

Conceptual Fit: A Criterion for COTS Selection

Antoni Olivé

Department of Service and Information System Engineering

Universitat Politècnica de Catalunya – Barcelona Tech
antoni.olive@upc.edu

Abstract. COTS systems selection consists in evaluating the user

requirements with respect to characteristics of candidate systems, using a set of

criteria. One criterion that has received little attention is what we call

conceptual fit. The criterion assesses the fit between the conceptual structure of

the user requirements and that of a system. We evaluate the fit in terms of the

existing misfits. We formally define the notion of conceptual misfit and we

present a method that determines the conceptual misfits between the user

requirements and a set of candidate systems. The method consists in defining a

superschema, the mapping of the conceptual schemas of the candidate systems

and of the user requirements to that superschema, and the automatic

computation of the existing conceptual misfits. The method has been

formalized in UML/OCL. We have conducted an exploratory experiment with

the aim of evaluating the feasibility, difficulty and usefulness of the method,

with positive results. We believe that the conceptual fit criterion could be taken

into account by almost all existing COTS selection methods.

Keywords. COTS selection, Conceptual Fit, Conceptual Modeling

1. Introduction

Nowadays, many organizations build many of their information systems by

customizing and/or integrating Commercial-off-the-shelf (COTS) systems [4]. In

most cases, there are several alternative COTS systems that could be used to build an

information system. Selecting the most convenient COTS system for a particular

situation has become a critical activity in information systems engineering.

In general, COTS systems selection is a difficult decision for an organization due

to the diversity of those systems, the possibly large number of candidates, the large

number of technical and non-technical characteristics that must be taken into account,

and the possibly high impact of the decision on the future activities of the

organization [6].

 The difficulty, frequency and practical significance of COTS systems selection

justify the large volume of research work devoted to it and the large number of

selection methods that have been proposed so far. Early published works date back at

least to 1995 [7], and it is still an active research area. See [8], [15] for recent surveys

on this topic.

COTS system selection essentially consists in evaluating user requirements with

respect to characteristics of candidate systems. The evaluation is performed by

defining a set of criteria, assessing the importance of each criterion for the users and

the degree to which the criterion is satisfied by a system. Evaluation criteria must be

customized for each selection situation [7]. The criteria taken into account usually

include functionality, quality attributes, architecture, costs and risks.

One kind of criterion that has received little attention is what we call conceptual fit.

It is similar to what is called domain compatibility in OTSO, which refers to how well

a system and its features map into the terminology and concepts of the domain [7]. It

is also similar to what is called suitability of data in the GOThIC method, which

evaluates how a particular system represents the data of a UML class or association of

a common domain model [2].

This paper analyzes the conceptual fit between user requirements and COTS

systems. We formally define the notion of conceptual misfit and we present a formal

method that determines the existing conceptual misfits between a set of user

requirements and a system. The absence of conceptual misfits indicates a perfect

conceptual fit.

Our notion of conceptual misfit has been inspired in the ontological expressiveness

analysis [17], in the fitness relationship between a business and the system which

supports it [5], and in CASSM, an analytical usability evaluation method of

interactive systems that focuses on conceptual fit [3].

We propose conceptual fit as a criterion to be used for COTS selection. It can be

taken into account in almost all existing selection methods. As an exploratory

experiment, we have evaluated the conceptual fit of a potential new online shop with

a set ecommerce platforms consisting of three content-management systems for

ecommerce websites (osCommerce, Magento, CS-Cart) and Amazon webstore. Based

on this experiment, we conjecture that conceptual fit analysis enables an early

discrimination of candidate systems, which reduces the effort of the selection [10].

The structure of the paper is as follows. Next section formally identifies the

different kind of conceptual misfits that may exist between a set of user requirements

and a COTS system. Section 3 formalizes the general problem of evaluating the

conceptual fit of a set of user requirements and a set of COTS systems. In section 4

we describe the method we propose for solving that problem. Section 5 describes an

exploratory experiment in which we apply the proposed method in the above

mentioned context of ecommerce platforms. Finally, section 6 summarizes the

conclusions and points out future work.

