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We present a first-principles computational study of solid “He at 7 = 0 K and pressures up to ~160 GPa.
Our computational strategy consists in using van der Waals density functional theory (DFT-vdW) to describe
the electronic degrees of freedom in this material, and the diffusion Monte Carlo (DMC) method to solve
the Schrodinger equation describing the behavior of the quantum nuclei. For this, we construct an analytical
interaction function based on the pairwise Aziz potential that closely matches the volume variation of the
cohesive energy calculated with DFT-vdW in dense helium. Interestingly, we find that the kinetic energy of solid
“He does not increase appreciably with compression for P > 85 GPa. Also, we show that the Lindemann ratio in
dense solid “He amounts to 0.10 almost independently of pressure. The reliability of customary quasiharmonic
DFT (QH DFT) approaches in describing quantum nuclear effects in solids is also studied. We find that QH
DFT simulations, although provide a reasonable equation of state in agreement with experiments, are not able to
reproduce correctly these critical effects in compressed *He. In particular, we disclose huge discrepancies of at
least ~50% in the calculated “He kinetic energies using both the QH DFT and present DFT-DMC methods.
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I. INTRODUCTION

Solid helium typifies an extreme quantum condensed-
matter system. Due to the light mass of the atoms and weak
interparticle interactions, quantum nuclear delocalization ef-
fects become crucially important in this crystal. At absolute
zero temperature, *He atoms move agitatedly around the
equilibrium positions of their hexagonal closed packed (hcp)
lattice, producing unusually large kinetic energies (that is,
comparable in magnitude to the potential energy), and major
anharmonic effects [1-3].

In order to fully understand and make quantitative pre-
dictions on the quantum nature of solid 4He, it is necessary to
solve the corresponding Schrodinger equation. This represents
an extremely challenging mathematical problem due to the
complexity of the calculations involved and large number of
nuclear and electronic degrees of freedom to be considered.
Fortunately, at normal conditions helium atoms are, from
an electronic band-structure point of view, very elementary
particles thereby the “He—*He interactions can be effectively
modeled with simple analytical expressions that exclusively
depend on the interatomic distances (e.g., Lennard—Jones-
and Aziz-like potentials) [4,5]. By making use of these
simplifications and employing advanced quantum simulation
methods (e.g., quantum Monte Carlo), it has been possible
to determine with tremendous accuracy and computational
efficiency the ground-state properties of solid “He [5,6]. The
same kind of approach has been successfully applied also to
the study of similar systems like H,, LiH, LiD, and Ne [7-11].

A fundamental question that remains to be answered at
the quantitative level is: how important quantum nuclear
effects turn out to be in solid helium (and other quantum
crystals) under increasing pressure? As compression is raised
the repulsive electrostatic interactions between neighboring
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clouds of electrons increase and consequently the atoms
remain closer to their equilibrium positions in order to
minimize the potential energy, E,.. By other side, due to
the noncommutativity between the position and momentum
quantum operators, whenever atomic localization increases
so does the kinetic energy, Eyi,. Namely, pressure acts by
incrementing both Ej, and E\, energies, and it is not explic-
itly known how the |Ey;n/Epy| Tatio, which can be regarded
as a quantum level indicator of the system, evolves under
compression. Answering to this and other similar questions is
of paramount importance for modeling of materials in Earth
and planetary sciences, since light weight species like “He
and H, are believed to be abundant in the interior of celestial
bodies. More precisely, determining the exact role of quantum
nuclear effects in compressed quantum crystals will allow
to justify or disapprove the use of approximate approaches,
routinely employed in high-pressure studies (e.g., Debye and
quasiharmonic models) [12—-19], for estimation of “zero-point
energies” and related quantities (e.g., phase transitions and
atomic structure).

