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Abstract — Nano-scale circuits are subject to a wide range of new limiting phenomena making essential to investigate new design 

strategies at the circuit and architecture level in order to improve its performance and reliability. Proactive reconfiguration is an 
emerging technique oriented to extend the system lifetime of memories affected by aging. In this paper, we present a new approach for 
SRAM memory design that extends the cache lifetime when considering process variation and aging in the memory cells by using an 
adaptive strategy. To track the aging in the SRAM cells we propose an on-chip monitoring technique. Our results show the technique 
as a feasible way to extend the cache lifetime up to 5X. 
 

Index Terms—Adaptive proactive reconfiguration, Aging sensor, Process variation, Reliability, SRAM 

I. INTRODUCTION 
ROCESS variation and aging caused by Bias Temperature Instability are two key reliability concerns [1] in modern 
technologies, which relevance has been intensified in the deep nano-scale integration levels. SRAM is one of the main 
sections in integrated circuits susceptible to such type of deviations due to its extreme sensitivity to process variations [2]. 

Moreover, memories store information for a long period of time; this causes a long electrical stress period that could cause 
failure [3]. 

Cache memories are usually designed with several spare columns/rows in order to substitute the failing ones for yield 
improvement purposes [4]. By using spare parts and built-in circuit test procedures (after manufacturing or in-field), a 
reconfiguring scheme allows the substitution of defective parts by spare ones, resulting in a self-repairing fault-tolerant. This 
principle is called reactive configuration [5]. In this strategy the reserved spares are not operative until a fail is detected. An 
alternative is that instead of saving all the spare units up to time of failure, they could also take part in the normal operation of 
the system in a technique called proactive reconfiguration [5, 6] sharing the aging phenomena among all the devices, causing a 
lifetime extension of the memory.  

This paper presents an adaptive variation and aging-aware dynamic approach and is organized as follows: Section II 
describes process variation and BTI aging. Section III introduces the concept of proactive reconfiguration. Section IV describes 
the basis and motivation of our adaptive technique and in Section V we evaluate our methodology. Section VI analyzes our 
proposed architecture with our monitoring circuits and test procedure. 
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Finally, Section VII highlights the results obtained throughout the paper. 

II. CONSIDERATIONS ABOUT VARIABILITY AND BTI AGING 

A. Process variability 
Process variability is a reliability related issue, which has gained a significant importance at nano-scale level circuit design. It 

is mainly caused by advanced manufacturing process and is divided into two major types, i.e. systematic and random deviations 
[1]. These variations along with the wear-out that occurs during the system lifetime (aging) reduce the system’s performance and 
lifetime. 

B. BTI Aging 
There are several degradation mechanisms in nano-scale devices, which are well reported in literature, i.e. Bias Temperature 

Instability (BTI) and Channel Hot-Carrier (CHC) injection [7]. In this work, we only consider BTI aging, since it is the main 
aging mechanism that leads to relevant VT-shift and could result in a SRAM failure [2, 3] by degrading the SNM value. Several 
models have been described to predict the impact of BTI aging on VT-shift in devices [8, 9]. Since our work implies an analysis 
during a long period of time, we use a simplified piece-wise linear aging model [10]. Moreover, we have assumed that all SRAM 
cells are based on high-k transistors as correspond to modern technologies, and then both N/PMOSFETs are subjected to BTI 
aging. 

It is known that in the stress phase, the device suffers some VT-shift due to specific physical mechanisms affecting materials 
[3, 11]. When the device is released from stress, a second behavior in BTI aging is observed named the recovery phase [9]. This 
may mitigate some part of VT-shift and as a consequence extends the device lifetime. We have modeled this wear-out recovery in 
respect to different possible technologies by using a parameter named recovery factor (Rf) that models the recovery capability of 
the stressed devices after a large enough relaxing phase. This Rf parameter corresponds to the proportional amount, percentage, 
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of the VT-shift value that can be mitigated in a device after a large enough recovery phase. This is due to recovery properties of 
the BTI aging mechanism and it is technology dependent [7,9]. The maximum possible wear-out recovery is obtained after a 
recovery time (TR) of 104 seconds [9] and because our relaxing time will be much larger, we assume that the complete recovery 
can be reached in each phase. The aging model for coming technologies can also further be imported and considered in our 
design proposal.  