2. Conceptual Fit

By conceptual fit we mean the fit between two structural conceptual schemas. In our

context, one conceptual schema is that of the user requirements and the other one is

that of a particular COTS system. For the purposes of this paper, we will assume

simple structural conceptual schemas consisting only of entity types, ISA hierarchies,

attributes and binary associations. This can be easily extended, if desired [12].

Figure 1 shows the UML metamodel M of the schemas that we consider in this

paper. Entity types have a name, may be abstract or concrete, may be a singleton or be

Fig.1. The metamodel of the schemas considered in this paper

unconstrained, and may have sub/supertype associations between them. Entity types

may have attributes, which are properties. Properties have a minimum and a

maximum cardinality, and a type. Cardinalities may be zero, one or unconstrained.

Associations have two ordered participants, each of which is a property, as before.

 Assume now that we have two instances of M that we call Ui (for user

requirements) and Sj (for COTS system). We are interested in knowing how well Ui

and Sj fit each other. To this end, we try to see whether there are misfits between

them. Based on the simple metamodel M we identify three kinds of misfits in the

schema elements, called deficits, incompatibilities and excesses, which we define in

the following. Of course, in a more complex metamodel, additional misfits could be

identified. The idea is that the degree of fit of Ui and Sj is inversely proportional to the

number of misfits, the maximum being the absence of them.

2.1 Entity Type Misfits

We say that there is an entity type deficit between Ui and Sj with respect to (wrt) E if E

is a concrete entity type of Ui but E is not an entity type of Sj. Note that we consider

only the concrete entity types of Ui because these are the ones of interest to the users.

Abstract entity types in Ui are unions of concrete ones.

For example, if Ui includes the concrete entity type Bundle then there is an entity

type deficit between Ui and osCommerce wrt to Bundle because that system does not

include Bundle. It is not possible to define instances of bundles in that system.

There is an entity type cardinality incompatibility between Ui and Sj wrt E if E is a

concrete entity type of Ui and an entity type of Sj, but E is unconstrained (not a

singleton) in Ui and a singleton in Sj. Both Ui and Sj have the entity type E but, in Ui,

E may have several instances while only one instance is allowed in Sj.

For example, if Ui includes the unconstrained concrete entity type Store, then there

is an entity type cardinality incompatibility between Ui and osCommerce wrt to Store

because Store is a singleton in osCommerce.

We say that there is an entity type excess between Ui and Sj wrt E if E is a concrete

entity type of Sj but E is not an entity type of Ui. In this case, Sj includes an entity type

that is not of interest to Ui. For example, Magento includes the concrete entity type

GroupedProduct. If this type is not required by Ui then there is an entity type excess.

2.2 Attribute Misfits

There is an induced attribute deficit between Ui and Sj wrt A if A is an attribute of the

concrete entity type E in Ui and there is an entity type deficit between Ui and Sj wrt E.

In this case, the deficit is induced by the entity type deficit. For example, if Ui

includes the attribute price of Bundle, then there will be an induced attribute deficit

with all systems whose schema does not include Bundle.

There is an attribute deficit between Ui and Sj wrt A if A is an attribute of the

concrete entity type E in Ui, Sj includes E, but Sj does not include A.

There is an attribute cardinality incompatibility between Ui and Sj wrt A if A is an

attribute of the concrete entity type E in Ui, Sj includes A, but the cardinalities are

incompatible. An incompatibility arises when the minimum cardinality in Ui is zero

and one in Sj, or when the maximum cardinality is unconstrained in Ui and one in Sj.

An example of this misfit occurs when users require that SaleableItem may have

several images (unconstrained attribute) and a system (such as osCommerce) allows

at most one.

