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ABSTRACT 
 
Automated control of water systems (irrigation canals, navigation canals, rivers etc.) 
relies on the measured data. The control action is calculated, in case of feedback 
controller, directly from the on-line measured data. If the measured data is corrupted, the 
calculated control action will have a different effect than it is desired. Therefore, it is 
crucial that the feedback controller receives good quality measurement data. On-line fault 
detection techniques can be applied in order to detect the faulty data and correct it. After 
the detection and correction of the sensor data, the controller should be able to still 
maintain the set point of the system. 
In this paper this principle using the sensor fault masking is applied to model predictive 
control of open channels.  A case study of a reach of the northwest of the inland 
navigation network of France is presented. Model predictive control and  water level 
sensor masking  is applied. 
 

INTRODUCTION 
 
The last decades different automatic control strategies have been proposed for open 
channels management (Malaterre 1995). These strategies benefit from data provided by 
sensors and actuators connected to SCADA systems to provide more accurate control 
than manual operation. However, automatic control can be affected by faults in sensors 
and/or actuators. Hence it is crucial to detect and isolate these possible faults in order to 
avoid the possible effects of these faults in the behavior of the controlled system. Last 
years different works that deal with the problem of fault detection and isolation have been 
published (Blesa et al. (2010), Bedjaoui and Weyer (2011), Pocher et al. (2012), Nabais 
et al. (2013), Akhenak et al. (2013) and Horváth et al. (2014a)). Once the fault has been 
detected and isolated the fault can be accommodated in such a way that its effect is 
minimized in the controlled system using fault tolerant control (FTC) strategies (see 
Zhang and Jiang (2008)). The FTC strategies can be divided in two types: passive 
(PFTCS) and active (AFTCS). In PFTCS, controllers are fixed and are designed to be 
robust against a class of presumed faults. This approach needs neither FDI schemes nor 
controller reconfiguration, but it has limited fault-tolerant capabilities.  In contrast to 
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PFTCS, AFTCS react to the system component failures actively by reconfiguring control 
actions so that the stability and acceptable performance of the entire system can be 
maintained.  
 
This work deals with the problem of level sensor faults when using a MPC controller and 
an AFTCS strategy to maintain the level in an Inland Navigation as closest as possible to 
the optimal reference called the Normal Navigation Level (NNL) in the presence of 
sensor faults. In particular, sensor faults are detected and isolated using model-based set-
membership techniques (Milanese et al., 1996) that evaluate the available measurements 
with estimations provided by interval models that consider possible mismatches between 
the real system and ideal mathematical model by means of uncertainty in parameters and 
additive error. If the measurements are not inside the interval output of the set-
membership model a fault is proved to be in the system. These techniques have been 
demonstrated to be efficient for fault detection in open flow channels (Blesa et al. 2010). 
In this work, the fault detection is combined with control: once a fault has been detected, 
the magnitude of this fault can be estimated using a nominal model. This information is 
used for the masking sensor AFTCS technique described in (Wu et al. 2006). The 
corrected measurements with the fault estimation are sent to the Model Predictive Control 
scheme that uses the information of the sensors to compute the actuator actions to 
maintain as close as possible the levels of the open flow channel to the setpoint. 
 
The structure of the paper is the following. In section Methodology first the basic ideas of 
model based fault detection is presented including the model for fault detection, then the 
model predictive control described briefly including modeling. In the Application section 
the case study is presented, and then in the last section results are shown and discussed 
and finally in the Conclusion section the paper is concluded. 
 

METHODOLOGY 
 
Model based fault detection 
 
Model based fault detection is based on the comparison of the measured values and the 
modeled ones. A mathematical model of the system is established and run in real time. 
The output of the model is compared to the measured values. If the two results are not 
consistent a fault is detected. However, the difference between the modeled and measured 
values can be due to the model error or other unknown uncertainties. In order to take into 
account possible mismatches between the model and the real system to be monitored an 
interval model can be used, by having a certain uncertainty bound in each model 
parameter and in additive error. 
 
