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Abstract 

 
The class of simplicial decomposition methods has shown to constitute efficient tools for 
the solution of the variational inequality formulation of the general traffic assignment 
problem. The paper presents a particular implementation of such an algorithm, called 
RSDVI, and a restricted simplicial decomposition algorithm, developed adhoc for 
diagonal, separable, problems named RSDTA. Both computer codes are compared for 
large scale separable traffic assignment problems. Some meaningful figures are shown 
for general problems with several levels of  asymmetry. 
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1  Introduction 
 
The main objective of this work relies on the determination of the average extra-cost 
due to the resolution of non interaction models by a general purpose asymmetric 
assignment code (RSDVI) based on a simplicial decomposition scheme such as 
described by Hearn and Lawphongpanich (1984), versus an specific restricted simplicial 
decomposition code developed for diagonal traffic assignment models based on the 
proposal of Hearn et al. (1987) and called RSDTA. Another objective that the authors 
wish to evaluate is the performance of RSDVI algorithm in solving real large separable 
models and the effect, in the computational sense, of including some levels of 
asymmetry in test probelms. 
 
RSDVI algorithm is a generic code that might require some adaptations to improve its 
efficiency when dealing with separable models. The analysis of a first group of 
executions will define the enhancements and modifications requested to improve 
performance in these particular problems. 
 
This work is included in a research line which deals with the integration of a real time 
traffic assignment tool in the GETRAM/AIMSUN environment as carried out in the 
PETRI Project (PETRI, 1995). 
 
Both algorithms are programmed in SUN/SOLARIS F77. Computational tests will run 
in a Sparc Station 2 under SUN/SOLARIS Operating System. The structure of this 
abstract is: Section 2 states the traffic assignment formulations (TAP) that are the base 
for computer programs development (RSDVI and RSDTA), Sections 3 and 4 describe 
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RSDVI and RSDTA algorithms respectively. Section 5 deals with test design and 
Section 6 shows computational result tables and graphics. Conclusions and 
Bibliography sections are also included at the end. 
 
 
2. TAP Formulations 
 
Assuming no interactions between the links in the network, the resulting separable 
model for the traffic assignment problem has been shown to be equivalent to a convex 
mathematical programming problem (Beckmann et al. 1956). The separable model 
becomes a nonlinear optimization problem with linear constraints. Variables h refer to 
path flows, variables v to link flows and functions c to link travel-costs. 
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In practical applications such an assumption may be too restrictive, e.g. when studying 
congested junctions. The asymmetric model cannot be reformulated as an optimization 
program by the use of the same arguments as in the separable case. 
 
The Wardrop conditions of user equilibrium for the general traffic assignment model 
can be reformulated into three main types of equivalent problems: variational inequality 
formulations, nonlinear complementary formulations and fixed point formulations (see 
Montero (1992) for a survey). The variational inequality formulations is chosen in this 
work. The foundation of  simplicial decomposition schemes for the separable traffic 
assignment problem resides on the fact that a polyhedron not only can be represented as 
the intersection of a finite number of subspaces, but as a convex combination of  its 
extreme points (vertexes) and a positive linear combination of its rays. In our case, the 
feasible region of the problem is a polytope and therefore, it can be represented as the 
convex hull of a finite set of vertexes. 
 
The arc flow variational inequality formulation of the traffic assignment problem will 
be referred to subsequently as TAP-VI. It serves as the basis for developing the RSDVI 
algorithm: 
 
 Find  v* ∈ V such that c(v*)T.(v-v*) ≥ 0  ∀v ∈ V  and  
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The additivity property is used in the present work, because dealing with path variables 
causes an exponential growing of the dimensionality of subproblems and data 
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structures. Instead of this, working with an aggregate space of link variables (so-called 
arc flow formulations) drastically reduces dimensionality and makes possible the 
development of efficient algorithmic approaches for large scale problems. 
 