There is an induced attribute excess between Ui and Sj wrt A if A is an attribute of

the concrete entity type E in Sj and there is an entity type excess between Ui and Sj wrt

E. In this case, the excess is induced by the entity type excess.

There is an attribute excess between Ui and Sj wrt A if A is an attribute of the

concrete entity type E in Sj, Ui includes E, but Ui does not include A. In this case, Sj

includes an attribute that is not of interest to Ui.

2.3 Association Misfits

There is an induced association deficit between Ui and Sj wrt R if R is an association

between the concrete entity types E1 and E2 in Ui, and there is an entity type deficit

between Ui and Sj wrt E1 or E2. In this case, the deficit is induced by the entity type

deficits.

There is an association deficit between Ui and Sj wrt R if R is an association

between the concrete entity types E1 and E2 in Ui, Sj includes E1 and E2, but Sj does

not include R.

There is an association cardinality incompatibility between Ui and Sj wrt R if R is

an association between the concrete entity types E1 and E2 in Ui, Sj includes E1 and E2,

but the cardinalities of one of its participants are incompatible. An incompatibility

arises when the minimum cardinality in Ui is zero and one in Sj, or when the

maximum cardinality is unconstrained in Ui and one in Sj. For example, consider the

association SaleableItem – Category. If Ui requires that an item may have several

categories, then there will be an association cardinality incompatibility with Amazon

webstore, because it only allows one.

There is an induced association excess between Ui and Sj wrt R if R is an

association between the concrete entity types E1 and E2 in Sj, and there is an entity

type excess between Ui and Sj wrt E1 or E2. In this case, the excess is induced by the

entity type excess.

There is an association excess between Ui and Sj wrt R if R is an association of the

concrete entity types E1 and E2 in Sj, Ui includes E1 and E2, but Ui does not require R.

3. Evaluating the Conceptual Fit Criterion for COTS Selection

The general problem of evaluating the conceptual fit criterion can be defined as

follows:

Given:

 The user requirements Ui of a system in some domain and

 A set S1,…,Sn of n candidate COTS systems in that domain,

Determine:

 The conceptual misfits (deficits, misfits and excesses as defined in the

previous section) between Ui and each of the S1,…,Sn.

Conceptual fit analysis can be performed considering the complete set of user

requirements Ui and of the candidate systems S1,…,Sn, or considering only a fragment

of them. The latter possibility is likely to be of much more practical interest in most

cases.

The set of conceptual misfits found can be used as a basis for selection. If there are

no misfits between Ui and Sj, then there is a perfect fit between them.

If there are one or more deficits or incompatibilities between Ui and Sj, then the

selection of Sj would require either the change of the user requirements Ui (changing

their intended way-of-working) or a customization of Sj for the user (customizing

existing systems to accommodate users’ requirements) [14].

If there are one or more excesses between Ui and Sj, then the selection of Sj would

imply dealing with the unneeded features related to those excesses, and the need of

the corresponding resources.

If all misfits had the same cost, measured by the cost of changing requirements, the

cost of customization or the cost of the unneeded features, then the preferred system

according to the conceptual fit criterion would be the one with a minimum number of

such conceptual misfits. In practice, however, it is likely that users find some misfits

costlier than others and therefore some weighting and judgment must be required.

4. A Method for Determining the Conceptual Fit

A straightforward approach to the solution of the general problem of determining the

conceptual fit would be to consider each Sj (j = 1,…,n) separately, and determine the

conceptual misfits between Ui and Sj as indicated in Sect. 2. This may be the only

available solution in some contexts, but it is very costly. It requires knowing the n

conceptual schemas and evaluating Ui wrt each of those schemas. When the number n

is large and/or the conceptual schemas are large, the evaluation effort may be large

too.