Quantifying the exact evolution of the energy in *He under
pressure, however, is not a simple task. Since compression
profoundly affects the electronic structure of materials, the in-
teraction models which at low pressures describe successfully
“He atoms or H, molecules turn out to be unreliable at high- P
conditions. This fact seriously hinders the application of quan-
tum Monte Carlo methods to their study. From an ideal point of
view, one would like to describe both the electronic and nuclear
degrees of freedom in quantum crystals fully from first princi-
ples, that is, without relying on any substantial approximation
to the atomic interactions. Nevertheless, such a strategy,
although in principle is technically possible, it would require of
an enormous amount of computational effort. Thus, in practice,
effective and simpler quantum simulation methods able to
deal with large systems (i.e., composed of 100-1000 atoms)
are highly desirable.
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In this work, we present a comprehensive computational
study of the energy and structural properties of hcp “He at
T =0 K and pressures up to ~160 GPa, based exclusively
on first-principles methods. In particular, we employ density
functional theory (DFT) to access the electronic band structure
of the crystal and the diffusion Monte Carlo (DMC) method to
solve the time-dependent Schrodinger equation governing the
behavior of the quantum nuclei. The effective pair interaction
between nuclei is constructed by fitting the static compression
curve obtained with DFT to an analytical function based on the
Aziz potential [4] and an attenuation repulsion factor proposed
by Moraldi [20]. We find that the |Ey,/Epo| ratio in solid
“He is overall depleted with increasing pressure due to very
small (large) increase of Exi, (Epor) at compressions larger than
~85 GPa. In particular, the “*He kinetic energy increases by no
more than ~15 K in the pressure interval 85 < P < 150 GPa.
Such a small Ey, increase illustrates the unique ability
of “He atoms to remain extraordinarily delocalized within
extremely dense environments as a result of quantum cor-
relations. Accordingly, we find that the Lindenmann ratio
in compressed 4He (P > 15 GPa) amount to 0.10 almost
independently of the pressure. Furthermore, we assess the
performance of approximate quasiharmonic DFT methods
in evaluation of kinetic energies at 7 =0 K and find
that, in the best of the cases, these approaches exceedingly
overestimate Eyj, by ~50%. Quasiharmonic approaches also
turn out to be inadequate in describing the size of the “He
displacements around their equilibrium lattice positions. Thus
we resolve that quasiharmonic DFT methods are not able to
describe the ground-state properties of dense helium correctly.
The main conclusions presented in this work can be extended
to other light and weakly interacting species like, for
instance, H,, methane (CH4), and ammonia (NHj3), wherein
quantum nuclear effects are expected to be also critically
important [21-25].

The organization of this article is as follows. In the next
section, we briefly explain the fundamentals of the methods
employed and provide the technical details in our calculations.
There, we present also our modeling strategy of the atomic
interactions in solid “He at high P. Next, we present our
results for the equation of state, | Exin/ Epo| ratio, and structural
properties of solid helium, together with some discussion.
Finally, we summarize our main findings in Sec. IV.

II. COMPUTATIONAL METHODS

In this work, density functional theory (DFT) provides the
basis for our understanding of the electronic structure of solid
“He under pressure. In particular, we use the DFT output to
construct an effective pairwise potential that makes it possible
to simulate quantum helium crystals with the diffusion Monte
Carlo (DMC) method at low computational cost. In the next
subsections, we briefly explain the basics of the DFT and DMC
methods and present our proposed and easy-to-implement
parametrization of the “He—*He interactions at high pressures
(i.e., up to ~160 GPa). Also we review the main ideas of
the quasiharmonic approach, which is customarily employed
for the estimation of zero-temperature kinetic energies in
computational high- P studies.
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A. Density functional theory

DFT is a first-principles approach, which has allowed for
accurate and reliable knowledge of a great deal of materials
with exceptional computational affordability [26,27]. There
is only one uncontrollable approximation in DFT, namely,
the functional used for the exchange-correlation energy Ej..
There is abundant evidence showing that commonly used Ey
functionals yield accurate results for a range of properties
of metallic and nonmetallic crystals, including the equilibrium
lattice parameter, elastic constants, phonon frequencies, 7 = 0
equation of state (EOS) and solid-state phase boundaries
[28-30].

It must be noted, however, that standard DFT methods
do not describe properly long-range dispersive interactions
in solids, like for instance van der Waals (vdW) forces, due to
the local nature of the employed Ey. approximations [31,32].
Also, it is well-known that such a type of interactions plays
a critical role in the cohesion of helium at low pressures.
Nevertheless, short-range effects in rare-gas systems become
increasingly more relevant as pressure is raised. Consequently,
the description of helium and other similar materials attained
with standard DFT becomes progressively more accurate as
density is increased [33,34]. In spite of this fact, we explic-
itly treat dispersive interactions in this work by employing
Grimme’s vdW approach [36] and the exchange-correlation
functional due to Perdew et al. [35] (hereafter denoted as
PBE-vdW). As it will be shown later, considering long-range
vdW interactions in our calculations has imperceptible effects
on the final conclusions.

