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Abstract—Sinusoidally fed permanent magnet synchronous 
motors (PMSM) fulfill the special features required for traction 
motors to be applied in electric vehicles (EV). Among them, axial 
flux permanent magnet (AFPM) synchronous motors are 
especially suited for in-wheel applications. Electric motors used 
in such applications must meet two main requirements, i.e. high 
power density and fault tolerance. This paper deals with the 
optimal design of an AFPM for in-wheel applications used to 
drive an electrical scooter. The single-objective optimization 
process carried out in this paper is based on designing the AFPM 
to obtain an optimized power density while ensuring appropriate 
fault tolerance requirements. For this purpose a set of analytical 
equations are applied to obtain the geometrical, electric and 
mechanical parameters of the optimized AFPM and several 
design restrictions are applied to ensure fault tolerance 
capability. The optimization process is based on a genetic 
algorithm and two more constrained nonlinear optimization 
algorithms in which the objective function is the power density. 
Comparisons with available data found in the technical 
bibliography show the appropriateness of the approach 
developed in this work. 

Keywords—Permanent magnet; fault tolerance; 
optimization;genetic algorithm. 

NOMENCLATURE 

PR:  Rated power 
m:  Number of phases 
m1:  Phases per stator. It is unity in the case of one stator 
p: Number of pole pairs 
f: Electric frequency 
Q: Number of slots in the stator 
Ke: EMF factor incorporating the winding distribution 

factor and the radio between the area spanned by the 
salient poles and the total air gap area 

Ki: Form factor of the electric current wave = Ipk/IRMS 
Kp: Form factor of the electric power wave 
Kcu: Slot fill factor 
Kc:  Carter coefficient 
η:  Overall machine efficiency 
Bg: Air gap flux density 
Bcs: Stator core flux density 
As:  Stator electrical loading 
fb: Rated or base converter frequency 

ωb: Base angular electrical frequency = 2πfb 
p: Pole pairs number 
Nph: Number of turns per phase 
Le: Effective stack length 
Lr: Rotor axial length 
Lcr: Rotor core axial length 
Ls: Stator axial length 
Lcs: Stator core axial length 
LPM: Permanent magnets axial length 
g: Air gap length 
Br:  Remanent flux density of the permanent magnets 
Bu:  Attainable flux density on the surface of the 

permanent magnets 
Bcr: Flux density in the rotor core 
Bcs: Flux density in the stator core 
Js:  Current density 
μr,PM:  Relative permeability of the permanent magnets 
Kd:  Flux leakage factor 
Wcuo: Outer protrusion in the radial direction of the end 

winding 
Wcui: Inner protrusion in the radial direction of the end 

winding  
Do: Outer surface diameter of the AFPM 
Dt: Total outer diameter 
Dg: Average diameter 
Di: Inner diameter 
Kl: Aspect ratio coefficient = Dg/Le  
λ: Ratio between the inner and outer diameters = Di/Do 
Is,N: Rated stator current 
Vph,N: Rated phase-to-neutral voltage ߰N: Nominal flux linkage 
 

I.  INTRODUCTION  

Electric vehicles (EVs) are attractive due to several benefits 
compared to internal combustion engine powered vehicles, 
including low emissions, higher efficiency, quieter operation, 
less maintenance costs, stronger acceleration or lower fuel 
price, among others. However, their main drawbacks are 
associated to batteries, which have a limited driving range, long 
recharge time and high cost [1].  
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In part due to the limitations of the battery pack, EVs 
require traction motors with especial features, including high 
efficiency [2], high power and torque density, compactness, 
precise torque control, extended speed range [3,4]. Sinusoidally 
fed PMSMs are also compatible with adjustable speed ac 
inverter drives since they are compatible with advanced control 
techniques thus transferring them of enhanced controllability 
when compared to rectangular-fed brushless dc permanent 
magnet motors (BLDC) [5]. Due to the abovementioned 
appealing features, sinusoidally fed PMSMs are being applied 
as traction motors in EVs.  