However, in a context where the selection process must be performed several times

with the same set of candidate systems S1,…,Sn, with different user requirements Ui,

then a better solution would be to build an intermediate superschema S. That

superschema S should integrate S1,…,Sn in a way such that Ui and each of the S1,…,Sn

could be mapped to S, and such that the conceptual misfits of Ui and each of the

S1,…,Sn could then be computed automatically.

Note that the superschema we propose is similar to the “reference models” used in

professional organizations as “an abstract framework for understanding significant

relationships among the entities of some environment, and for the development of

consistent standards or specifications supporting that environment.”1 One of the most

prominent examples of reference model is the HL7 RIM2.

A similar idea was proposed in the “Domain-based COTS product selection

method” (DBCS) [9] where a “domain model” is the common reference for the

system to be developed and the existing COTS systems. In the context of schema

translation, a similar idea was proposed in MIDST [1] where there is a supermodel,

such that each model is a specialization of the supermodel and a schema in any model

is also a schema in the supermodel.

Based on the above idea, the method we propose consists of four parts:

1. A superschema S that is a union of all schemas S1,…,Sn and all possible

user requirements U1,…,Um in a given domain.

2. The definition of the schemas S1,…,Sn in terms of S.

3. The definition of user requirements Ui in terms of S.

4. The (automatic) computation of the misfits between Ui and S1,…,Sn.

We describe these parts in the following.

4.1 The superschema

In our method, the superschema S is an instance of the metamodel shown in Fig. 1 for

a domain D such that:

 S includes the schemas of all possible COTS systems S1,…,Sn in D.

 S includes all possible conceptual user requirements U1,…,Um in D.

By inclusion of schemas here we mean that:

 S comprises all concrete entity types, attributes and associations that may be

required by U1,…,Um. On the other hand, the cardinalities of the attributes

and associations in S must not be incompatible with those that may be

required by U1,…,Um.

 S comprises all concrete entity types, attributes and associations that are

implemented in S1,…,Sn. On the other hand, the cardinalities of the attributes

and associations in S must not be incompatible with those that are

implemented in S1,…,Sn.

1 OASIS SOA Reference Model (SOA-RM) TC (https://www.oasis-open.org/committees/soa-rm/faq.php)
2 HL7 Reference information model. (http://www.hl7.org/implement/standards/rim.cfm)

Fig.2. Extension of the metamodel of Fig. 1 with COTS implementation of a superschema

4.2 Mapping Conceptual Schemas of COTS Systems to the Superschema

For the purposes of conceptual fit analysis we need to know for each Sj (j = 1,…,n) in

D:

 The entity types of S implemented in Sj and their corresponding cardinalities.

We are interested only in the entity types that are concrete in Sj. If Sj

implements all subtypes of an abstract entity type E in S, then Sj also

implements E.

 The attributes and associations of S implemented in Sj and their

corresponding cardinalities.

Figure 2 shows the extension of the metamodel defined in Fig. 1 needed to

represent the part of S that is implemented by Sj. A COTS system is assumed to

implement a set of concrete entity types (with a cardinality that may be Singleton or

Unconstrained), a set of attributes and a set of associations.

Note that if S includes an abstract entity type E with subtypes E1,…, Em and E has

an attribute A, then a system Sj that implements two or more of those subtypes could

implement A differently in each case. Our metamodel of Fig. 2 takes this possibility

into consideration by indicating in AttributeImplementation the implemented entity

type. A similar reasoning applies to the association participants.

The mapping process can be superschema-driven or system-driven. In the former,

the elements of S are taken in some convenient order, and for each of them it is

checked whether or not it is implemented by the system. If the element is a concrete

entity type that is not implemented by Sj then there is no need to check the

implementation of its attributes and associations. To use this process, the conceptual

schema of Sj needs not to be explicit; what is needed to know is what entity types,

attributes and associations of S are implemented in Sj.

In the system-driven process, the elements of the conceptual schema of Sj are taken

in some convenient order, and each of them is mapped to S. To use this process the

conceptual schema of Sj must be explicit.