 
3 RSDVI algorithm 
 
The RSDVI algorithm is a restricted simplicial decomposition framework for solving 
general traffic assignment problems,  it is based on the variational inequality 
formulation and uses a linear variable projection scheme for master problems 
resolution. Several variants of the generic algorithm can be applied to problem 
resolution, all of them under user request in a user-friendly execution environment.  
This feature makes RSDVI a valid and useful tool for testing the efficiency of some 
techniques for general models.  Some elements that might be tuned according to test 
purposes are: the quality of the initial starting point, the size of the initial active set of 
extreme points, the column dropping criteria to be applied, the linear approximation to 
be applied in master problem resolution, accuracy of master problem solution and the 
stopping criteria type. 
 
The primal gap function G(v) might be used to monitor the generic TAP-VI algorithmic 
approach. It is defined as follows,  
 
 G(v) = max w∈V  {c(v)T . (v-w)} 
 
G(v)=0 precisely when no traveller has an incentive to change route, that is, when the 
flow satisfies Wardrop equilibria. Algorithms based on the primal gap function are 
given by Hearn (1982); methods based on simplicial decomposition are given by 
Lawphongpanich and Hearn (1984). 
 
The approach is based on that by Lawphongpanich and Hearn (1984).  In this section, a 
high-level version of the RSDVI restricted simplicial decomposition algorithm is 
presented. 
 
 
RSDVI algorithm: 
 

Step 0: Initialization. 
Let v0 ∈ V   be a demand feasible link flow for TAP-VI and set iteration 
counter to 1,  t=1. 
Set the best upper bound variable to infinity, i.e., BUB0 = ∞. 
Set the active working set, W0 , to v0. 
 

Step 1: Initial simplex computation. 
Obtain η>2 extreme link flow vectors{ }ek k

k

=

=

1

η  of the demand feasible set 

V  and update W0= W0+{ }ek k

k

=

=

1

η . 
 
 
 



 4 

Step 2:  Solve VIS=VI(c(v), Wt) . 
Find vt ∈ H(Wt) such that c(vt ).(v- vt) ≥ -ε  ∀v ∈ H(Wt) where  H(Wt) is 
the convex hull of columns of Wt. 

 
Step 3: Extreme flow generation. 

Solve { }f c v ft
f W

t
t=

∈
min ( ) .  

 
Step 4: Convergence test for diagonal tests 

Evaluate gap function G(vt) and F(vt), the objective function value. 
Compute relative gap G’(vt) as 
 

G v F v BLB
F v

t
t

t' ( ) ( )
( ).

=
−    where BLB is the Best Bound to gap function 

If G’(vt) < ε‘    then STOP.  
 

Step 5: Active extreme flow vectors updating Wt+1. 
Add  f t  to Wt+1  and replace  the current point vt  in W t+1 . 
Apply extreme dropping criteria to W t+1  to preserve master size 
Set BUB t+1=min (BUBt, G(vt) ) and increment t.     
GOTO Step 2. 

� 
 
where 
 ε‘ RSDVI stopping criteria tolerance  
 ε VIS stopping criteria tolerance  
 Wt  Set of active extreme points at iteration t 
 H(Wt)  Convex hull of set Wt  
 
 
A few comments to RSDVI  algorithmic proposal are: 
 
• An incremental loading technique will be used for calculating a demand feasible 

starting point in computational tests. 
  
• The master problem or VIS subproblem resolution, as we will refer to it, requires at 

least two extreme flows in Wt, i.e., an initial simplex dimension of  η= 2. A linear 
projection method with variable metric on the simplicial space has been implemented 
to solve the master problem (Bertsekas and Gafni, 1982). 

  
• A new extreme flow vector generation is involved in one step of the algorithm, this 

subproblem is the familiar linear problem in the Frank and Wolfe type algorithm, and 
it is decomposable into a fixed number of shortest path tree computations plus a 
demand loading process for building the extreme flow vector. The algorithm selected 
for computational tests is L-Deque (Gallo and Pallotino, 1984). 

  
• The stopping criteria possibilities for global convergence includes a stopping criteria 

based on the  relative gap as used in the commercial software EMME/2. 
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• Column dropping criteria has to preserve master problem maximum size, that is the 
maximum number of active extreme flows(Wt). 

