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Abstract. With heterogeneous computing becoming mainstream, re-
searchers and software vendors have been trying to exploit the best
of the underlying architectures like GPUs or CPUs to enhance perfor-
mance. Parallel programming models play a crucial role in achieving this
enhancement. One such model is OpenCL, a parallel computing API
for cross platform computations targeting heterogeneous architectures.
However, OpenCL is a low-level programming language, therefore it can
be time consuming to directly develop OpenCL code. To address this
shortcoming, OpenCL has been integrated with OmpSs, a task-based
programming model to provide abstraction to the user thereby reducing
programmer effort. OmpSs-OpenCL programming model deals with a
single OpenCL device either a CPU or a GPU. In this paper, we upgrade
OmpSs-OpenCL programming model by supporting parallel execution of
tasks across multiple CPU-GPU heterogeneous platforms. We discuss the
design of the programming model along with its asynchronous runtime
system. We investigated scalability of four OmpSs-OpenCL benchmarks
across 4 GPUs gaining speedup of up to 4x. Further, in order to achieve
effective utilization of the computing resources, we present static and
work-stealing scheduling techniques. We show results of parallel exe-
cution of applications using OmpSs-OpenCL model and use heteroge-
neous workloads to evaluate our scheduling techniques on a heteroge-
neous CPU-GPU platform.

1 Introduction

In the past decade, in order to deliver performance improvements, micropro-
cessors vendors chose multi-core design paradigm to overcome memory, power
and ILP walls. Today, multi-core CPUs package multiple homogeneous cores
on a single die to increase data parallel computations. On the other hand,
GPUs, with immense data parallel processing capability, are being exploited
for general purpose computing (GPGPU) which traditionally handled graph-
ics computations. Offering massive data parallel computing power, GPUs have
become the focal point of today’s High Performance Computing (HPC). Con-
sidering the recent progress of major chip manufacturers it is very clear that



in the future, laptops to HPC systems will consist of heterogeneous computing
devices (CPU/GPU/DSP/FPGA). Thus presenting us with a hybrid/heteroge-
neous computing environment. This poses software developers with a significant
challenge of best utilizing the underlying hardware. To harness this immense
computing power for HPC, hardware vendors have built platform specific pro-
gramming models like CUDA[16]. However, these models are quite demanding
and involve significant software development time. Furthermore, these mod-
els suffer from portability issues, thereby pushing developers to rewrite code
for different platforms from scratch. This makes heterogeneous programming
quite tedious. In order to address this state of the art parallel programming,
Khronos group[11][15] came up with OpenCL, an open source, platform inde-
pendent, parallel computing API offering code portability. OpenCL solves the
problem of using heterogeneous computing environment with a single program-
ming model, but requiring significant programming effort for effective use. To
address this issue, our previous work [8] proposes OmpSs-OpenCL program-
ming model. It focuses on integrating OpenCL with OmpSs and discusses in
detail the abstraction of OpenCL features and the semantics of OmpSs-OpenCL
model. However, the model provides support either for a single GPU or a CPU.
In this paper, we enhance OmpSs-OpenCL
programming model to provide support for
parallel execution of tasks in a CPU-GPU het- _
erogeneous environment. Figure 1 depicts the Of:gﬁzm OmpSs Opencl
architectural overview of the OmpSs-OpenCL

programming model. The model includes the
Mercurium compiler and the Nanos runtime
system. The compiler does a source-to-source
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With OmpSs-OpenCL supporting parallel execution of tasks across hetero-
geneous devices, there arises an opportunity to schedule these tasks efficiently
across devices. In this paper, we discuss two scheduling methodologies namely
static and work-stealing strategy. The static scheduling follows user specification
of the target device for execution whereas the work-stealing essentially schedules
tasks to the device that is devoid of work. The major contributions of this paper
are the following:



e We enhance OmpSs-OpenCL model to support heterogeneous/hybrid envi-
ronment supporting parallel execution of tasks.

e We present the design of the programming model for CPU-GPU systems
and discuss its supporting runtime system.

e We discuss scalability and pre-fetching of OmpSs-OpenCL tasks and evaluate
proposed scheduling strategies using heterogeneous workloads.