A completely separate issue from the choice of Ey is the
implementation of DFT, which mainly concerns to the way in
which electron orbitals are represented. Here, we have chosen
the PAW ansatz [37,38] as implemented in the VASP code [39]
since it has been demonstrated to be greatly efficient [40,41].
Regarding other technical aspects in our DFT calculations,
the electronic wave functions were represented in a plane-
wave basis truncated at 500 eV, and for integrations within
the first Brillouin zone (BZ) we employed dense I'-centered
k-point grids of 14x14x14. By using these parameters we
obtained interaction energies that were converged to within
5 K per atom. Geometry relaxations were performed by using
a conjugate-gradient algorithm that kept the volume of the
unit cell fixed while permitting variations of its shape, and the

imposed tolerance on the atomic forces was 0.005 eV A
With this DFT setup, we calculated the total energy of solid

4He in the volume interval 3 < V < 16 10\3/ atom.

B. Zero-point energy within the quasiharmonic approach

In the quasiharmonic (QH) approach, one assumes that
the potential energy of a crystal can be approximated
with a quadratic expansion around the equilibrium atomic
configuration of the form

1
Eharm = Eeq + E Z QIKa,I’K/a’ulKaul’K/a’v (1)
lka,l'k'a’
where Eq is the total energy of the undistorted lattice, ®
the force-constant matrix, and u;, is the displacement along
Cartesian direction o of the atom « at lattice site /. Usually,
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the associated dynamical problem is tackled by introducing

Uiea() =Y geaexpli (@t —gq-A+1I)l, ()
q

where ¢ is a wave vector in the first Brillouin zone (BZ) defined
by the equilibrium unit cell; I + 7, is the vector that locates the
atom « at cell / in the equilibrium structure. Then, the normal
modes are found by diagonalizing the dynamical matrix

1 .
ZCDOKa,l’K’a/ exp [lq : (TK - l, - TK/)]ﬂ

Dq;Ka,K’ot’ -
N

3

and thus the material is treated as a collection of noninteracting
harmonic oscillators with frequencies wy, (positively defined
and nonzero) and energy levels

Ej = (3 + 1)y, 4)

where 0 < n < oco. Within this approximation, the Helmholtz
free energy of a crystal with volume V at temperature 7T is
given by

1 . [ hogs (V)
Fharm(V,T) = EkBT Zln |:2 sinh (2;;7)} B (5)
qs

where N, is the total number of wave vectors used in the BZ
integration, and the explicit V dependence of the frequencies is
indicated. In the limit of zero-temperature, Eq. (5) transforms
into

1 1
Enam(V) = A qZ 5 hogs(V), (6)

which usually is referred to as the “zero-point energy” (ZPE).
We note that in many computational high-P studies ZPE
corrections turn out to be decisive in the prediction of accurate
transition pressures, which involve two crystal structures with
similar E.q energies [12,13,42].

In order to compute the QH free energy of a crystal, it
is necessary to know its full phonon spectrum. For this, we
employ here the “direct approach” and DFT calculations.
In the direct approach, the force-constant matrix is directly
calculated in real-space by considering the proportionality
between the atomic displacements and forces when the former
are sufficiently small [43,44]. In this case, large supercells have
to be constructed in order to guarantee that the elements of the
force-constant matrix have all fallen off to negligible values
at their boundaries, a condition that follows from the use of
periodic boundary conditions [45]. Once the force-constant
matrix is obtained, we can Fourier-transform it to obtain the
phonon spectrum at any ¢ point.

The quantities with respect to which our QH DFT calcula-
tions need to be converged are the size of the supercell, the size
of the atomic displacements, and the numerical accuracy in the
calculation of the atomic forces and BZ sampling. We found
the following settings to fulfill convergence of ZPE corrections
to within 5 K/atom: 4x4x3 supercells (i.e., 48 repetitions
of the hcp unit cell containing a total of 96 atoms), atomic
displacements of 0.02 A, and special Monkhorst-Pack [46]
grids of 12x12x12 g points to compute the sums in Eq. (5).
Regarding the calculation of the atomic forces with VASP,
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FIG. 1. Phonon spectrum of solid *He calculated at high pressure
with DFT using two different exchange-correlation energy function-
als, one of which takes into account long-range attractive van der
Waals interactions (see text).

we found that the density of k points had to be increased
slightly with respect to the value used in the energy calculations
(i.e., from 14x 14x 14 to 16 x 16x 16) and that computation of
the nonlocal parts of the pseudopotential contributions had
to be performed in reciprocal, rather than real, space. These
technicalities were adopted in all our force-constant matrix
calculations. The value of the phonon frequencies and ZPE
energies were obtained with the PHON code due to Alfe [45].
In using this code, we exploited the translational invariance
of the system to impose the three acoustic branches to be
exactly zero at the I" ¢ point, and used central differences in the
atomic forces (i.e., we considered positive and negative atomic
displacements). As an example of our phonon frequency
calculations, we show in Fig. 1 the full “He phonon spectrum
computed at P ~ 40 GPa. It is noted that the effect of
considering van der Waals forces there is remarkably small.