 
 
4  RSDTA Algorithm 
 
As in the classical Frank and Wolfe method for TAP, the simplicial decomposition 
approach consists of two steps, generally named the subproblem (new extreme point 
computation) and the master problem. At the master problem step, instead of carrying 
out a line search of the optimal value of the objective function along the descent 
direction, the minimization of the objective function is performed over the convex hull 
of all the extreme points generated so far or a subset of them. 
 
In the first version of the algorithm, the number of vertexes used in the master problem 
might increase infinitely and therefore all of the generated vertexes were used. 
Hohenbalken introduced a modification in the scheme consisting of the removal of 
those vertexes with null baricentric coordinates in the previous master problem 
iteration. Hearn et al. (1987) developed a simplicial decomposition algorithm where the 
maximum number of vertexes to be used in the master problem was limited a priori. 
This version is called Restricted Simplicial Decomposition. It follows below, a version 
of the restricted simplicial decomposition for the case in which the set of feasible points 
is a polytope. Let’s assume a polytope X and F a convex function on X. 
 
 
RSDTA algorithm: 
 

Step 0: Initialization. 
Let v0 ∈ V   be a demand feasible link flow and set iteration counter to 1,  
t=1. 
Set the best upper bound variable to infinity, i.e., BLB0 = -∞. 
Set the active working set,Wx

0  , to v0 and Ws
0 = ∅   

 
Step 1: Linearization of the objective function in vt and computation of a new 
vertex (subproblem). 

 
Solve { }f c v ft

f X
t

t=
∈

min ( ) .  

 
 

Step 2:  Extremal points updating. 
 

If Ws
t <ρ  the new vertex is stored: { }W W f W Ws

t
s
t t

x
t

x
t+ += ∪ =1 1, . 

If Ws
t = ρ  then replace the extreme with the smallest baricentric 

coordinate from W fs
t , , with the new vertex f t :   

{ } { }W W f f W Ws
t

s
t t t

x
t

x
t+ += ∪ =1 1/ ,  

 
The new set of extreme flows for master problem is: W W Wt

s
t

x
t+ + +=1 1 1 . 
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Step 3: Best Lower Bound Updating (stopping criteria). 

Evaluate gap function G(vt) and F(vt), the objective function value. 
Compute relative gap G’(vt) as 
 

G v F v BLB
F v

t
t t

t' ( ) ( )
( ).

=
−    where BLB is the Best Bound to gap function 

If G’(vt) < ε    then STOP otherwise goto Step 4. 
 

Step 4: Master Problem Resolution. 
 
Min C v
s t v H W

v
t

( )
. . ( )∈

 

 
  Set vt to the solution of master problem and remove extreme points  
 resulting with baricentric coordinate equal to 0 from Ws

t . 
 
  Increment iteration counter t and goto Step 1. 
� 
 
where 
 ε RSDTA stopping criteria tolerance  
 Wt  Set of active extreme points at iteration t 
 H(Wt)  Convex hull of set Wt  
 ρ Maximum number of vertexes allowed  
 
 
In the implemented version of RSDTA algorithm, the relative gap stopping criteria is 
used. Hearn et al. (1987) proved that the algorithm is convergent even when no exact 
solutions to master problems are computed. In this work, two ways of solving the 
master problem have been implemented previously to the comparison with the 
asymmetric algorithm. The first method implemented has been the quasi-Newton 
method due to Bertsekas (1982). In this method we have observed that the Armijo-like 
line search method  requires a high percentage of the CPU time consumed in the master 
problem step of the RSDTA algorithm. As shown in Figure 1 for some of the test 
networks defined in Section 5, by restricting the line search step to the [0,1) interval a 
great amount  
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(c) 
Figure 1. CPU times in a Sun Sparc 10/30 (2.3 times faster than Sun Station 2). The master problem is 
solved using the quasi-Newton method of Bertsekas restricting or not the line search step length for three 
of the test networks defined in section 5: Sioux Falls  (a), Barcelona (b) and Winnipeg   (c). 
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of CPU time is saved and this trend seems to switch when the number of vertexes used 
in the RSDTA algorithm increases. Computer times shown in Figure 1 correspond with 
a medium to high accuracy level of resolution of the master problem being allowed a 
maximum of 15 iterations in the master problem step.  
 