Fig.3. Extension of the metamodel of Fig. 1 with user requirements

4.3 Defining Conceptual User Requirements

For the purposes of conceptual fit analysis of Ui we need to know:

 The entity types of S required by Ui and their corresponding cardinalities. We

need to know only the entity types that are concrete in Ui. If Ui requires all

subtypes of an abstract entity type E in S, then Ui also requires E.

 The attributes and associations of S required by Ui and their corresponding

cardinalities.

Figure 3 shows the extension of the metamodel defined in Fig. 1 needed to

represent the user requirements in terms of S. It is nice to see that the extension has

the same structure as that of Fig. 2. User requirements are assumed to consist of

concrete entity types (with a cardinality that may be Singleton or Unconstrained), a

set of attributes and a set of associations.

Note that similarly to the previous case, if S includes an abstract entity type E with

subtypes E1,…, Em and E has an attribute A, then if Ui requires two or more of those

subtypes, it could require A differently in each case. The same applies to association

participants.

As in the mapping of systems, the definition of user requirements can be

superschema-driven or requirements-driven.

4.4 Computing Misfits

In our method, once we have defined the instance of M (Fig. 1) corresponding to the

superschema S for a domain D, the instances of the candidate COTS systems S1,…,Sn

in D and their mapping to S (Fig. 2), and the instance of the user requirements Ui and

its mapping to S (Fig. 3) we can then automatically compute the misfits between Ui

and S1,…,Sn. In what follows we explain the details of the computation in terms of the

UML schemas shown in Figs. 2 and 3 and we give the formal definition of each misfit

in OCL.

Entity type deficit. Let E be an entity type required by Ui. There is a deficit of E in Sj

if E is not implemented in Sj. E can be implemented in Sj directly or by exclusion.

There is a direct implementation when E is also an entity type of Sj. There is an

implementation by exclusion when there is an entity type E’ implemented by Sj such

that E’ is a supertype of E, E1,…, Ep (p > 0) and E1,…, Ep are not required by Ui. The

exclusion of E1,…, Ep by Ui implies that the population of E and E’ will always be the

same, and therefore E’ can implement E in Sj. In OCL:

context EntityTypeRequirement::isDeficit(c:COTS):Boolean

body isImplementedBy(c).isUndefined

where isImplementedBy(c) is defined in the same context by:

isImplementedBy(c:COTS):EntityTypeImplementation

body
if directImplementation(c)->notEmpty then

directImplementation(c)->any(true)

else

if implementationByExclusion(c)->notEmpty then

 implementationByExclusion(c)->any(true)

else oclUndefined(EntityTypeImplementation)

endif

endif

and such that directImplementation and implementationByExclusion are:

directImplementation(c:COTS):Set(EntityTypeImplementation)

body c.entityTypeImplementation ->

select(ei|ei.implementedEntityType = self.requiredEntityType)

implementationByExclusion(c:COTS):Set(EntityTypeImplementation)

body self.requiredEntityType.parent.entityTypeImplementation->

select(ei|ei.cOTS = c and ei.implementedEntityType.child->

forAll(e|e.entityTypeRequirement->

select(er|er.userRequirements = self.userRequirements)->isEmpty))->

asSet()

Entity type incompatibility. Let E be an unconstrained entity type required by Ui.

There is an incompatibility when E is implemented by a singleton entity type in Sj.