AFPM synchronous motors are disc-shaped and very 
compact, therefore being a valid solution for direct drive in-
wheel applications [6]. The direct drive motor allows 
simplifying the mechanical structure of the vehicle, thus 
increasing overall efficiency and minimizing vehicle weight. 
AFPMs also show an inherent anti-lock braking system (ABS) 
capability since they can generate a negative torque [7]. In 
addition, kinetic energy can be recovered during braking stages 
by applying a regenerative braking strategy. Due to their disc-
like shape, AFPMs allow different designs including multiple 
or single air gaps, with slots or slot less configurations or 
ironless designs [8]. These types of machines are often 
classified into internal stator (torus) and internal rotor 
topologies, depending on the function of the central disk. The 
torus topology includes both NN and NS configurations, 
where NS refers to a north pole N facing a south pole S placed 
at the other side of the stator [7]. 

This paper deals with the internal stator or torus topology, 
which has two outer rotor discs in a NN configuration. The 
axially magnetized permanent magnets are glued to both inner 
faces of the rotor discs. The stator is made of strip wound steel 
and contains concentrated back-to-back connected windings 
wounded inside the slots [8]. These radial windings, which are 
wounded in the radial direction, are required to produce the 
electromagnetic torque. Due to the multiple air gaps 
configuration, the use of back-to-back windings allow 
minimizing copper losses due to the reduced end windings 
length when compared with other configurations, thus 
enhancing overall efficiency [3].  

Fig. 1 shows a dual outer rotor AFPM topology with NN 
configuration. 

Fig. 1. Dual rotor AFPM torus topology with NN configuration.  

Electric machines have a large number of design 
parameters. Therefore obtaining an optimized design is a 
challenging task because of the high number of sets of possible 
solutions involved. The joint use of accurate analytical sizing 
equations combined with the application of optimization 
algorithms based on artificial intelligence can help researchers 

and engineers to obtain an improved and faster solution of this 
complex problem.  

Therefore, design optimization of electric machines is 
nowadays receiving much attention as deduced from the 
number of recently published papers in this topic [9, 10]. This 
paper is focused to obtain an optimal solution among the huge 
set of possible solutions by using computationally efficient 
optimization algorithms leading to a global optimum solution 
while minimizing the computational burden. 

Fault tolerance is a must in safety-critical applications such 
as in automotive applications. In this paper a set of analytical 
equations are applied to obtain the geometrical, electric and 
mechanical parameters of the optimized AFPM and several 
design restrictions are applied to ensure fault tolerance 
capability. Some requirements must be accomplished to design 
fault tolerant machines, including in electric, magnetic, 
physical, and thermal isolation among phases [11], so phase-to-
phase faults probability is minimized [12]. To this end, single-
layer fractional slot concentrated windings are particularly 
appropriate. 

In this paper a dual outer rotor AFPM with NN 
configuration for automotive applications is optimized by 
applying accurate analytical sizing equations and taking into 
account fault tolerant constraints assuring a design suited for 
high requirements applications. To this end three constrained 
nonlinear optimization algorithms, which include a genetic 
algorithm (GA) have been applied to optimize the motor when 
the objective function to be optimized (maximized) is the 
power density.  

II. THE ANALYZED AFPM MACHINE 

The AFPM optimized in this paper is an in-wheel motor 
for an urban scooter. Fig. 2 shows the main machine 
dimensions whereas Table I shows the main motor parameters 
[13] as well as some of the restrictions considered in the 
design and optimization processes.  

 
Fig. 2. Motor main dimensions.  



As shown in Fig. 2, trapezoidal magnets are used since this 
geometry allows minimizing the torque ripple in this kind of 
machines [3].  