This paper is divided into seven sections. In the subsequent section, we describe
the design of OmpSs-OpenCL programming model. In section III, we discuss
the details of Mercurium compiler and Nanos runtime system for heterogeneous
environments. Following that, in section IV, we present the scalability and pre-
fetching of OmpSs-OpenCL tasks. In section V, we present static and work-
stealing scheduling along with their evaluation using heterogeneous workloads.
We give an overview of the related work in section VI and finally conclude with
promising future extensions to this work in section VII.

2 OmpSs-OpenCL Model

OmpSs[7] is based on the OpenMP programming model with modifications to
its execution model. It is primarily a task-based programming model focusing on
abstraction of details to the user thereby making the programmer to write code
in sequential flow with annotated pragmas for tasks(parallel regions). It uses a
thread-pool execution model, where a master thread that starts the runtime and
several other worker threads cooperate towards executing the tasks. Listingl.1
shows the directives supported by OmpSs-OpenCL model. These directives are
used to annotate function declarations or its definitions. Each function annotated
with task directives is considered an OmpSs-OpenCL task. The data environ-
ment of the task is obtained from its arguments. These arguments are specified
with their directionality input, output and inout and its computing size. Using
this information, dependencies across tasks are determined using StarSs depen-
dency model[3]. Furthermore, target device clause is used to express heterogene-
ity, which can be clepu and clgpu. clepu undergoes OpenCL CPU execution and
clgpu OpenCL GPU execution.

—_

—_

#pragma omp target device [clauses] NDRange (Parameters) [
copy_typel

clauses: ([clcpul[clgpul)

Parameters:Dimensions ,GlobalGrid, LocalWorkGroupSize

copy-type : copy_in, copy_out, copy_inout, copy_deps

#pragma omp task [directionality]

Directionality

1.input ([list of parameters])

2.output ([list of parameters])

3.inout ([list of parameters])

#pragma omp taskwait
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Listing 1.1: Directives supported by OmpSs-OpenCL



The copy_in, copy_out and copy_inout clauses are used to specify where the data
have to be available, produced and both. copy_deps clause is used to specify that
if the task has any dependence clauses, then they will also have copy semantics.
The task-wait construct (Listingl.1-line 10) can be used to introduce a barrier
after parallel code. Along with these directives, NDRange will accept OpenCL
execution configuration for the particular task/kernel. These parameters essen-
tially represent the OpenCL grid dimensionality[11], NDRange Global Grid and
the LocalWorkGroupSize[11]. Moreover, in OmpSs-OpenCL, the task definition
is essentially an OpenCL kernel written according to OpenCL C99 standard by
the user. The task/kernel code can be defined in the same file of the source or
in a separate .cl file. The following sample gives a comprehensive understanding
of how to use the OmpSs-OpenCL directives(Listing 1.2).
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#pragma omp target device (clcpu) ndrange(1,0,size,512)
copy_deps

#pragma omp task in ([sizela) out([sizelc)

void copy_task(double *a, double *c, int size);

#pragma omp target device (clgpu) ndrange(1,0,size,512)
copy_deps

#pragma omp task in ([sizelc) out([sizelb)

void scale_task (double *c, double *b, int size);

#pragma omp target device (clgpu) ndrange(1,0,size ,512)
copy_deps

#pragma omp task in ([sizela,[sizelb) out([sizelc)

void add_task (double *a, double *b, double *c, int size)

s

#pragma omp target device (clgpu) ndrange(1,0,size ,512)
copy_deps

#pragma omp task in ([sizelb,[sizelc) out([sizela)
void triad_task (double *b, double *c, double *a, int
size);
int main(int argc, char**x argv)
{
copy_task(a,c,size);
scale_task (c,b,size);
add_task(a, b,c,size);
triad_task (b, c, a,size);
#pragma omp taskwait
}

Listing 1.2: OmpSs-OpenCL Example Program

Listing 1.2 is an example code in OmpSs-OpenCL for heterogeneous environ-
ment. As shown, the directives are used to specify on which device the task
should execute (clepu or clgpu). The directive task mentions the required data
by the task in lines 2,6,10 and 14. Also, target device for the task is mentioned



in lines 1,5,9 and 13. When the tasks are invoked, the runtime checks for data
dependencies between them, if independent, they can be executed in parallel in
the CPU-GPU environment. Listing-1.2 example program is a stream applica-
tion [14]. The definition of the tasks is essentially a OpenCL kernel. The kernel
code for triad_task is shown in listing 1.3.