The OCL formalization is:

context EntityTypeRequirement:: isIncompatible(c:COTS):Boolean
body cardinality = EntityTypeCardinality ::Unconstrained and

isImplementedBy(c).cardinality = EntityTypeCardinality::Singleton

Entity type excess. Let E be an entity type in Sj. There is a misfit of this kind when E

does not implement any entity type in Ui. In OCL:

context EntityTypeImplementation::isExcess(u:UserRequirements):Boolean

body not u.entityTypeRequirement ->

exists(er|er.isImplementedBy(self.cOTS) = self)

Induced attribute deficit. This happens when Ui requires an attribute of entity type E

and there is an entity type deficit between Ui and Sj wrt E. In OCL:

context AttributeRequirement::isInducedDeficit(c:COTS):Boolean

body requiredEntityType.entityTypeRequirement->

exists(er|er.userRequirements = self.userRequirements and

er.isDeficit(c))

Attribute deficit. This happens when Ui requires an attribute A of an entity type E

that is implemented in Sj, but that implementation does not include A. In OCL:

context AttributeRequirement::isDeficit(c:COTS):Boolean

body requiredEntityType.entityTypeRequirement->

exists(er|er.userRequirements = self.userRequirements and

 er.isImplementedBy(c).isDefined)

and self.isImplementedBy(c).isUndefined

where isImplementedBy(c) is defined in the same context by:

isImplementedBy(c:COTS):AttributeImplementation

body let ai:Set(AttributeImplementation) =

c.attributeImplementation->

select(ai|ai.implementedEntityType = self.requiredEntityType)

in if ai -> notEmpty then ai->any(true)

else oclUndefined(AttributeImplementation) endif

Attribute cardinality incompatibility. This happens when the cardinalities of an

attribute required by Ui are incompatible with those of its implementation in Sj.

context AttributeRequirement:: isIncompatible(c:COTS):Boolean
body (minCardinality = Cardinality ::isZero and

isImplementedBy(c).minCardinality = Cardinality::isOne) or

(maxCardinality = Cardinality ::Unconstrained and

isImplementedBy(c).maxCardinality = Cardinality::isOne)

Induced attribute excess. Let A be an attribute of a concrete entity type E in Sj.

There is a misfit of this kind when E is an entity type excess for Ui. In OCL:

context

AttributeImplementation::isInducedExcess(u:UserRequirements):Boolean

body implementedEntityType.entityTypeImplementation->

exists(ei|ei.cOTS = self.cOTS and ei.isExcess(u))

Attribute excess. Let A be an attribute of a concrete entity type E in Sj. There is a

misfit of this kind when E is an implementation of an entity type required by Ui but A

is not implemented.

context AttributeImplementation::isExcess(u:UserRequirements):Boolean

body implementedEntityType.entityTypeRequirement->

exists(er|er.userRequirements = u and

er.isImplementedBy(self.cOTS).isDefined)

and not

u.attributeRequirement->exists(ar|ar.isImplementedBy(self.cOTS) = self)

Induced association deficit3. There is misfit of this kind when Ui requires an

association R between the concrete entity types E1 and E2 and there is an entity type

deficit between Ui and Sj wrt E1 or E2.

Association deficit. There is misfit of this kind when Ui requires an association R

between the concrete entity types E1 and E2 that are implemented in Sj, but Sj does not

include R.

Association cardinality incompatibility. This happens when the cardinalities of an

association required by Ui are incompatible with those of the implemented association

in Sj.

Induced association excess. Let R be an association between the concrete entity

types E1 and E2 in Sj. There is a misfit of this kind when E1 and E2 are an entity type

excess for Ui.

Association excess. Let R be an association between the concrete entity types E1 and

E2 in Sj. There is a misfit of this kind when E1 and E2 are implementations of entity

types in Ui but R is not.

5. Application to the Selection of an eCommerce Platform

In what follows, we describe an exploratory experiment we performed to evaluate the

feasibility, difficulty and usefulness of the application of the conceptual fit criterion in

COTS selection. We assumed the requirements of a potential online shop and

considered four existing ecommerce platforms: osCommerce4, Magento5, CS-Cart6,

and Amazon webstore7.

5.1 The Superschema

Online shop platforms have large conceptual schemas, and their complete integration

into one (even larger) superschema would not be easy. However, for the purpose of

COTS selection, in our method such complete integration is not necessary. It suffices

to only consider those concepts (entity types, attributes and associations) that enable

an effective discrimination between systems [10]. This means that the superschema

should include the concepts that are important or critical for the users and that are not

implemented by all candidate systems.