A more efficient method than the quasi-Newton of Bertsekas for the master problem 
step is a quadratic approximation of the objective function as suggested in Hearn et al. 
(1987). The quadratic approximation implemented here for the hessian of the objective 
function consists of  the complement of the Davidon Fletcher Powell formula. 
Additionally it is known that the master problem step can be solved  with a low level of 
accuracy and the benefits of using this method to solve the master problem together 
with the limitation in the maximum accuracy attainable are obvious when observing 
results shown in Table 2 for the RSDTA algorithm. For this table a maximum of  3 
iterations  in the master problem step are allowed. 
 
 
5 Test Design 
 
The test networks used to define the diagonal traffic assignment tests are presented in 
this section. Networks are listed above, in an increasing order depending on their size, 
with a brief description: 
 
• SIO Network. Sioux Falls test network due to LeBlanc et al. (1975). It consists on 24 

nodes (centroids all of them), 76 links and a demand matrix defined by 538 OD pairs 
leading to 3616 trips. One standard volume-delay function is considered: the 
classical BPR formulation with α=0.25 and β=4. 

• BCN Network. Barcelona’s network, with a detailed representation of  the CMB area 
(Eixample) and without Olympic Games Infrastructures. Provided by the 
municipality of Barcelona, it consists on 930 nodes (110 centroids), 2522 links and a 
demand matrix with 7922 OD pairs, representing peak morning period. BPR type 
delay functions. 

• WIN Network. Winnipeg’s network, developed by the University of Montreal, 
consisting on 1017 nodes (154 centroids), 2976 links and a total demand of 54,459 
trips in 4345 OD pairs. BPR type delay functions. 

• CMB Network. Barcelona’s extended network. It includes Olympic Games corridors 
and rings, and a more detailed representation of the surrounding CMB area. Demand 
is defined by 8004 OD pairs with  373,113 trips. It contains 2253nodes (90 
centroids) and  5171 links. BPR type delay functions. 

• MAD Network. Madrid’s network, delivered by USM Consultancy for research 
purposes. It consists on 2776 nodes (490 centroids) and 6871 links. Demand pattern 
is defined by almost 185,000 OD pairs and a basic matrix of  374,633 trips. BPR 
type delay functions. 

 
 
For each network, several tests are designed according to the definition of: 
 
• Two levels of congestion. Level A (medium) and level B (high). Congestion level A 

is defined by an average link ratio of congestion into capacity of 0.35 and level B 
increases the average ratio until 0.7. 
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• Accuracy of the solution. Three levels of  error in the relative gap function are used 
as in the stopping criteria: Low (15%), Medium (5%) and High (1.0% and 0.1% in 
SIO Network). 

• Maximum size of simplicial space (master problem cardinality). Several options are 
selected: 4, 8, 12, 15, 20, 25 and 30 vertexes. And extra option of non restricted 
dimensionality is also included in some tests (referred to it as maxver=100). 

 
 
A L-Deque algorithm for shortest path computations has been selected in the new 
extreme point computation. A moderate precision in the master problem resolution is 
required and a robust set of tolerances has been defined a priori for each computer 
code. Round-off errors are prevented by requesting a double precision arithmetic in test 
executions. 
 
A set of tests including three levels of asymmetry (low, medium and high) in some of 
the former networks (BCN and WIN) have been considered in order to evaluate the 
effect of asymmetry in computer cost and the selection of the best execution options in 
RSDVI program. Asymmetric patterns have been randomly generated among 
incoming/outcoming links to intersections; the level of asymmetry refers to the 
proportion of intersections (nodes) affected by asymmetric relations: 
 
• Considered levels are 25%, 50% and 75% of total network nodes. 
  
• Cost functional has been assummed to be a modified BPR type function where link 

costs are calculated from linear combinations of  intersection link flows, where the 
coefficients of the combination are randomly generated (with some diagonal 
dominance effect restrictions). 

  
• Neither realistic asymmetric cost functions are available to the authors, nor urban 

data for the calibration of  asymmetric functions in local networks (BCN, CMB or 
MAD). 