1 #pragma OPENCL EXTENSION cl_khr_fp64 : enable

2 __kernel void triad_task ( __global double *a, __global
double *b, __global double *c, __const double scalar,
__const int size)

3 {

4 int j=get_global_id (0);

5 aljl = b[jl+scalarx*c[j];

6 }

Listing 1.3: OmpSs-OpenCL Task/Kernel

As per specification, copy_task (line 19) is the only task in the benchmark under-
going OpenCL CPU execution and the remaining are executed in the OpenCL
GPU. We can apprehend from this example that the user can avoid tedious
OpenCL API calls and also realize parallel execution across different devices,
leaving users to write the task/kernel code alone. The next section gives a de-
tailed description of the Nanos runtime.

3 OmpSs-OpenCL Execution Model

In this section, we discuss the implementation details of OmpSs-OpenCL pro-
gramming model for hybrid environments. The model embodies Mercurium com-
piler and the Nanos runtime system.

3.1 Mercurium Compiler

Mercurium compiler [4] is a source-to-source compilation infrastructure support-
ing C and C++. It checks syntax and semantic errors for annotated pragmas
in the program and parses the OmpSs-OpenCL source generating the associ-
ated runtime calls for the parallel regions/tasks to be executed. These runtime
calls embodies information about the directionality of the data transfers in or-
der to deduce input/output dependencies among all tasks in the source. With
inclusion of clepu or clgpu as target device, necessary changes to the compiler
have been carried out to generate their respective OpenCL-Nanos runtime calls.
When Mercurium encounters a task declaration or invocation which is targeted
for clepu or clgpu it generates corresponding task creation runtime call with the
respective .cl file as a parameter to it. The task/kernel code written according to
OpenCL standard is left untouched by the compiler as it undergoes target device
specific runtime compilation. Mercurium is only responsible to generate appro-
priate calls to the runtime and check the correctness of user code. The back-end
of the model involving Nanos runtime does the significant portion of the work in
order to experience parallel execution of tasks across multiple OpenCL devices.



3.2 Nanos Runtime Environment

The Nanos runtime library is the backbone of OmpSs-OpenCL programming
model. It is a task-based runtime system with asynchronous execution flow. It
creates an acyclic task dependency graph based on the task directive information.
The runtime carries out the services including task creation, task dependency
graph generation, data transfers, synchronization between tasks and execution of
tasks. The Nanos master thread is responsible for most of these services whereas
the worker threads are accountable for task execution. Each Nanos worker thread
corresponds to a device in the heterogeneous environment and work in parallel.
In the following subsections we discuss the enhancement implemented in the
runtime to support hybrid OpenCL environments. Figure 2 presents OmpSs-
OpenCL model diagrammatically.

Support for Heterogeneity Nanos runtime essentially invokes a master thread
which in turn controls the worker threads. These worker threads (Nanos-arch
thread) implements the functionalities for different architectures. For OmpSs-
OpenCL model the Nanos-OpenCL worker thread implements OpenCL execu-
tion for a CPU or GPU device[8]. However, for hybrid environments the equation
changes. Although, OpenCL API is open-source but the implementation of its
runtime varies with every vendor (eg., Nvidia, Intel, AMD, ARM ..). Hence, not
all devices can use the same OpenCL package. We need to have vendor-specific
OpenCL package in order to use different devices. To tackle this issue we imple-
ment two different OpenCL-Nanos architectures (Nanos-OpenCL-CPU thread
and Nanos-OpenCL-GPU thread), to realize both CPU and GPU OpenCL be-
havior respectively. The Nanos-arch-OpenCL Thread is responsible for compi-
lation, argument setting and execution of the task/kernel. With CPU and GPU
OpenCL architecture module, OmpSs-OpenCL supports all OpenCL compliant
CPU and GPU systems. Figure 2 shows the Nanos-OpenCL-device thread model
linking with the corresponding OpenCL package.
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Nanos-OpenCL Thread Model The Nanos-OpenCL thread is built over the
OpenCL runtime. This thread is responsible for receiving the task for execution
from the scheduler. The thread carries out task compilation, kernel argument
setting and enqueue for execution (figure 2). During kernel enqueue, the run-
time uses the NDRange dimensions (kernel launch parameters) from the user-
defined NDRange clause of the task and launches it using clEnqueue NDRangeK-
ernel [11]. In addition, each OpenCL device is associated with a Nanos-OpenCL
thread (eg., 2 Nanos-OpenCL-GPU threads for 2 GPUs available). This ap-
proach is employed to provide parallel services to multiple devices under the
same platform. Furthermore, if the same task/kernel code using different data
is scheduled to each of the 2 devices in a platform for execution, (Eg: 2 GPUs
using Nvidia’s OpenCL runtime) the runtime makes sure that the task is not
compiled twice for the same platform. Moreover, each thread operates on its own
OpenCL CommandQueue[11] specific to its device.

