(20) 0.6850 0.6828 0.32%

Table 11. ES contributions at 99.99% confidence level for portfolio 4 with
the WA method.
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