Interval models  
 
Let us assume that the system to be monitored can be modeled using a model which is 
linear in the parameters that can be expressed in discrete time regressor form, Moving 
Average (MA) model as follows: 
                     ˆ( ) ( , ) ( ) ( ) ( )y k k e k y k e k= τ + = +φ θ                         (1) 
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where 
-  ( , )k τφ  is the regressor vector of dimension 1 nθ×   which can contain any function of 
inputs ( )ku   and output ( )y k  . 
- τ  is the transport delay that is unknown but belong to a set of natural numbers:  
  with  0 , ττ λ ∈   and 0

ττ λ>  , τλ being the uncertainty on the time delay. 
-  ∈θ Θ  is the parameter vector of dimension  1nθ × .  
-  Θ  is the set that bounds parameter values. In particular, for interval models, the set of 
uncertain parameters is bounded by an interval box centered in the nominal parameter 
values: 
 1 1, ,n nθ θ

  θ θ × × θ θ   Θ       
where: 
           0

i i iθ θ −λ
  ; 0

i i iθ θ + λ

  i=1,…,  nθ, being 0
iθ   the nominal parameter values; 

- ( )e k  is the additive error bounded by a constant σ such that: ( )e k ≤ σ  . 
 
The parameter set Θ   and additive error bound σ   are calibrated using fault-free data 
from the system (rich enough regarding the identification point of view) and in such a 
way that all measured data in a fault-free scenario will be covered by the interval 
predicted output produced by using model (1), that is 
  
                          ˆ ˆ( ) ( ) , ( )y k y k y k ∈ −σ + σ                        (2) 
where 
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               (3) 

 
One of the key points in model based fault detection is how models are built and their 
uncertainty is estimated. The structure of the model, determined by  ( , )k τφ  and θ  , 
nominal parameters  0θ   and  nominal transport delay  0τ  can be obtained by the physical 
knowledge of the system or by conventional identification techniques (Ljung, 1999). The 
additive error bound  σ  can be computed by a noise study. The delay uncertainty  τλ   
can be determined considering that the input process signal is white noise and carrying 
out the study of the independence between the input and output process signals using 
confidence intervals (usually, 99% or 95%). On the other hand, given N measurements of 
outputs and inputs from a scenario free of faults and rich enough from the identifiability 
point of view, the uncertainty in parameters ( iλ , i=1,…,nθ) can by computed by solving 
an optimization problem (Blesa et al, 2010). 
     
Fault detection using interval models 
 
Once model (1) has been calibrated in a non-faulty scenario, it can be used for fault 
detection checking if  
                                       ( ) ( )y k k∉ϒ                        (4) 
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where ( )kϒ   is the direct image of the uncertain model defined as 

        
{ }{ }0 0 0ˆ ˆ( ) ( ) | ( ) ( , ) , , , , 1,

ˆ ˆ        ( ) , ( )

k y k e y k k e

y k y k

τ τ τ τϒ = + = ∈ ≤ σ τ∈ τ −λ τ − λ + τ + λ =

 = −σ + σ 

φ θ θ Θ 

            (5) 

In case that (4) is proved, a fault can be indicated, otherwise no fault can be indicated. 
Equivalently, the fault detection test (4) can be formulated in terms of the residual 
defined as 
                  ˆ( ) ( ) ( ) ( ) ( ) ( , ) ( )r k y k y k e k y k k e kτ= − − = − −φ θ               (6) 
Residual (6) corresponds to a MA parity equation (Gertler, 1998). Ideally, when 
modeling errors and noise are neglected, residual (6) should be zero in a fault-free 
scenario and different from zero, otherwise. However, because of modeling errors and 
noise, residuals can be different from zero in a non-faulty scenario. In order to take into 
account uncertainty in parameters and additive noise, the effects of these uncertainties 
will be propagated to the residuals defining the region of admissible residuals. A fault 
will be detected when zero does not belong to this set. Thus, the fault detection test is 
equivalent to check the following condition  
                                                     0 ( )k∉Γ            (7) 
where ( )kΓ  is the interval of possible residuals defined as follows  

{ }{ }0 0 0( ) ( ) | ( ) ( ) ( , ) , ,  , , 1,k r k r k y k k e eτ τ τ τΓ = = − − ∈ ≤ σ τ∈ τ −λ τ − λ + τ + λφ θ θ Θ   (8) 

This test based on the direct evaluation of the residual is known as the direct test (Blesa et 
al., 2011). 
 
FTC using Sensor fault masking 
 
Sensor fault  masking proposed by (Wu et al. 2006)  is a fault-tolerant control strategy  
that does not require any modification of the control law. Considering the feedback 
control scheme described in figure 1.(b), when a sensor fault occurs, the faulty 
measurements directly corrupt the closed-loop behavior (Ponsart et al. 2010).  
 