Nanos-OpenCL Memory Model The Nanos Software Cache manages data
transfers in and out of devices. The software cache is linked with both CPU
and GPU OpenCL packages in order to carry out data transfers respectively.
Once a task is scheduled to its targeted device the scheduler informs the cache
engine with required information to initiate respective transfers for the task into
the device. The cache system uses the task dependency information from the
runtime in order to initiate transfers based on the locality of its required data.

The Nanos software cache incorporates data locality principles into its trans-
fer management. In general, the software cache system tries to minimize the
total number of transfers from memory to its devices and vice-versa. In listing
1.2, consider stream benchmark with 4 different tasks all targeted towards GPU
execution exhibits different data dependence across one another. With all the
tasks targeted for GPU execution, total number of transfers required for appli-
cation execution is 10, 6 input and 4 output transfers according to its #pragma
specification. If locality of each data source is considered before transfers, the
number of transfers can be brought down to 4(1 input and 3 output). To elab-
orate, copy_task input, a vector is transfered as input and its output ¢ is not
transferred back as it provides the input for dependent scale_task. Similarly, the
other 2 tasks also receive its data from its predecessor. The output transfers for
scale_task, add_task and triad_task are carried out for b, ¢, a vectors respectively.
Figure 10 shows the difference in total data transfer timing for both CPU and
GPU with and without data locality for two different problem sizes of stream
benchmark. With an average of more than 50% reduction in the transfer time
can be understood from Figure 10. We agree it is not possible for the cache sys-
tem to optimize data transfer timing of this order for all applications but we can
guarantee that it cannot cause any overhead. With the runtime system orches-
trating data transfers and execution of the tasks, the synchronization needed
to maintain data flow and program correctness are also incorporated within it.
With GPUs spending more time in data transfers due the PCI bottleneck[9], it
is very crucial to hide transfer latency in order to achieve better performance.
We realize this by incorporating task-prefetching technique into our runtime. In



this technique, runtime does not wait for the executing task to finish but com-
municates with the scheduler to prefetch the next available task. When ready
tasks are available for scheduling with no data dependencies with the executing
task, the Nanos-OpenCL thread picks it thereby initiating the cache system to
perform the required data transfers into the device. Such transfers overlap with
the execution of the current task achieving communication-computation over-
lap. Also, the prefetcher only fetches data if it can fit it in the available OpenCL
allocation space, otherwise it does not prefetch. With Nanos-OpenCL threads
working in parallel, all available devices including CPUs and GPUs can prefetch
in parallel. In the next section, we investigate on scalability of OmpSs-OpenCL
tasks on multiple GPUs with task-prefetching.
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4 Scalability on Multiple GPUs

We experimented with 4 benchmarks namely, Matrix multiplication, Nbody sim-
ulation, Stream and Blackscholes with two different problem sizes for scalability
on four Nvidia Tesla C2070 GPUs each having 448 CUDA cores with CUDA com-
piler driver V5.5. The four benchmarks are written in OmpSs-OpenCL with com-
putations partitioned into parallel tasks in order to exploit the available 4 GPUs.
12288x12288 Matmul is partitioned into 27 tasks with each task computing
4096x4096(blocksize) and 8192x8192 into 64 tasks with each task computing on
2048x2048 block matrix size. BlackScholes is partitioned into 64 tasks and Nbody
into 4 tasks. All three benchmarks are compute bound whereas Stream, a mem-
ory bandwidth limiting benchmark consist of 4 tasks in itself(add,copy,scale and
triad). Original OpenCL benchmarks were obtained from [1][5]. With the runtime
facilitating prefetching of tasks, our experiments also demonstrate the benefit in
overlapping computation with communication. Figures 3, 4, 5 and 6 show the
scalability of benchmarks on four GPUs with and without task-prefetching. All 4
benchmarks experience good scalability with an average speedup of 4x compared
to its execution on a single GPU.