C. Construction of the effective interatomic potential Vy,,

In a previous work, we demonstrated that the semi-
empirical pairwise potential due to Aziz [4] is not appropriate
to describe solid “He at pressures higher than ~1 GPa [28].
The Aziz potential, Va,i,(r) (where r represents the radial
distance between a pair of atoms), is composed of two
basic contributions: (1) Vie,(r), which is short-ranged and
repulsive and accounts for the electrostatic and Pauli-like
interactions between close electrons, and (2) Viona(7), which
is long-ranged and attractive and describes the interactions
between instantaneous and induced multipoles created in the
electron clouds. As pressure is raised, electronic repulsion
prevails over attraction, namely Vi, 3> Viond. In the Aziz
case, however, we found that Vi, is unrealistically too large
at small ». In order to ammend this flaw, we performed a
series of DFT (PBE-vdW) energy calculations considering
different configurations in which *He atoms were fixed on their
equilibrium hcp positions. Subsequently, we fitted a modified
version of the Aziz potential, hereafter denoted as Va,i, . m(7),
to our DFT (PBE-vdW) results. The form of this modified Aziz
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potential is based on the model proposed by Moraldi for solid
H, [20], which reads

Vazizm(r) = Vrep(r) Sau(r) + Voona(r). @)

In the above equation, Vi, and Viong are the original repulsive
and attractive parts found in the Aziz potential, respectively,
and fy is an attenuation repulsion factor of the form

R C«’lll
Jau(r) = exp | —Aay < :tt - 1> r < Ry,

1 r > Ry, (8)

where Ay, Ray, and Cyy are parameters to be determined.

In our fitting strategy, rather than trying to match the set of
calculated DFT energies, we pursued to reproduce the static
DFT equation of state [i.e., Psic = —d Eppr(V)/dV]. In fact,
the physics contained in any pair of potential functions V;(r)
and V,(r) = Vo(r) + Vi (where Vj is a constant) is the same,
hence the truly important quantities to reproduce are variations
of the total energy with respect to the atomic positions (e.g.,
pressure and atomic forces). For this, we fitted the DFT
energies to a third order Birch-Murnaghan equation of the
form [47]

3
Eeq(V) = Ep + EVOBO
2 4/3)
X VO 3 VO
_X (0 S B, DAY i
><|: 2(‘/) +4(+X)<V)

3 Vo\¥P 1 3
_5(1+X)(7> +E<X+5)]’ )

[where Ey and By = VOZZTE are the values of the energy and
bulk modulus at the equilibrium volume Vj, respectively,
X = %(4 — B(/)) and B(/) = (dBy/d P), with derivatives eval-
uated at zero pressure] and searched iteratively for the fy
parameters, which better reproduced the DFT Py, (V) curve
obtained with the PBE-vdW functional. Our best fit was
attained with A, = 0.95, Ry = 2.34 A, and C, = 1.50,
which constitutes our choice of the effective Aziz-M potential.

In Fig. 2, we compare the repulsive core of the original
and modified Aziz potentials. Due to the analytical form of
function fuy, the Va,i,-m(r) potential displays a positive slope
at distances comprised in the interval 0 <r < d ~ 1.0 A.
This feature is manifestly incorrect since it promotes the
overlapping of atoms at high densities. Following the strategy
explained in Ref. [48], we have corrected for such a flawed
behavior by introducing the new potential function

VarizB(r) = Vazizm(r)OF — Re) + Vip(r)O(R, — 1), (10)

where ®(x) is the Heaviside function, and Vrep(r) a function
that is analytically equivalent to Vi, but with the two parame-
ters entering its expression adjusted to match the first derivative
of Vazizm(r) at R, = 1.3 A (i.e.,&@ = 18.745 and B = 13.143,
to be compared with o = 10.433 and = —2.280 appearing
in the original V., (r) factor; see inset in Fig. 2). Function
Vaziz-g(r) with parameters R,, &, and B , constitute our choice
of the effective Aziz-B potential in the remainder of this article.
As itis shown in Fig. 2, excellent agreement between the static
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FIG. 2. (Color online) Calculated static equation of state of solid
helium (i.e., considering immobile nuclei at the equilibrium lattice
positions) using DFT (PBE-vdW) and two effective pairwise interac-
tion models, namely the well-known Aziz potential and the modified
version Aziz-B. (Inset) Comparison of the repulsive cores of the Aziz,
Aziz-M, and Aziz-B potential models.

equations of state calculated with DFT (PBE-vdW) and the
Aziz-B potential is obtained.