 
 
6 Computational Results 
 
This section presents computational results obtained by executing the algorithms 
described in Sections 3 and 4 on the test networks described in Section 5  and only   
results corresponding to the lowest level of gap, i.e. 1% are considered. We shall 
proceed as follows: first we consider the computational comparison of RSDVI and 
RSDTA algorithms. Data for the comparison is contained in Tables 1 and 2 and is 
graphically summarized in Figure 2. Next the performance of RSDVI code depending 
on the level of asymmetries is presented having into account results reported in Table 3. 
Computational  tests considered in this section have been carried out on a Sun Sparc 
Station 2 and all cpu times are referred to this machine.  
 
Description of Tables 1 and 2. These tables contain computer times for RSDTA and 
RSDVI codes on diagonal problems. Basically they show the increase of cpu times 
(CPUTotal) and number of iterations (Niter) for an increasing number of vertexes used 
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by the corresponding algorithm (Maxver) and the percent required by the master 
problem 
  
 

 RSDVI  Computational Results (STOPPING GAP 1%) 
NO INTERACTION TESTS 

NET  Low Congestion  High Congestion 
WORK Maxver CPUTotal CPUMp(%) Niter CPUTotal CPUMp(%) Niter 

SIO 4 1.8 55.55 8 9.9 63.63 55 
SIO 8 1.8 55.55 8 10.2 78.43 33 
SIO 12 1.8 55.55 8 12.8 82.03 34 
SIO 15 1.8 55.55 8 11.0 79.04 34 
SIO 20 1.8 55.55 8 11.0 79.04 34 
SIO 30 1.8 55.55 8 11.0 79.04 34 
SIO Unlim. 1.9 57.89 8 18.8 87.76 33 
BCN 4 253.9 22.76 31 902.3 28.78 112 
BCN 8 272.7 35.60 28 961.9 36.07 106 
BCN 12 284.4 42.40 26 882.6 46.43 81 
BCN 15 268.5 39.03 26 975.8 53.36 78 
BCN 20 268.6 39.03 26 1113.7 61.08 74 
BCN 30 268.7 39.03 26 1054.5 58.43 75 
BCN Unlim. 364.9 65.13 26 2409.0 83.13 69 
WIN 4 171.7 18.52 18 1254.4 25.04 161 
WIN 8 178.8 27.79 16 1192.4 34.39 132 
WIN 12 175.9 26.83 16 1455.3 45.39 132 
WIN 15 175.2 26.88 16 1558.3 52.57 121 
WIN 20 177.6 26.80 16 1789.2 62.57 111 
WIN 30 174.4 26.77 16 1848.7 65.33 107 
WIN Unlim. 197.9 35.47 16 7271.3 91.65 103 
CMB 4 1005.6 26.38 79 4733.9 30.22 360 
CMB 8 1104.0 38.47 73 4467.0 38.00 299 
CMB 12 1434.0 49.61 78 5083.9 49.17 276 
CMB 15 1665.9 56.05 79 5602.7 56.46 263 
CMB 20 1790.3 64.02 69 8249.0 66.39 299 
CMB 30 1884.5 65.86 69 11590.8 78.46 268 
CMB Unlim. 4657.1 86.18 69 - - - 
MAD 4 1885.9 3.77 14 9771.0 4.85 95 
MAD 8 1820.1 6.27 13 9937.4 7.64 94 
MAD 12 1813.3 5.96 13 10478.3 11.39 95 
MAD 15 1817.2 5.96 13 9182.0 14.26 80 
MAD 20 1823.6 5.96 13 9228.2 18.76 76 
MAD 30 1831.2 5.95 13 9352.0 19.87 76 
MAD Unlim. 1851.3 7.46 13 13801.5 47.54 73 

 
Table 1. RSDVI Computational Results on Diagonal Tests 

 
step (CPUMaster(%)). The row labeled as Unlim. corresponds to no restriction in the 
storage requirements on the number of extreme points. It must be noted that the RSDTA 
algorithm discards an extreme point always that its baricentric coordinate is zero after a 
master problem step even if there is no limitation in the storage of extreme points 
whereas the RSDVI  does not  and the vertex is kept for subsequent iterations. For this 
reason in Table 2 the maximum number of vertexes reached during the execution is 
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 RSDTA Computational Results (STOPPING GAP 1%) 
NO INTERACTION TESTS 