Controller Real system Sensor

Reference
y(k)

(a)

Controller Real system Estimator
Reference ycorr(k)

(b)

Sensor
u(k)

u(k)

y(k)

 
Figure 1. (a) Conventional feedback configuration (b) Fault-tolerant configuration 
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Moreover, the controller aims at cancelling the error between the measurement and its 
reference input. In faulty case, the real output is different from the desired value and may 
drive the system to its physical limitations or even to instability.  
 
Introducing the adaptive estimator of the fault magnitude yf , see figure 2. (b), a fault-
free estimation of the sensor magnitude  can be computed as 

( ) ( )corr yy k y k f= −                                                 (9) 
This estimation, decoupled from the fault effects, is used to compute the fault tolerant 
control law minimizing the effects on the system performance and safety.   
 
In case of using model-based techniques for FDI, the estimation provided by models can 
be used to estimate the fault magnitude. In particular, residual (6) can be approximated by 
 

( ) ( )
yf yr k s k f≈                                                      (10)    

as suggested in (Blesa et al, 2012), where ( )
yfs k  is the fault sensitivity, that in the case of 

output sensor fault at the fault appearance instant fk k= , ( ) 1
yf fs k = . Then, considering 

the nominal residual 
 
 0 0 0( ) ( ) ( , )r k y k k τ= −φ θ . (11) 
 
The fault estimation can be computed as 
 
 0( ) ( )y f ff k r k≈  (12) 
 
The estimated magnitude of the fault has the uncertainty equal to the uncertainty of the 
interval model (2). After the magnitude of the fault is calculated, the measured variable is 
replaced by the corrected one using (9). This will be used in the following step of the 
estimation algorithm for fault detection and also for the controller. 
 
The model for fault detection 
 
The fault detection module is using the Integrator Delay Zero model developed by Litrico 
& Fromion 2004b. The model is an extension of the Integrator Delay model (Schuurmans 
1995). The integrator delay model contains an integrator at low frequencies that accounts 
for the reservoir behavior of the channel: the water level is the sum of the discharge 
filling the tank. The delay accounts for the time it takes for the water volume to arrive to 
the measurement point. According to Litrico & Fromion (2004a) adding a zero to the 
model improves the high frequency behavior: with the help of the added zero the fast 
increase in the water level due to the change of discharge can be modeled. This property 
is crucial in the fault detection scheme. 
 
The parameters of the IDZ model can be obtained from the geometrical properties and the 
flow of the canal using the equations in (Litrico & Fromion 2004a). The discretized IDZ 
model can be described with the following equation: 
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( ) ( ) ( ) ( ) ( )

( ) ( )
11 1 1 12 1 1 21 2 2 22 2 2
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               ... 1n n n n n n
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+ = + − τ + − − τ + − τ + − − τ

+ + − τ + − − τ
         (13) 

 
Each water level is calculated using the same level in the previous step and the input 
discharges with the corresponding delays. Hence if there is a fault in one level sensor it 
will just effect the calculation of that level. In this way the isolation of the fault is 
immediate. 
 
Control scheme 
 
The canal is modeled by the Integrator Resonance (IR) model developed by van 
Overloop (2010) and has been already applied for irrigation canals (Horváth 2013, van 
Overloop et. al. 2014). The detailed modeling of the CFR with the Integrator Resonance 
model is presented in HIC, here only a brief summary is given. The IR model is specially 
developed for open channels affected by resonance. It acts as an integrator at low 
frequencies and at high frequencies it has a second order behavior modeling an 
underdamped wave. The transfer function between the input discharge and the water 
level can be written as 

 ( )
sA

Mr
ssA

pspspsg
ss

2
0

2
3

32
2

1

ω++

++
= .  (14) 

 
Due to its behavior in the frequency domain this model is especially suitable for 
controller design. 
 
Model predictive control is designed based on van Overloop (2006). The controller 
design is similar introduced in (Horváth 2013) and applied to this system in (Horváth et. 
al. 2014b). Each water level is modeled using the IR model. The parameters are obtained 
as described in the above literature: the backwater surface is approximated as the surface 
of the canal reach and the resonance frequency and the resonance peak is obtained from 
the Bode plot of the canal reach obtained according to (Litrico 2008). Each transfer 
function is obtained in the form of (13) and they are discretized using zero order hold. 
Then a state space model is constructed using the discretized transfer functions, where the 
state contains the water level errors and discharges, and the control action variable is the 
change in discharge.  
 