Using task-prefetching, matrix multiplication experiences notable gain in per-
formance. With both problem sizes matmul gains an average of 5% in perfor-
mance. To illustrate, for 12288x12288 matmul with 27 tasks, 80% of the to-
tal time taken for transferring input data is overlapped with the computation
when benchmarked using 4 GPUs. The data transfers of the first 4 tasks getting
scheduled to the 4 GPUs cannot be overlapped but the rest of 23 task inputs
are prefetched with effective realization of computation-communication overlap
for matmul. Table 1 depicts in detail percentages of overlapping experienced in
both matmul and blackscholes for 4 GPUs. In Stream and Nbody benchmarks,
prefetching with 4 GPUs does not provide improvements as it is partitioned into
4 tasks only. On an average, using task-prefetch there is 5% gain with matmul

Application for 4 GPUs Total Transfer time|Overlapped|%Overlapped
Matmul 12288x12288 (27 Tasks)|24.8 sec 19.6 sec 80%
Matmul 8192x8192 (64 tasks) |7.2 sec 6.6 sec 90%
Black Scholes 16 (64 tasks) 134 ms 125 ms 93%
Black Scholes 32 (64 tasks) 200 ms 184 ms 92%

Table 1: Task Pre-Fetch Gain

and BlackScholes, 15% with NBody and 10% with Stream Benchmark compared
to experiments without prefetching using 1,2 and 4 GPUs repectively. With this
evaluation, we show OmpSs-OpenCL support for multiple GPUs with parallel
execution of tasks across them realizing good scalability.



5 Scheduling

With OmpSs-OpenCL supporting parallel execution of tasks on hybrid CPU-
GPU environment there arises a chance to schedule them efficiently in order to
use the resources in the best possible way. Code portability in OpenCL allows
kernels to run on any OpenCL compliant platform. The reason for having the
OmpSs-OpenCL task as a pure OpenCL kernel is to make it adaptive, so that
it can be scheduled to any other device (other than the targetdevice) based on
machine availability. We present two different scheduling techniques for OmpSs-
OpenCL model described in the following subsections.

5.1 Static Scheduling (S)

Static scheduling is a straightforward scheduling mechanism wherein the task
is scheduled to the device mentioned using the target device clause. In case of
application programmer having incorporated device-specific optimizations into
the task/kernel, this approach would be implicit to go forward with. Applications
which can be partitioned into tasks suited specifically to CPUs or GPUs using
optimizations like vectorization, device specific workGroupSize, total number of
workGroups, loop unrolling and local memory optimizations are advised to be
statically scheduled. In these scenarios, static scheduling would bring out the
best performance from their corresponding devices.

5.2 Work-Stealing Scheduling (WS)

The concept of work-stealing is essentially executing a task with clause target de-
vice (clepu) on a GPU system and vice-versa. In this mode the scheduler assigns
the task which is ready for execution to the first Nanos-OpenCL thread which
goes idle. When the goal is to utilize all available devices in the environment,
work-stealing scheduling would be very pertinent. However, work-stealing strat-
egy can degrade performance, if the data needed by a task has to be transferred
across devices for execution. The scheduler checks with the Nanos software cache
engine for data locality before the task is scheduled. For example: given that a
OpenCL-CPU is idle, if task B consumes output data from task A being executed
on a GPU, the scheduler assigns task B to the GPU in order to save time from
unwanted data transfer(GPU—Host—CPU). So dependent tasks are scheduled
to the same device ensuring data locality, hence, preserving the application from
a unwanted data transfer.