NET  Low Congestion  High Congestion 
WORK Maxver CPUTotal CPUMp(%) Niter CPUTotal CPUMp(%) Niter 

SIO 4 0.969 50.65 6 3.212 63.57 21 
SIO 8 0.911 54.43 (4) 6 2.747 67.64 15 
SIO 12 0.913 54.77 (4) 6 2.731 67.68 (8) 15 
SIO 15 0.906 54.20 (4) 6 2.735 67.65 (8) 15 
SIO 20 0.908 54.36 (4) 6 2.729 67.69 (8) 15 
SIO 30 0.908 54.36 (4) 6 2.729 67.69 (8) 15 
SIO Unlim. 0.909 54.31 (4) 6 2.732 67.63 (8) 15 
BCN 4 366.6 15.99 34 1182.9 17.98 121 
BCN 8 277.2 22.89 25 1201.9 26.83 109 
BCN 12 274.6 25.12 (10) 24 1087.6 34.69 87 
BCN 15 275.0 24.98 (10) 24 1105.4 39.27 82 
BCN 20 274.8 25.10 (10) 24 1252.7 49.23 78 
BCN 30 275.6 25.16 (10) 24 1156.7 45.29 (23) 78 
BCN Unlim. 275.5 25.15 (10) 24 1156.6 45.29 (23) 78 
WIN 4 197.6 19.92 22 1199.9 24.70 156 
WIN 8 207.8 28.08 21 1270.5 36.02 140 
WIN 12 178.1 26.79 (9) 18 1403.0 45.86 131 
WIN 15 178.5 26.85 (9) 18 1556.3 52.51 127 
WIN 20 178.2 26.91 (9) 18 1688.1 60.83 113 
WIN 30 178.2 26.91 (9) 18 1688.1 60.83 113 
WIN Unlim. 178.2 26.93 (9) 18 1805.5 63.09 (28)114 
CMB 4 1033.8 28.35 82 3644.1 29.24 284 
CMB 8 1188.7 40.02 80 4570.8 40.64 295 
CMB 12 1421.7 49.62 80 4999.9 51.43 269 
CMB 15 1609.4 55.63 79 5809.8 58.13 273 
CMB 20 1849.5 62.80 76 7279.7 66.75 271 
CMB 30       
CMB Unlim. 2063.9 67.47 (30) 74 15377.0 86.07 (49)239 
MAD 4 1492.5 3.22 12 9843.9 4.52 96 
MAD 8 1609.4 4.28 (9) 13 10492.8 7.49 98 
MAD 12 1608.9 4.32 (9) 13 9924.7 10.68 89 
MAD 15 1607.9 4.30 (9) 13 10681.6 13.48 92 
MAD 20 1611.4 4.31 (9) 13 10021.5 17.01 82 
MAD 30 1609.5 4.32 (9) 13 9794.8 17.86 (25) 81 
MAD Unlim. 1609.5 4.32 (9) 13 9794.8 17.86 (25) 81 

 
Table 2. RSDTA Computational Results on Diagonal Tests 

 
specified in parenthesis when it is less than the limit Maxver. 
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Figures 2. Comparison RSDTA vs RSDVI on NITER (nb. iterations), 

 CPU TIME and Master Problem Percentual Time. 
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For the SIO network the specialized code RSDTA shows  better computer times and 
number of iterations to reach the 1% gap level. When the network size increases then 
both algorithms present a very similar performance as shown for BCN, WIN, CMB and 
MAD networks provided that the number of vertexes is limited to Maxver. When the 
number of vertexes is not limited  then the RSDTA algorithm presents a clear advantage 
because the master problem size is smaller as the extreme points with null baricentric 
coordinate are dropped from the working set. Thus keeping all generated vertexes up to 
the current iteration in the master problem step adds an unnecessary computational 
burden to the algorithm. 
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Figure 3. Effect of the precision (Stopping gap) on the number of iterations. RSDVI code. 
 