APPLICATION 
 
The FTC is applied to an open water channel used for navigation. The Cuinchy-
Fontinettes Reach (CFR) is part of the navigation system of the north of France. It is 
42km long, 50m wide and about 4m deep. In order to ensure the navigation, the water 
level should be maintained ±15 cm around the normal navigation level (NNL). The level 
is disturbed by the operation of the locks located at the downstream (lock of Fontinettes) 
and the upstream (lock of Cuinchy) end of the system. The downstream lock overcomes 7 
m (check) of water level difference, and it removes about 25000m3 of water. The 
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upstream lock is smaller and it feeds the reach with 3700m3. In order to keep the NNL 
there is a gate beside the lock in the upstream end: the gate of Cuinchy. Also in the 
middle of the reach there is the gate of Air, that permits flow in both directions (Figure 
1). The system has 4 input flows and 3 output levels to control. Detailed description of 
the case can be found in (Horváth et. al. 2014a). 
 

 
Figure 2: CFR system scheme 

 
Table 1: The geometrical parameters of the CFR 

Length, 
L 

(km) 
LCA 
(km) 

LAF 
(km) 

Width 
(m) 

Depth 
(m) 

Manning’s 
co. (-) 

Discharge 
(m3/s) 

42.3 28.7 13.6 52 3.8 0.35 0.6 
 
The CFR is modeled using the Simulation of Irrigation Canals hydraulic software 
(Malaterre & Baume, 1997). SIC is using a finite difference solution of the Sain-Venant 
equations to model the open channel flow. The controller was programmed in Matlab 
(Mathworks, 2008) environment. 
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Figure 3: CFR simulation block 

 
 

Table 2: The resonance characteristics of the CFR 
Res. freq (rad/s) Res. peak 

(s/m2) 
Backwater surface 

(m2) 
4.53*10-4 0.0057 2199600 

 
 

RESULTS 
 
The FTC is applied to the CFR. Three different magnitudes of faults (-5cm, -10cm and -
20cm ) are tested on the three different water level sensors, altogether nine scenarios. 
First, the results of the fault detection module are shown, then resulting controlled water 
levels are discussed.  
 
Figure 4 show the results of the fault detection. The introduced fault is after 6 hours as -
5cm, -10cm and -20 cm (increasing vertically) and shown by gray line. The same 
magnitude of faults are tested with the three measurement points. It can be seen that if a 
fault is present at Cuinchy (first column), it is detected in case of all magnitudes, with an 
error less than 1 cm. It can be seen that the fault is detected with no delay and there are 
no false alarms. Similar results can be seen for Aire (second column) and for Fontinettes 
(third column). The fault isolation can also be seen: only the corresponding fault signal is 
activated, the fault indicators of the other levels remain unchanged. 
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Figure 4: Different faults and detections, with gray line the magnitude of the fault, with 
black straight line the fault detection at Cuinchy, with black dashed line the fault 
detection at Aire and with gray dotted line the fault detection at Fontinettes 
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Figure 5: Water levels using MPC, a scenario without fault, Cuinchy: black, Aire: black 
dashed, Fontinettes: gray, the limit of navigation: dashed horizontal line 
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Figure 6: Discharges using MPC a scenario without fault, Cuinchy lock: gray dashed line, 
Cuinchy gate: black dashed line, Aire: black line, Fontinettes lock: gray 
 
In the following the controlled water levels and the control actions are shown in case of 
fault-free scenario. 
Figure 5 shows the controlled water levels with MPC. It can be seen that while the water 
levels keep on fluctuating due to the lock operations, all the three water levels are kept 
within the range of navigation.  
Figure 6 shows the control actions and the lock operations. It can be seen that the lock 
operations correspond to an abrupt change in discharge, especially in case of lock 
Fontinettes. The controller keeps the upstream input (gate of Cuinchy) constant, at the 
maximum in order to compensate the water volume taken out by the lock of Fontinettes. 
The input at Aire fluctuates. The gate movements might seem extensive, however, as the 
sampling time is one hour, the gate rests in the same position during one hour. 
 