5.3 Evaluation

We evaluate both static and work-stealing techniques using MinoTauro super-
computer, a multi-GPU system running Linux with two Intel Xeon E5649 6-Core
at 2.53 GHz and two NVIDIA GPUs M2090 with 512 CUDA cores. To the best
of our knowledge, benchmark suites for hybrid environments composing CPUs
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and multiple discrete GPUs are yet to be available. Thus, for our evaluation,
we have developed heterogeneous workload with 8 different benchmarks written
using OmpSs-OpenCL model. Original OpenCL benchmarks are obtained from
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For our experiments, we create 3 heterogeneous workloads namely, set 1,2,3
computing with different data-sizes. All benchmarks in the workload are inde-
pendent from one another, providing possible parallel execution of tasks allowing
us to investigate static and work-stealing techniques. In particular, Blocked mat-
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mul(8 independent tasks), Bitonic sort(independent tasks based on problem size)
and Stream(4 dependent tasks) are partitioned, whereas other benchmarks in-
cluding Blackscholes, Reduction, Nbody simulation, Convolution and Transpose
compute using only a single task. Figure 7, 8 and 9 shows the evaluation of the
three workload sets on our heterogeneous platform, with task-prefetch facility
activated. Table 2 gives the overview of the workload characterization with its
problem size, execution timings on both devices and scheduling decisions taken
using work-stealing technique.

Benchmark Set [Problem Size|CPU Ex-|{GPU Ex-|Sch Sch
ecution |ecution  |Decision(WS-Decision(WS-
Time(ms) |Time(ms) |1Gpu) 2Gpus)

1 1024x1024 |259.75 109.1 Cpu and Gpu|Cpu and Gpu
Blocked Matmul |2 512x512 |27.4 9.1 Cpu and Gpu|Cpu and Gpu
3 2048x2048 |8123.3 3367.6 Cpu and Gpu|Cpu and Gpu

1 2048x2048 (5.2 1.0 Gpu Gpu

Matrix Transpose||2 1024x1024 |2.1 0.257 Gpu Gpu

3 512x512 |1.24 0.0714 Cpu Gpu

1 1024 0.0622 0.009 Gpu Gpu

Black Scholes |2 4096 0.138 0.11 Gpu Gpu

3 16384 0.215 0.0170 Gpu Gpu
1 4096 0.089 0.008 Cpu and Gpu|Cpu and Gpu
Bitonic Sort 2 512 0.0377 0.016 Cpu and Gpu|Cpu and Gpu
3 1024 0.034 0.012 Cpu and Gpu|Cpu and Gpu

1 256 0.582 0.0071 Gpu Gpu

Convolution 2 1024 0.88 0.040 Cpu Gpu

3 4096 1.4 0.0544 Gpu Gpu

1 4096 22.8 6.02 Gpu Gpu

NBody 2 512 0.569 0.715 Gpu Gpu

3 1024 2.89 1.42 Gpu Gpu

1 1024 ]0.12 0.028 Cpu Cpu

Stream 2 4096 0.18 0.024 Gpu Gpu

3 8192 0.310 0.0412 Gpu Gpu

1 4096 0.571 0.010 Cpu Gpu

Reduction 2 1024 0.488 0.010 Gpu Gpu

3 16384 1.01 0.0121 Cpu Gpu

Table 2: Heterogeneous Workload Characterization

Set 1 with benchmarks using both larger and smaller problem sizes, work-
stealing with both 1 and 2 GPUs provides performance gain for the workload.
In our evaluation (Figure 7, 8 and 9), the performance gain calculated is in
comparison with the execution time of workloads using static schedule with 1
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and 2 GPUs. Using WS ! 1CPU-1GPU experiences almost 30% performance
gain with Reduction benchmark running on the CPU and both Blocked matmul
and Bitonic sort with multiple tasks gets shared across both devices. In WS
1CPU-2GPUs the gain is 12% with Blocked matmul and Bitonic sort executed
among both devices. Set 2 workload consist of benchmarks with small sizes
provides gain of 33% and 10% for 1CPU-1GPU and 1CPU-2GPU repectively.
Convolution gets scheduled to CPU with WS 1CPU-1GPU and both bitonic and
blocked matmul gets scheduled to both devices in both work-stealing cases.