D. Diffusion Monte Carlo method

DMC is an accurate computational method that provides
the exact (i.e., within statistical errors) ground-state energy
of a bosonic many-body interacting system [49-51]. The
Hamiltonian governing our system is

hz N N
DOVEED Vs, (11)

2mye

H=-—

i=1 i<j

where mye is the mass of a ‘He atom, r;; the distance
between atoms composing a i, j pair, and Vfﬁ(r,- /) a pairwise
interatomic model (i.e., Va,, and Va,,.p, see Sec. I1C).
The DMC method is based on a short-time approximation
for the Green’s function, corresponding to the imaginary
time-dependent Schrodinger equation, which is solved up to a
certain order of accuracy within an infinitesimal interval At.
For a detailed description of the DMC technique, we address
the interested reader to Refs. [28,49-53].

The guiding wave function used in this work for importance
sampling corresponds to the extensively tested Nosanow-
Jastrow model [54-56]

N N
Y (e, ey) = [ [Reip [ Jade =R, (12)

itj i=1

with £(r) = ¢~ 2" and g(r) = e 2", and where a and b
are variational parameters. This model is composed of two-
body correlation functions f,(r) deriving from the interatomic
potential, and one-body functions g;(r) that localize the
particles around the positions of the equilibrium lattice {R;}.
The Nosanow-Jastrow model is not Bose symmetric under
the exchange of particles however ¥y has been shown to
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FIG. 3. (a) Dependence of the ground-state energy calculated
with the DMC method on the critical population of walkers. The
dashed line corresponds to a (monotonically decreasing) inverse
power-law fitted to the calculated Epyc(n,,) energies, whereas the
horizontal solid line marks the plateau that is reached at 1000 < n,,
values. (b) Dependence of the total energy calculated with the
VMC method on the number of particles. Extrapolation to the
thermodynamic limit is achieved through a linear fit.

provide very accurate energy and structure results in DMC
simulations [57]. We note that the parameters contained in
¥y are optimized with the variational Monte Carlo technique
(VMC) at each considered density [49]. For instance, at

p=0.06A", weobtain b =2.94 A anda = 3.21 A", and

atp=033A" b=184A,anda =29.08 A",

Our DMC calculations need to be converged with respect
to the time step Art, critical population of walkers n,,, and
number of particles N. We have adjusted At and n,, in order
to eliminate any possible bias coming from them. In particular,
these are 107* K~! and 103, respectively. In Fig. 3(a), we
demonstrate that the selected n,, value perfectly guarantees
proper convergence of the total ground-state energy. In fact,
we do not observe the monotonically decreasing 1/r law
reported in Ref. [58] [see Fig. 3(a)]. Finite size errors
have been corrected by following the variational approach
introduced in Ref. [28], which proved to be very accurate in
describing solid “He at moderate pressures. Namely, the total
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FIG. 4. (Color online) Zero-temperature equation of state of he-
lium calculated with different methods and considering exact (i.e.,
Aziz and Aziz-B) and approximate (i.e., PBE and PBE-vdW)
estimation of quantum nuclear effects. Experimental data found in
Ref. [59] are shown for comparison. (Inset) The high- P region in the
EOS is zoomed in to appreciate better the differences.

ground-state energy of the system is computed as Epmc(00) =
Epmc(No) + AESH (Ny), where

AE{L/lIi\l/IC(NO) = E\OfoMC - EC]K/IC (13)

In the equation above, energy superscripts indicate the number
of particles, Ny = 180 is the number of atoms employed in
the DMC simulations, and Evmc = (¥ny|H[¥ng) /(Wnsl¥ns)
is the variational energy calculated with the guiding wave
function (12). The variational energy in the N — oo limit,
ERyc» is estimated by successively enlarging the simulation
box (i.e., up to 1584 particles) at fixed density and performing a
linear extrapolation to infinite volume. Indeed, this procedure
turns out to be computationally affordable within VMC but
not within DMC. In Fig. 3(b), we show a test case in
which the adequacy of the linear extrapolation in Evyc(N)
is demonstrated.