TABLE I. MAIN PARAMETERS OF THE ANALYZED AFPM 
Dimensional constraints 

Machine outer diameter Do < 300 mm 

Inner to outer diameter ratio λ  = Di/Do 0.40 – 0.75 

Stator slots Q 18 
Motor effective axial length Le < 200 mm 
Air gap length g 0.5 - 2.5 mm 
Air gap flux density Bg 0.35 – 0.95 T  

Material limitation 
Max. stator and rotor core flux 
densities 

Bcs, Bcr  < 1.5 T 

PM remanence Br 1.3 T 
PM relative permeability μr 1.05 

Requirements 
Rated line-to-line voltage VL-L < 100 V 
Input phase current (peak value) Is,peak < 20 A 
Number of phases m 3 
Number of stators m1 1 
Output power Pout 1 kW 
Base electrical frequency fb 50 Hz 
Pole pairs p 8 
Motor efficiency η > 80%  
Electric loading As 10 - 30 kA/m  
Air gap flux density Bg 0.35 – 0.95T 
Current density Js 3.5 A/mm2  
Ratio of the average to the peak air 
gap flux density αl 0.48 

Aspect ratio coefficient Kl 0.7 
Electrical power waveform factor Kp 0.5 
Current wave form factor Ki √2
EMF factor Ke 0.692/η 
Copper fill factor Kcu 0.228 
Carter coefficient Kc 0.8 
Peak corrected factor of the air gap 
flux density 

Kf 0.8 

Leakage flux factor Kd 2/π 
 

III. ANALYTICAL SIZING EQUATIONS OF THE AFPM 

In this section the equations to size the AFPM are 
described. An analytical expression of the sizing equation for 
axial flux permanent magnet synchronous machines is given 
in [13], 

ோܲ = ௠௠భ గଶ ௦ܣ௚ܤߟ௟ܭ௣ܭ௜ܭ௘ܭ ௙௣ (1 − (ଶߣ ଵାఒଶ  ௘ (1)ܮ௢ଶܦ

 
where the physical variables and parameters in (1) are defined 
in the nomenclature section. 

The selection of the ratio λ = Di/Do between the inner and 
outer diameters is critical in order to optimize machine 
performance, since it greatly influences the magnetic and 
electrical loadings. Although according to [14] the maximum 
value of λ is 

ଵ√ଷ, in practice λ usually lies between 0.6 – 0.8 to 

maximize the maximum torque to weight ratio. 
The machine total outer diameter Dt is related to the 

protrusion Wcuo of the end windings in the radial direction 
from the iron core [9] as, ܦ௧ = ைܦ + 2 ௖ܹ௨௢  (2) 

 
Protuberances exist in both the axial and radial directions 

of the AFPM. The amplitude of the protrusions is related to 
the stator electrical loading ܣ௦, current density ܬ௦, and copper 
fill factor ܭ௖௨ as, 

௖ܹ௨௢ = ට஽೚మାరಲೞವ೒಼೎ೠ಻ೞି஽೚ଶ ,   ௖ܹ௨௜ = ට஽೔మାరಲೞವ೒಼೎ೠ಻ೞି஽೔ଶ      (3) 

  
The effective stack or axial length of the AFPM depends 

on the of rotor and stator axial lengths as,  ܮ௘ = ௦ܮ + ௥ܮ2 + 2݃   (4) 
 

The axial length of the stator is related to the stator core 
axial length and the amplitude of the protrusions by, ܮ௦ = ௖௦ܮ + 1.6 ௖ܹ௨௜  (5) 

 
where the axial length of the stator core may be calculated 

from the magnetic flux density in the air gap Bg, the stator core 
flux density ܤ௖௦ and the ratio λ = Di/Do as, ܮ௖௦ = ஻೒గ஽೚(ଵାఒ)஻೎ೞସ௣    (6) 

 
Similarly, the axial length of the rotor ܮ௥ may be obtained 

from the axial length of rotor core ܮ௖௥ and the length of the 
permanent magnets ܮ௉ெ as, ܮ௥ = ௖௥ܮ + ௉ெܮ ௉ெ   (7)ܮ = ఓೝ,ುಾା஻೒଴.ଽହ஻ೝି భ಼೏஻ೠ (݃ + ௖ܹ௨௜)  (8) 

 
Note that (8) depends on the PM relative permeability and 

remanent flux density, ߤ௥,௉ெ and ܤ௥ respectively, the flux 
density ܤ௨ at the surface of the PMs, and a flux leakage factor ܭௗ. 