 
The effect of the requested precision in the completion of executions is quite similar in 
both computer codes (RSDTA and RSDVI): accuracy increments the number of 
iterations until convergence in a nonlinear way that mainly depends on the level of 
congestion (the more congested  the more iterations required for convergence) and the 
severity of BPR link cost functions (the more severity the more iterations). A detailed 
study of the large computer time for convergence in CMB tests shows that the severity 
in the definition of delay functions is the cause of the behaviour. Extra computer tests 
have been performed with relaxed delay functions and reveal a computer time reduction 
for convergence. 
 
The effect of congestion on convergence is well known and our purposes were 
acomplished when computer results lead to an almost identical behaviour of both 
algorithms. 
 
Table 3. This table is graphically depicted in Figure 4 and represents the effect of 
asymmetry in computer times. In general, master problem resolution phase increases its 
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portion of the global CPU time consumption. The number of iterations for convergence 
in the unlimited master resolution strongly increases under asymmetric presence; in the 
limited master size version is not clear, because the effect of the limitation and the 
asymmetry are combined and more detailed computer tests should be performed. 
Tunning master problem parameters, for each network, is critical. 
 
 

  RSDVI  Computational Results (STOPPING GAP 2.5%) 
ASYMMETRIC TESTS 

LEVEL NET  Low Congestion  High Congestion 
ASIMM

. 
WORK Mxver CPUTotal CPUMp Niter CPUTotal CPUMp Niter 

NONE BCN 8 180.7 65.8 17 590.7 216.6 62 
NONE BCN Unlim. 187.7 78.3 16 1047.4 772.0 45 
NONE WIN 8 130.2 33.8 11 240.2 78.4 21 
NONE WIN Unlim. 133.4 37.5 11 317.5 159.5 21 
25% BCN 8 393.4 255.3 21 1654.1 1306.0 58 
25% BCN Unlim. 556.3 416.9 21 7627.1 7294.0 55 
25% WIN 8 256.7 148.0 13 1715.7 1282.7 71 
25% WIN Unlim. 264.0 155.6 13 10679.7 10275.2 66 
50% BCN 8 460.6 326.8 20 2357.0 1996.8 58 
50% BCN Unlim. 692.8 556.0 20 17129.4 16746.8 61 
50% WIN 8 320.2 196.6 15 1793.4 1406.7 59 
50% WIN Unlim. 413.7 290.5 15 10879.6 10491.9 59 
75% BCN 8 515.3 380.5 20 NO CONV.     
75% BCN Unlim. 771.9 634.8 20 NO CONV.    
75% WIN 8 243.6 135.3 12 1508.0 1137.0 53 
75% WIN Unlim. 290.6 182.9 12 11798.2 11403.6 57 

Table 3RSDVI Computational Results on Asymmetric Tests 
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Figure 4. RSDVI general tests. Comparison of the number of iterations until convergence (2.5%)  
 for two levels of maxver: 8 and unlimited. 
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7 Conclusions 
 
While the RSDVI algorithm solves the variational inequality formulation of a fixed 
demand traffic assignment  with link dependencies, the RSDTA algorithm solves just 
the diagonal case. The computational performance of  both  algorithms RSDVI and 
RSDTA have been compared on a set of  test networks and special care has been 
devoted in the adaptation of the codes so that both run in “equity of conditions”: a) the 
subproblem step is solved using the same shortest path algorithm and no post ordering 
is used to evaluate the solution flow of this step and b) the master problem step is 
solved by means of an approximation to the VI problem (or optimization problem for 
the RSDTA algorithm) on a convex hull of the set of extreme points and it must be 
noted that this process has contributed to the enhancement of the computational codes. 
After examining the results it can be concluded that both algorithms have approximately 
the same performance on diagonal problems for medium to large size networks and that 
therefore the advantages of using a code to solve a more general model are highlighted. 
For non diagonal problems the effects of asymmetries on the performance of the RSDVI 
algorithm results on the increase of the CPU time required, but the extension of the 
RSDTA algorithm into a diagonalization scheme to solve general problems may not be 
computationally competitive. 
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