III. RESULTS AND DISCUSSION

In Fig. 4, we show the calculated equation of state (EOS)
in solid “He using (i) DFT and quasiharmonic zero-point
energy corrections [i.e., curves PBE and PBE-vdW where
Eprr(V) = Eeq(v) + Enam(V), see EqS' (6) and (9)], and
(ii)) DMC with the effective pairwise potentials Va,, and
Vaziz-B- For comparison purposes, we include also experimen-
tal data from Ref. [59]. Very good agreement is found between
experiments and the calculated DMC(Aziz-B) and QH DFT
equations of state. In contrast, results obtained with the original
Aziz potential and the DMC method largely overestimate
the measured pressures (as it was already expected, see
Sec. IIC). The P(V) curves shown in Fig. 4 are based on
the E(V) parametrization introduced in Eq. (9). The optimal
parameters obtained in the DMC(Aziz-B) case are V(PMC =

15.92 A3, BPMC = 2.66 GPa, and xPMC = —0.086; and in the

DFT(PBE-vdW) case: VOFT = 1223 A®, BPFT = 6.38 GPa,
and xPfT =0.026 (relative errors associated to these
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TABLE 1. Energetic and structural properties of dense “He computed with the DMC method and Aziz-B pairwise model interaction (see
text). Ny = 180 and stands for the number of atoms employed in the DMC simulations. Zero-point energies, Ep,m, obtained within the QH
DFT approach are enclosed for comparison. Energies are expressed in units of Kelvin and the statistical uncertainties are within parentheses.

v (A% P (GPa) B (GPa) Epyc AES (Ny) Eyin Epam y

11.13 2.0 (1) 9.8 (1) 401.8 (1) —42(1) 174.6 (1) 373 (5) 0.12 (1)
8.35 6.6 (1) 24.1 (1) 1124.8 (1) —-7.9(1) 265.9 (1) 585 (5) 0.11 (1)
6.68 14.2 (1) 46.7 (1) 2281.1 (1) —15.8 (1) 347.9 (1) 831 (5) 0.10 (1)
5.57 25.4 (1) 78.6 (1) 3843.9 (1) —242(1) 419.9 (1) 978 (5) 0.10 (1)
4.77 40.6 (1) 121.6 (1) 5761.7 (1) —34.3(1) 479.0 (1) 1132 (5) 0.10 (1)
4.17 60.3 (1) 176.6 (1) 7971.7 (1) —47.5 (1) 522.1 (1) 1314 (5) 0.10 (1)
3.71 84.8 (1) 243.6 (1) 10413.5 (1) —64.2 (1) 556.2 (1) 1515 (5) 0.10 (1)
3.34 114.5 (1) 324.9 (1) 13026.6 (1) —81.7 (1) 567.0 (1) 1714 (5) 0.10 (1)
3.04 149.9 (1) 419.9 (1) 15760.1 (1) —99.1 (1) 571.9 (1) 1906 (5) 0.10 (1)

quantities typically are 1%-5%). Upon inspection of Fig. 4,
one may arrive at the following conclusions: (i) long-range van
der Waals interactions are second order in compressed solid
“He thus there is not a real need to consider them in practical
simulations, and (ii) quasiharmonic approaches based on DFT
appear to be reliable methods for predicting zero-temperature
EOS in compressed quantum crystals.

In Fig. 5, we enclose the bulk modulus of “He, B(V) =
—V(dP/dV)y, calculated with the QH DFT and DMC
methods (see also Table I). Experimental data from Ref. [60]
are also shown for comparison. As in the previous case, we find
notable agreement between the DMC(Aziz-B), QH DFT and
experimental results, which further demonstrates the reliability
of our devised pairwise potential model. We must note here
that analysis of the elastic properties in dense helium is beyond
the scope of the present work. In fact, it has been known
for some time that in order to attain a realistic description
of elasticity in rare gases under pressure, it iS necessary to
consider many-body interactions beyond pairwise [61,62]. We
therefore leave the study of these important physical quantities
to future work.
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QH DFT (PBE)
140 } QH DFT (PBE-vdW) |
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120 | DMC (Aziz-B) —— |
Experiment —e—
100} 140 T T T T
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o 80r
m
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0
4

V (A¥atom)

FIG. 5. (Color online) Calculated “He bulk modulus with differ-
ent methods and (i.e., Aziz and Aziz-B) and considering approximate
(i.e., PBE and PBE-vdW) estimation of quantum nuclear effects.
Experimental data found in Ref. [60] are shown for comparison.
(Inset) The high-P B region is zoomed in to appreciate better the
differences.