The axial length of the rotor core ܮ௖௥ may be expressed as: ܮ௖௥ = ஻ೠగ஽೚(ଵାఒ)଼஻೎ೝ௣    (9) 

  .௖௥ being the flux density in the rotor coreܤ 
Since the PMs are placed in the rotor discs, whereas an AC 

magnetic flux flows through the stator core, the flux flowing 
through the rotor core is almost constant.  

According to [13] there is a link between the electric 
frequency and the stator core flux density, which may be 
expressed as, ܤ௖௦ = ൜ 5.47݂ି଴.ଷଶ	T		݂ > 1.7ݖܪ40 − 1.8	T					݂ ≤  (10)  	ݖܪ40

In addition, the rotor core flux density should be within the 
interval, ܤ௖௥ = 1.6 − 1.8	T   (11) 

The air gap flux density in an AFPM may be expressed as: ܤ௚ =  ௨   (12)ܤௗܭ
 

The electrical loading As in AFPMs is a function of the 
machine average diameter Dg: ܣ௦ = 2݉ ௣ܰ௛ ூೞ,ಿగ஽೒    (13) 



where Dg is calculated as, ܦ௚ = (஽೚ା஽೔)ଶ     (14) 

 
The number of slots per phase and per phase and pole pair 

and per pole are calculated respectively as, ݍ௠௣ = ௠௣ݍ (15)    ݉/ܳ =  (16)    ݉݌/ܳ
 

The number of turns per phase is calculated as, ݊௦ = ௣ܰ௛/(17)    ݍ 
 

The air gap inductance is defined by, ܮ௚ = ௡ೞమఓೝ,ುಾఓబఏ೎(஽೚మା஽೔మ)௞೏଼(௅ುಾାଶఓೝ,ುಾ௞೎௚)   (18) 

 
where θc = 2π/2p is the angular coil pitch. 
The slot inductance is obtained as, ܮ௦ = ݊௦ଶ ቂఓబௗయଷ௪ೞ್ + ఓబௗమ଴.ହ(௪ೞା௪ೞ್)ቃ ቀ஽బି஽೔ଶ ቁ (19) 

 
ωsb being is the slot width; ωs the slot opening, d2 the stator 
slot tip length and d3 the conductor slot depth as shown in Fig. 
2.  

Therefore the phase inductance is calculated as, ܮ௣௛ = ௚ܮ)௠௣ݍ2 +  ௦)   (20)ܮ
 

The slot resistance is calculated from the conductor 
resistivity ρ and the cross-section Sq as, ܴ௦ = ఘ௡ೞమ(஽೚ା஽೔)ଶ௞೎ௌ೜    (21) 

 
The phase resistance is calculated from the slot resistance 

as, ܴ௣௛ =  ௠௣ܴ௦   (22)ݍ2
 

The magnitude of the phase impedance results in, ܼ௣௛ = หܴ௣௛ +  ௣௛ห   (23)ܮ݆߱
 

The peak value of the electromotive force is obtained as, ܨܯܧ௠௔௫ = ௘ܭ ௣ܰ௛ܤ௚ ௙௣ (1 −  ௢ଶ         (24)ܦ(ଶߣ

 
The peak value of the stator current is calculated as, ܫ௦,௠௔௫ = ௜ܭߨ௦ܣ (ଵାఒ)ଶ ஽೚ଶ௠ே೛೓								             (25) 