Set 3 workload consist of benchmarks working with larger data-sets. WS
with 1CPU-1GPU provides 22% performance gain with Reduction and trans-
pose undergoing CPU execution. However, WS with 1CPU-2GPUs experiences
performance loss of 13%(Figure 9). This is to say static schedule of Set 3 to 2
GPUs perform better compared to WS with 1CPU and 2 GPUs. In this case,
adoption of WS technique is not favorable on the performance front although it
utilizes all available devices. Apparently, tasks inherently suited for GPU can be
scheduled to CPU. In this case, Blocked matmul exhibits significant difference
in execution time with CPU execution being much slower compared to GPU
and is scheduled to both GPU and CPU accounts for this loss in performance.
Moreover, with 2 powerful GPUs in WS mode enhances tasks to be scheduled
to them compared to a single available CPU thereby making device count and
its characteristics a crucial parameter to be considered during scheduling.

From Table 2, we can learn that all benchmarks for different problem sizes
work faster in the GPUs. Currently, considering the standard that GPUs are not
standalone systems and CPUs are inherent in heterogeneous systems, utilizing
CPUs effectively becomes crucial. With GPUs and CPUs becoming more pow-
erful and power efficient and with every generation, it is imperative for the user
to use both devices in a hybrid environment as HPC components. Moreover,
with supercomputing design going heterogeneous, the design of algorithms and
workloads involving mixture of varied computations exhibiting different types of
parallelism would be critical. This puts forth a need to have a single program-
ming model to harness these resources. OmpSs-OpenCL model provides this
facility with complete abstraction to the user programmer. Further, in order to
effectively use the resources we plan to extend our work focusing on development
of an optimal scheduling methodology. With extensive analysis of our workloads,
we would like to characterize parameters like computational complexity of tasks,
data transfer timings, runtime status, device load/contention [10] which compre-
hensively define the best possible device for scheduling based on the execution
environment.

6 Related Work

With GPUs becoming prominent in HPC domain, lots of research groups have
focussed on their programmability. [13], SnuCL provides OpenCL framework ex-
tending original OpenCL semantics for heterogeneous cluster environment. This

1 WS-Work-Stealing Scheduling Technique
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framework does not offer an abstraction to the users to make OpenCL pro-
gramming easier unlike OmpSs-OpenCL. In [2], StarPU run-time environment
offers programming language extensions supporting task-based model. StarPU
model expects user to know OpenCL API calls (eg: Kernel launch and argument
setting) in order to write applications using them. Whereas, OmpSs-OpenCL
provides complete abstraction to OpenCL API for programming heterogeneous
systems. CAPS HMPP [6] is a toolkit with a set of compiler directives, tools
and runtime supporting parallel programming in C and Fortran. It is based on
hand-written codelets defining the parallel regions to be run on accelerators.
OpenACC [12] high level programming APIT describes a collection of compiler
directives used to specify regions of code for offloading from a host CPU to an
attached accelerator but compared to OpenCL it is not yet adopted among all
microprocessor and accelerator vendors. In [17], the author describe a wrapper
model clUtil which simplifies OpenCL API. It provides a wrapper to OpenCL,
where the user can skip OpenCL constructs by replacing appropriate clUtil calls
in order to do its functionalities. Whereas, OmpSs-OpenCL model offers users
to write simple sequential style programming with no complex calls to the run-
time. In general, OmpSs-OpenCL programming model offers a high-level uniform
programming approach. With current supercomputers already following hybrid
designs, we believe that OmpSs-OpenCL model can be very effective in realizing
productive supercomputing.

7 Conclusion and Future Work

In this paper, we upgrade OmpSs-OpenCL programming model to support par-
allel execution of tasks across CPU-GPU hybrid systems. We discuss the imple-
mentation of Nanos runtime system which plays a key role in realizing hetero-
geneous computing. Along with this support, we present static and work-stealing
scheduling techniques. Static scheduling is user-assisted scheduling, whereas work-
stealing utilizes all the available devices in the system, in turn increasing its
throughput. We evaluated scalability of 4 benchmarks using OmpSs-OpenCL
model on 4 GPUs providing an average speedup of 4x compared to one GPU.
We used three sets of heterogeneous workloads to investigate parallel execution
of tasks on hybrid platform using both static and work-stealing strategies. With
OmpSs-OpenCL model being extensible, we look forward to support heteroge-
neous devices like Intel Xeon-Phi and FPGAs. Moreover, we plan to use the

results from our evaluation to devise an optimal dynamic scheduling algorithm
for CPU-GPU hybrid systems.
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