As we mentioned in Introduction, the |Ey/Epy| ratio
can be regarded as a qualitative indicator of the degree of
quantumness of a condensed matter system at 7 =0 K.
Actually, the larger the kinetic energy, the more important
quantum nuclear effects are. For instance, in liquid *He at the
equilibrium density, Eyi, amounts to 14.6 K, which is equal
to the ~67% of the potential energy (in absolute value) [5].
In the quasiharmonic DFT approach, the | Ey,/ Epo| Tatio can
be estimated as |Epym/Eeql [see Eq. (6)]. Meanwhile, in the
DMC approach, both E},o and Eyi, = E — Epo energies canbe
computed exactly (we note that for evaluation of E,, we have
employed the pure estimator technique [63,64]) and hence so
the |Eyin/Epo| ratio. In Fig. 6, we enclose our |Eyi,/Epo
results obtained with the QH DFT and DMC methods and
expressed as a function of pressure (see also Table I). There, it
is shown that at pressures below ~20 GPa “He behaves as an
extreme quantum crystal, wherein the atomic kinetic energy
is of the same order of magnitude than the cohesive energy.
We also find that the quantum character of solid helium, as

0.7 ' ' ' : | |
a QH DFT (PBE-vdW) ~ ©
! DMC (Aziz-B) o
06 F |% -
2000 | ™
05 | P e "1
— 1500 | o ]
& o4t [ 17
\: ..' -
ﬁ sl W—t—_ J
o2t N\ e % o 150
............................... —
01t -
0 . - : : ' I
: p” 100 150

P (GPa)

FIG. 6. |Eyn/Epo| quantum indicator calculated considering
exact (DMC) and approximate (QH DFT) estimation of zero-
temperature quantum nuclear effects, expressed as a function of
pressure. (Inset) Zero-temperature kinetic energy of solid helium
calculated with the DMC and quasiharmonic DFT approaches,
expressed as a function of pressure. The dashed and solid lines are
guides to the eye.
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quantified with the | Eyin/ Epot| Tatio, is progressively depleted
with raising pressure. This occurs because the increase in
potential energy caused by compression largely surpasses the
accompanying increase in the kinetic energy (see Table I).
Actually, in Fig. 6, we report the explicit variation of the kinetic
energy with pressure: it is found that Ey;, increases noticeably
from equilibrium up to compressions of ~85 GPa, however,
at larger P, it just grows slightly (see Table I). In particular,
Exin increases by no more than ~15 K in the pressure interval
85 < P < 150 GPa. Such atiny P-induced kinetic energy gain
constitutes an original finding, and we will comment again on
this in the next paragraphs. Meanwhile, we find that at any
conditions the |Eyin/Epy| ratio calculated with QH DFT is
significantly larger than the values obtained with DMC. In
particular, the Ey,m(P) curve displays always a large positive
variation with increasing P, and it lies widely above Eyj,(P).
In fact, kinetic energy discrepancies with respect to the
DMC(Aziz-B) results amount to at least ~50% (see Fig. 6 and
Table I). These huge differences indicate that despite QH DFT
approaches may provide reasonable EOS (essentially because
at high pressures Ey;, is always small as compared to Epo),
these cannot reproduce accurately quantum nuclear effects in
dense helium. This conclusion is of fundamental relevance
to computational work done in high pressure science, where
“zero-point energy” corrections usually turn out to be decisive
in the prediction of phase transitions. Namely, according to
our analysis QH DFT approaches may fail significantly at
determining the T = 0 K phase diagram of substances in which
quantum nuclear effects are predominant [21,65,66].

The almost flat Ey;,(P) curve obtained at P > 85 GPa
constitutes an original, and to some extent unexpected, finding.
Aimed at better understanding the origins of this effect, we
computed the “He Lindemann ratio y = /(u?)/a (where
the quantity in the numerator represents the averaged mean
squared displacement of the atoms taken with respect to their
equilibrium hcp positions) as a function of pressure with the
DMC and pure estimator techniques [63,64]. The Lindemann
ratio results enclosed in Fig. 7 and Table I show that the size
of the “He displacements around their equilibrium positions

0.16 ; ' ' : I |
QH DFT (PBE-vdW) —&—
DMC (Aziz-B) ~—e—
0.14 | -
0.12 -
o
E d
T 01 t : I -
C
£
g 008 —— -
A I b E—
0.06 | -
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0.02 ' ' ' I | I
: - 100 150
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FIG. 7. “He Lindemann ratio calculated with exact (DMC) and
approximate (quasiharmonic DFT) methods, expressed as a function
of pressure. The dashed and solid lines are guides to the eye.
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FIG. 8. Radial atomic distribution function calculated with tohge
DMC method and pure estimator technique at V = 6.7 and 3.0 A",
employing the modified Aziz-B pairwise potential. (Inset) The
intermediate region is zoomed in for a better appreciation of the
results. Lines correspond to Gaussian fits performed in the displayed
r interval.