 
Finally, the power density is calculated as: ௗܲ௘௡ = ௉ഏర஽೚మ௅೐                      (26) 

IV. RESTRICTIONS FOR MAXIMIZING FAULT TOLERANCE 

To ensure a high level of fault tolerance in electric 
machines, the phase windings should be arranged in 
independent modules, i.e. they should avoid as much as 
possible electric, magnetic, physical and thermal coupling [15, 
16]. Magnetic isolation allows minimizing voltages induced in 
adjacent phases due to a fault current in the damaged phase. In 
addition, both physical and thermal isolation reduce the risk of 
faults between phases. Non-overlapping windings provide 

minimum mutual inductance between phases, thus minimizing 
interactions between the faulty phase and the others, so they 
are highly recommended in fault tolerant machines. 

Restrictions imposed in this paper to ensure a high level of 
fault tolerance capability in the analyzed three-phase AFPM 
are summarized below [16], 
1. Non-overlapping single-layer fractional-slot concentrated 

windings are used. However, because of the low winding 
factor of single-layer windings, p should be similar but not 
equal to Q. Therefore, the following relationship between 
the number of stator slots Q and the number of pole pairs p 
should be accomplished: 2p = Q ± 2.  
 

2. When dealing with single-layer windings, the harmonic 
content of both the MMF and EMF is higher than in 
double-layer windings, thus increasing acoustic noise and 
torque pulsation levels [16]. This problem may be 
minimized by selecting a suitable slot/pole ratio. The 
number of stator teeth must be an even multiple of the 
number of phases to reduce acoustic noise and vibrations, 
thus extending the service life of the shaft bearings. This 
results in Q = 6n, where n is an integer number [16]. This 
condition can be expressed as, ܳ ± 2 =  (27)              ݌2

 
3. To increase the phase inductances and reduce the short 

circuit currents, the slots in the stator should be deep 
enough [12]. The phase inductance calculated as ZL = 
EMF/Is must be close to 1 p.u., i.e. ܼ௣௛ =  ௕   (28)ܮߨ

 
where the base value of the phase inductance Lb is calculated 
as, ܮ௕ = ట್ூೞ,ಿ      (29) 

 
And the base value of the flux linkage is defined as,  	ܾ߰ = ܾ߱ܰ,ℎ݌ܸ    (30) 

 ߱௕ = ߨ2 ௕݂ being the base electrical angular frequency.  
Both the air gap and slot impedances Lg and Ls in (18) and 

(19), respectively, are adjusted during the optimization process 
to obtain unity phase impedance according to (28). 

V. THE OPTIMIZATION FUNCTIONS DEALT WITH 

In this paper three optimization methods have been 
applied, namely genetic algorithm (GA), fmincon and 
fminimax solvers already implemented in the Matlab® 
environment. 

Genetic algorithms (GAs) are a family of mathematical 
methods widely applied to solve optimization problems both 
constrained and unconstrained. GAs are search methods based 
on genetics and natural selection [10] and are being applied in 
the field of design optimization of electric machines [9,14]. In 
the case of electrical machines design optimization, GA 
searches the space of the motor parameters emulating genetic 
reproduction mechanisms, crossover, and mutation with the 
objective of obtaining an optimal design. GA recurrently 
modifies the population of individual solutions by randomly 



selecting at each step individuals from the current population. 
Therefore, GA generates in at each iteration a population of 
individuals, the best one approaching a local optimal solution. 
These selected specimens are the parents which generate the 
children individuals for the subsequent generation. This 
process is repeated over successive generations with the 
finality of obtaining population individuals evolving toward an 
optimal solution. GA may be applied to solve different 
optimization problems which cannot be solved by traditional 
methods that use the gradient information of optimization 
since GA doesn’t use the gradient information. Therefore, GA 
may be applied even in problems with highly nonlinear, non-
differentiable or stochastic objective functions [17]. 