Tables 3 and 4 show the performance indicators with faulty and faultless scenarios with 
and without using FTC. The first row contains the performance indicators as percentages 
in case of no fault – the scenario discussed above. The indicators are selected form the 
indicators suggested by Clemmens et. al. (1998) in order to measure the performance of 
control algorithms. For each indicator a maximum and an average value is given: these 
are obtained from the three different levels to be controlled. 
 
Table 3 summarizes the performance indicators without  FTC for the 9 different fault 
scenarios, 3 different fault magnitudes for 3 different sensors. The performance indicators 
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are detailed in Clemmens et. al. (1998), MAE: mean absolute error, IAE: integral of the 
absolute magnitude of error. The first line shows the reference values. It can be seen that 
as the magnitude of the fault increases (for example at Cuinchy: lines 2-4) the 
performance indicators are getting worse. For both indicators, the maximum and also the 
average values decreases in presence of faults. Similar tendencies are seen in each level. 
 
Table 3: Performance indicators of the controller without FTC 

Fault 
Location 

Fault 
Magnitude 

(cm) 
MAE 

Max (%) 
MAE 

Avg. (%) 
IAE Max 

(%) 
IAE 

Avg. (%) 
No Fault 0 4.2 3.5 2.0 1.5 
Cuinchy -5 4.2 3.8 2.4 1.8 

 
-10 4.7 4.1 2.7 2.0 

 
-20 5.7 4.9 3.3 2.6 

Aire -5 4.2 3.8 2.3 1.7 

 
-10 4.6 4.0 2.6 2.0 

 
-20 5.5 4.6 3.1 2.4 

Fontinettes -5 4.2 3.8 2.3 1.7 

 
-10 4.7 4.1 2.6 2.0 

 
-20 5.6 4.8 3.2 2.5 

 
The same scenarios are summarized in Table 4 using FTC. It can be seen that almost no 
deterioration is present in the performance indices. Only in case of Aire, the average of 
MAE and the maximum of IAE decreases by 0.1 %, in all the other cases the 
performance indicators remain the same. This is a considerable improvement compared 
to the faultless scenario. 
 
Table 4 Performance indicators of the controller with FTC 

Fault 
Location 

Fault 
Magnitude 

(cm) 
MAE 

Max (%) 
MAE 

Avg. (%) 
IAE Max 

(%) 
IAE 

Avg. (%) 
No Fault 0 4.2 3.5 2.0 1.5 
Cuinchy -5 4.2 3.5 2.0 1.5 

 
-10 4.2 3.5 2.0 1.5 

 
-20 4.2 3.5 2.0 1.5 

Aire -5 4.2 3.6 2.1 1.5 

 
-10 4.2 3.6 2.1 1.5 

 
-20 4.2 3.6 2.1 1.5 

Fontinettes -5 4.2 3.5 2.0 1.5 

 
-10 4.2 3.5 2.0 1.5 

 
-20 4.2 3.5 2.0 1.5 
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Now we focus on one of the fault scenarios discussed above, when there is a fault of -
20cm at the sensor of  Fontinettes. Figure 7 shows the measured water levels for this 
scenario. After 6 hours, the sensor has a fault of -20 cm. As the controller receives wrong 
data, it increases the water level and the real water level finally exceeds the navigation 
range. 
The same scenario is shown in Figure 8 but with using FTC. It is seen that all the water 
levels are within the navigation range. The water levels are similar compared to the 
faultless results (Figure 5). The FDI module managed to detect and approximate the fault 
in this way the controller is not affected. 
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Figure 7: Water levels using MPC without FDI, Cuinchy: black, Aire: black dashed, 
Fontinettes: gray, the limit of navigation: dashed horizontal line 
 

 



14  Planning, Operation and Automation of Irrigation Delivery Systems 

0 5 10 15 20
19.35

19.4

19.45

19.5

19.55

19.6

19.65

19.7
Water Levels

Time (h)

W
at

er
 le

ve
l (

m
)

 
Figure 8: Water levels using MPC with FDI, Cuinchy: black, Aire: black dashed, 
Fontinettes: gray, the limit of navigation: dashed horizontal line 
 
CONCLUSION 
 
Fault tolerant model predictive control scheme was developed and applied to a case study 
of open water channel. The fault detection scheme is able to detect single water level 
sensor errors and correct them in order to maintain the desirable control action. In the test 
scenario, in presence of sensor faults, the water levels cannot be kept within the interval 
that ensures navigability. By applying fault tolerant MPC, the water levels are kept 
withinn the range of navigation. 
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