In the experiment, we had available the complete schemas of osCommerce [16] and

3 Due to space constraints the OCL formalization of the association misfits is not shown, although it is

similar to the one of the attribute misfits.
4 www.oscommerce.com
5 magento.com
6 www.cs-cart.com
7 services.amazon.com

Fig.4. A fragment of the superschema of the online shops domain

Magento [13] and we studied in depth the relevant parts of the other two. Based on

this, we developed a superchema consisting of 35 entity types, 82 attributes and 40

binary associations. Figure 4 shows a fragment of that superschema. The fragment

shows the kinds of products that are sold in on-line shops. Those kinds are

SimpleSaleableItem (with subtypes VirtualProduct and DownloadableItem),

VariantProduct (a materialization of a Model), GroupedProduct (a set of products)

and Bundle (a product with options).

5.2 Mapping Conceptual Schemas of COTS Systems to the Superschema

The mapping of a candidate system to the superschema is easy for those who know

(or, better, have developed) that system and are familiar with its domain. In the

experiment, due to our knowledge of the superschema and the candidate systems, we

used a combination of the superschema and system-driven processes.

5.3 Defining Conceptual User Requirements

In the experiment, we assumed that the user requirements were those of an arbitrary

existing commercial online shop. We studied and experimented (read-only) the

relevant parts of that shop. We then used a superschema-driven process to define its

conceptual requirements, as indicated in Section 4.3. In total, the requirements of that

shop consist of a subset of the superschema consisting of 22 entity types, 29 attributes

and 18 associations.

5.4 Computing Misfits

Table 1 summarizes the number of misfits per each type found in each system,

computed as indicated in Sect. 4.4. In this experiment, no entity type deficits have

Table 1. Misfits found per type in each system

 osCommerce Cs-cart Magento Amazon

entity type deficit 0 0 0 0

entity type card. incompatibility 0 0 0 1

entity type excess 2 6 12 3

induced attribute deficit 0 0 0 0

attribute deficit 9 0 0 5

attribute card. incompatibility 0 0 0 0

induced attribute excess 1 12 21 4

attribute excess 8 28 33 4

induced association deficit 0 0 0 0

association deficit 2 0 0 0

association card. incompatibility 0 0 0 2

induced association excess 1 8 14 5

association excess 4 5 5 3

been found, and therefore there are not induced deficits. The analysis has detected a

number of deficits and incompatibilities whose importance should be assessed in the

selection process. Some of them may be critical. The high number of excesses of Cs-

cart and Magento may indicate that they are “excessive” for the user’s needs.

6. Conclusions

We have proposed a new criterion for COTS systems selection, which we call

conceptual fit. The criterion assesses the fit between the conceptual structure of a

given system and of the user requirements. We have identified three kinds of misfits

in the schema elements, called deficits, incompatibilities and excesses. The idea is

that the degree of conceptual fit is inversely proportional to the number of misfits, the

maximum being the absence of them.

In principle, the conceptual fit criterion could be taken into account by almost all

existing selection methods. In particular, it is likely to be useful in methods such as

PORE [11] that propose an iterative selection approach. Conceptual fit could be taken

into account in the early stages of product selection, because it enables an early

discrimination between candidate products.

We have formally defined the general problem of evaluating the conceptual fit

between the user requirements and a set of COTS systems in some domain, and we

have proposed a new method for its solution. The method consists in defining a

superschema, the mapping of the conceptual schemas of the candidate systems and of

the user requirements to that superschema, and the automatic computation of the

conceptual misfits. We have formalized the method in UML and OCL. We have

applied the method in an exploratory experiment of COTS selection in the domain of

online shops to evaluate its feasibility, difficulty and usefulness, with positive results.