In order to generate the next generation of individuals from 
the current population, GA uses the following rules at each 
step,  
4. Individual’s selection (parents) for the next generation. 
5. Crossover operators which usually combine two parents’ 

solutions to generate offspring or children solutions for the 
next generation. 

6. Mutation operators which allow maintaining genetic 
diversity from one generation to the next. They apply 
random changes to individual parents and to children 
solutions. 

Fig. 3 summarizes the steps involved in the GA method. 

 
Fig. 3. Steps involved in the GA.  

In machine design, there are a considerable number of free 
parameters. When aiming for an optimal solution, the task 
becomes extremely complex due to the huge number of 
possible combinations, unless the number of these free 
parameters is limited to some extent. In this paper the 
following eight parameters have been taken as input of the 
optimization algorithms: inner to outer diameter ratio, air gap 
flux density, air gap length, electric loading, number of turns 
per phase, stator slot tip length, slot opening and slot width. 

In regards the coding part of the genetic algorithm, these 
parameters are taken as individuals, and then transformed into 
a binary string which will form the first chromosome. 

 
Fig 4. Chromosome representation 

In this study, the elitist method is used as the selection 
operator for scattered crossover. This method of reproduction 
generates a random binary vector, and then chooses the genes 
from the first parent in which the vector is a 1 and the genes 
from the second parent containing a 0, the combination of 
these genes forming the child. 

 
Fig 5. Scattered crossover representation. 

The mutation operation randomly generates directions 
which are adaptive with respect to the last unsuccessful or 
successful generation. This process is repeated over successive 
generations with the finality of obtaining population 
individuals evolving toward an optimal solution.  

Two more optimization solvers are used in this paper for 
comparison purposes, i.e. fmincon and fminimax. Both 
functions are included in the Matlab® Optimization Toolbox 
and can handle linear equalities and inequalities constraints, 
nonlinear inequality constraint functions and bound 
constraints. 

The fmincon solver performs a constrained nonlinear 
minimization whereas the fminimax solver performs a 
minimax optimization. 

Both fmincon and fminimax solvers are sequential 
quadratic programming (SQP) methods, i.e. nonlinear 
programming methods which allow solving constrained 
minimization problems. These quasi-Newton algorithms try to 
generalize the Newton's method to constrained optimization 
problems and are able to find local minima of constrained 
functions. They don’t calculate the Hessian matrix, instead it 
is approximated by calculating different gradient vectors.  

VI. RESULTS 

This section shows the results attained by applying the three 
aforementioned solvers, i.e. ga, fmincon and fminimax. Eight 
input variables which are shown in Table II are the input 
variables of the optimization algorithms in order to optimize 
the objective or fitness function, i.e. the power density.  

TABLE II. INPUT VARIABLES FOR THE OPTIMIZATION ALGORITHM 

Input variables to optimize the fitness function 

Input optimization variables Symbol Bounds 
Inner to outer diameter ratio λ  = Di/Do 0.40 – 0.75 
Air gap flux density Bg 0.35 –  0.95 T 
Air gap length g 0.5 –  2.5 mm 



Electric loading As 10 – 30 kA/m  
Turns per phase Nph 2 – 100 
Stator slot tip length d2 1 – 4 mm 
Slot opening ws 1 – 40 mm 
Slot width wsb 2 – 40 mm 

Variables involved in linear inequalities 

Variables Symbol Inequalities 
Machine outer diameter Do < 300 mm 
Motor effective axial length Le < 200 mm 
Axial length of permanent magnets LPM < 9 mm 
Input phase current (peak value) Is,peak < 20 A 

Simulation results presented in this section are compared 
with those provided in [18]. Results provided by this reference 
work were tested on laboratory. This comprehensive method 
allows designing an arbitrary-capacity multi-parameter double-
sided AFPM motor. Table III shows the results attained the 
optimization process when designing a standard AFPM, i.e. 
when no fault tolerant restrictions are applied. 