does not shrink appreciably with compression: y remains
almost constant around 0.10 at P > 15 GPa. This finding is
consistent with the already disclosed Ei,(P) curve: 4He atoms
can persist chiefly delocalized over ample pressure intervals
in which their kinetic energy does not increase appreciably
as a result of their quantum correlations. Meanwhile, “He
Lindenmann ratios calculated with the QH DFT approach
(where (ud;) is estimated as 972 /8y Enarm [11,67]) exhibit
a monotonous decrease with increasing pressure and do not
agree with the DMC results obtained at high P (see Fig. 7).
These large discrepancies show that structural details in dense
quantum solids can neither be described correctly with QH
DFT approaches.

In Fig. 8, we report the calculated radial distribution
function of “He atoms, wu(r), around their equilibrium hcp
lattice positions at two different volumes, using the DMC
and pure estimator techniques [63,64]. In both cases, it is
appreciated that the possibility of finding an atom at a distance
larger than ~0.4 A from its lattice site is practically zero.
As density is increased, the value of the wu(r) function at the
origin increases noticeably whereas the variations on its tail
turn out to be less significant (see inset in Fig. 8). This finding
is consistent with the y results explained above and illustrates
the high degree of atomic delocalization in dense solid helium.
In the same figure, we show Gaussian fits to the p(r) results
performed in the radial distance interval r < 0.5 A Itis found
that these curves reproduce very well the computed w(r)
profiles (in fact, reduced chi-square values associated to our
data fitting are close to unity). Also, we estimated the kurtosis
in the three Cartesian directions (i.e., ¢ = (u*)/(u?)?2 —3)[11]
and found values compatible with zero in all the cases (i.e.,
0.01 —0.001).

Finally, in Fig. 9, we enclose the radial pair distribution
function calculated in dense *He, considering both the Aziz-B
and Aziz interaction models, with the DMC and pure estimator
techniques [63,64]. It is observed that the ground-state system
rendered by the Aziz-B interaction is less structured than
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FIG. 9. Radial pair distribution function calculated with the DMC
method and pure estimator techniques at volumes (a) V = 6.7 and (b)

3.0 AS, employing the original and modified Aziz pairwise potentials.

the one obtained with the original Aziz potential, due to its
softer core. The position of the g(r) maxima, however, roughly
appear at the same distances in both cases.

IV. CONCLUSIONS

We have performed a computational study of the quan-
tum nuclear effects in compressed *He at zero temperature

PHYSICAL REVIEW B 91, 024103 (2015)

by relying exclusively on first-principles methods. For the
description of the electronic degrees of freedom, we employ
a nonstandard implementation of density functional theory
(DFT) which is able to deal efficiently with long-range van
der Waals interactions. For the simulation of quantum nuclear
effects, we employ the diffusion Monte Carlo method and a
modified version of the pairwise Aziz potential, Aziz-B, that
closely reproduces the static compression curve obtained with
DFT. The Aziz-B potential is softer than Aziz one at short
distances in a way that is rather similar to the behavior observed
in molecular hydrogen [20,48]. This softening of the potential
wall is an effective pairwise approximation to many-body
interaction terms which, according to our DFT results, are
predominantly attractive [68]. In fact, the Aziz-B interaction
model introduced in this work may be used by others for the
simulation of solid *He at high pressures and low temperatures.
We find that when solid helium is compressed, the resulting
gain in potential energy largely surpasses the accompanying
increase in the kinetic energy. In particular, we show that
the kinetic energy of *He atoms increases very slightly under
compression at pressures larger than ~85 GPa. Also, we find
that the Lindemann ratio in dense solid helium amounts to
0.10 almost independently of pressure. These results evidence
the presence of strong quantum correlations in compressed
‘He crystals, which allow the atoms to remain remarkably
delocalized over a wide range of pressures. In addition to this,
we perform analogous calculations using the quasiharmonic
DFT approach. We find that this method, which customarily is
employed in computational high- P studies, cannot reproduce
with reliability the kinetic energy and structural traits of
compressed “He at zero temperature. In particular, the kinetic
energy discrepancies found with respect to the full quantum
calculations amount to at least 50%. The conclusions presented
in this work are of critical importance for modeling of light and
weakly interacting materials (e.g., Hy, CH4, and NH3) done
in high-pressure studies and related to Earth and planetary
sciences.
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