The main effort required by our method is the development of the superschema and

the mapping of the candidate systems to it. However, this must be done only once per

domain (such as online shops) and the result could be reused in all COTS selections

of a domain. This fact opens the possibility for professional organizations, consulting

companies, and so on to make that effort and make the results available to all

interested information systems developers.

The work reported here can be extended in several directions. We mention three of

them here. The first is to take into account more conceptual constructs than those

considered in the metamodel of Fig.1, such as association classes, data types or

enumerations, or behavioural constructs [14]. Second, the method should be tested in

a real-world project of COTS selection in order to experimentally confirm its cost

effectiveness in practice. Ideally, the project could be developed in one of the

domains for which there is already a superschema, such as the reference model HL7

RIM in the health care domain. Third, it could be useful to develop recommendations

for the integration of the conceptual fit criterion into existing selection methods.

References

1. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-independent

schema translation. VLDB J. 17(6): 1347-1370 (2008)

2. Ayala, C.P., Franch, X.: Domain Analysis for Supporting Commercial Off-the-Shelf

Components Selection. In: D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS

4215, pp. 354 – 370, (2006)

3. Blandford, A., Green, T. R. G., Fursniss, D., Makri, S.: Evaluating system utility and

conceptual fit using CASSM. Int. Journal of Human–Computer Studies. 66. 393-409 (2008)

4. Brownsword, L., Oberndorf, P.A., Sledge, C.A.: Developing New Processes for COTS-

Based Systems. IEEE Software 17(4): 48-55 (2000)

5. Etien, A., Rolland, C.: Measuring the fitness relationship. Reqs Eng. 10(3): 184-197 (2005)

6. Feblowitz, M., Greenspan, S.J.: Scenario-Based Analysis of COTS Acquisition Impacts.

Requirements Eng. 3(3/4): 182-201 (1998)

7. Kontio, J.: OTSO: A Systematic Process for Reusable Software Component Selection.

University of Maryland Technical Reports. College Park, University of Maryland. CS-TR-

3478, UMIACS-TR-95-63, (1995)

8. Land, R., Blankers, L., Chaudron, M.R.V., Crnkovic, I: COTS Selection Best Practices in

Literature and in Industry. In: Hong Mei (Ed.) ICSR 2008. LNCS 5030, pp. 100-111.

Springer, Heidelberg (2008)

9. Leung, K.R.P.H., Leung, H.K.N.: On the efficiency of domain-based COTS product

selection method. Information & Software Technology 44(12): 703-715 (2002)

10. Maiden, N.A.M., Ncube, C., Moore, A.: Lessons Learned During Requirements

Acquisition for COTS Systems. Comm. ACM December Vol. 40, No. 12, pp. 21-25, (1997)

11. Maiden, N.A.M. Ncube, C.: Acquiring COTS Software Selection Requirements. IEEE

Software 15(2): 46-56 (1998)

12. Olive, A.: Conceptual Modeling of Information Systems. Springer, Berlin (2007)

13. Ramirez, A.: Esquema conceptual de Magento, un sistema de comerç electrònic. Master

thesis. http://hdl.handle.net/2099.1/12294 (2011)

14. Reinhartz-Berger, I., Sturm, A., Wand, Y.: Comparing functionality of software systems:

An ontological approach. Data Knowl. Eng. 87: 320-338 (2013)

15. Tarawneh, F., Baharom, F., Jamaiah Hj. Yahaya; J.Hj., Ahmad, F.: Evaluation and

Selection COTS Software Process: The State of the Art. International Journal on New

Computer Architectures and Their Applications 1(2): 344-357 (2011)

16. Tort, A.: Esquema conceptual de l’osCommerce. Master thesis. http://upcommons.upc.edu/

pfc/handle/2099.1/5301?locale=en (2007)

17. Wand, Y.: Ontology as a foundation for meta-modelling and method engineering.

Information & Software Technology 38(4): 281-287 (1996)