TABLE III. RESULTS ATTAINEDWHEN NO FAULT TOLERANCE RESTRICTIONS 

ARE CONSIDERED 
 Ref. [18] fmincon fminimax ga 

Pden [W/cm3] 0.360 0.382 0.382 0.374 

Do [m] 0.1640 0.1642 0.1642 0.1628 
Nph 70 70 73 73 

As [A/m] 15198 15000 15000 15100 

g [mm] 1.1 1.0 1.0 1.0 
Le [mm] – 82.6 82.6 84.5 

LPM [mm] 3.6 2.5 2.5 2.7 

Lcr [mm] 13.0 13.4 13.4 13.2 
Lcs [mm] 13.0 13.0 13.0 13.0 

Bg [T] 0.48 0.46 0.46 0.47 

λ [p.u.] 0.58 0.50 0.50 0.49 

η [p.u.] 0.915 0.950 0.940 0.948 

Values shown in Table III show that the results attained by 
applying the three optimization methods are similar to those 
presented in [18], thus validating the approach applied. 

Fig. 6 shows the evolution of the results attained by means 
of the three studied optimization algorithms. 
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Fig. 6. Fitness function variation when applying the fmincon, fminimax and ga 
solvers with no fault tolerant restrictions. 

According to the results presented in Fig. 6, both fmincon 
and fminimax algorithms are faster than ga in attaining the 
optimal solution, and in this specific case they also provide a 
better solution (higher power density).  

TABLE IV. RESULTS ATTAINED CONSIDERING FAULT TOLERANCE 

RESTRICTIONS 
 fmincon fminimax ga 

Pden [W/cm3] 0.331 0.322 0.352 
Do [m] 0.1654 0.1672 0.1637 

Nph 73 73 72 

As [A/m] 15000 14801 15000 
g [mm] 1 1 1 

Le [mm] 87.6 87.7 85.4 

LPM [mm] 1.8 1.6 2.3 
Lcr [mm] 11 11 12.4 

Lcs [mm] 13 13 13 
Bg [T] 0.44 0.43 0.45 

λ [p.u.] 0.44 0.43 0.46 

η [p.u.] 0.84 0.89 0.88 

By comparing the results shown in Tables III and IV, it is 
observed that when applying the fault tolerance restrictions the 
AFPM’s power density unavoidably decreases by a factor less 
than 8% in the case analyzed. In addition the efficiency also 
decreases approximately by 7%. In this case the ga solver 
provides the better solution. These results show the 
effectiveness of the ga solver in facing a nonlinear problem 
such as the fault tolerant design of an AFPM. 
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Fig. 7. Fitness function variation when applying the fmincon, fminimax and ga 
solvers with fault tolerant restrictions. 
 

VII. CONCLUSIONS 

In this paper an optimization process to design an in-wheel 
electric motor for an electric scooter has been analyzed. 
Concretely, a three-phase axial flux permanent magnet 
synchronous motor has been optimized based on in its power 
density by applying a set of sizing analytical equations which 
deal with the main geometrical, electric and mechanical 
parameters that define the machine. Comparisons with 
optimized motors data found in the technical literature show 
the accuracy of the applied approach since similar power 
densities are achieved in comparison with previous designs, 
even when applying fault tolerant constraints. As expected the 
efficiency is somewhat lowered in a fault tolerant machine 
mainly due to inductance constraint, because to achieve such 
high values of inductance an oversized stator is a must, 
although this could be overcome with an improved 
refrigeration system. In addition, fault tolerance conditions 



have been added to the optimization process in order to 
provide the new motor with fault tolerance capability, since it 
is required in safety-critical application such as the one 
analyzed in this paper. Results presented here shown the 
feasibility of the applied method to design electric motors with 
enhanced fault tolerance capability. In addition it has been 
shown that under this approach the power density of the fault 
tolerant optimized motor is decreased only by about 8% when 
compared with the reference optimized motor. 
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