III. PROACTIVE RECONFIGURATION TECHNIQUE 
Proactive reconfiguration techniques can be implemented in different ways, depending on the redundancy granularity. The 

hardware granularity level selected in this work is the column level [12]. We evaluate the different proactive approaches by 
employing an analytical Matlab engine [13] and compare the different methodologies. The first approach that we analyze is the 
approach pointed out by IBM in [5], which corresponds to a basic proactive technique. The IBM proposal is based on a 
homogeneous round robin strategy between memory columns, where all the columns go to recovery mode homogenously and 
sequentially, one by one in a rotating schedule [5] without considering inherent process variability and differential aging between 
the columns. Fig. 1 presents graphically the time-varying aging evolution and the lifetime behavior for two approaches, reactive 
(non-proactive) and IBM’s in an example case. We assume a system example composed by four working columns, one spare and 
a recovery parameter of Rf=30%. In our example, a set of arbitrary fresh VT values is stated for the worst VT (the cell with 
lowest SNM) in each column. We observe that for the proactive reconfiguration case the aging slope of the evolution transistors’ 
VT values changes causing an improvement of the system lifetime about 1.8X (150 months in front of 84). In both approaches 
the system fails when the weakest column arrives to the maximum acceptable value (400mV in the example). Note that, the IBM 
approach uses equal recovery periods, and therefore it cannot mitigate the relevant time zero process variations of the transistors 
in SRAM memories. A variation-aware proactive technique, presented in next sections, solves this by taking into account the 
device variability, as well, and further enhancing the system lifetime. 

 
Figure 1.  VT aging slopes of columns in a proactive (dashed lines) and a non-proactive approach (lines). Almost 2X lifetime extension is obtained. 

IV. BASIS OF OUR VARIABILITY AWARE PROACTIVE TECHNIQUE: A STATIC NON-HOMOGENEOUS APPROACH 
The proactive usage of existing available redundant units in the system gives the opportunity to each system element to go to 

recovery mode some time during its lifetime, since there exist some spares units in the system available to substitute the 
functional ones. As a consequence, when the column enters into recovery phase some part of its wear-out is mitigated. By 
adapting the recovery time of each element in the system in accordance with its time zero process variation, we could optimize 
the observed aging of the system elements, and as a consequence extend their lifetime. Therefore, the VT values converge toward 
a common point meaning the optimal lifetime. It was shown in [10] that the lifetime of an SRAM affected by time-zero process 
variation and aging can be optimized by assigning a relative working time Di to each column (i) of the memory (N columns, R 
spare) given in (1): 

  (1) 

where H is the maximum VT value of a cell before to fail and VTi the worst case cell threshold voltage for each column. This 
technique allows to manage the aging of the memory columns in such a way that they all converge to a common point during 
their lifetime. This would avoid the dependence of the system lifetime to the worst column’s lifetime of it. In next section, we 
apply this technique to a dynamic adaptive basis and compare three configurations, i.e. non-proactive or reactive, IBM proactive 
and our proactive technique. 

V. A DYNAMICALLY ADAPTIVE EXTENSION TO THE PROACTIVE TECHNIQUE 
Our adaptive proactive reconfiguration is an improved version of previous proactive reconfiguration [5] in which its 

utilization results in a balanced aging distribution and larger lifetime extensions throughout the memory columns. First, we 
expose the approach flow of our methodology and our recovery time period calculation for each memory column. Next, we show 
the results of our adaptive proactive approach. 
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A. Approach Flow and Dynamic Recovery Calculation 
Our approach is based on a non-homogeneous round robin sequence between all the memory columns that also considers and 

self-adapts the process variation and BTI wear-out of SRAM cells in a time-varying basis. The utilization of spare units allows 
us to make a test in the memories to determine the status of memory columns. It also permits to define different recovery times, 
which can be dynamically adapted to the respective VT values. It starts with a test that measures the VT value of each SRAM cell. 
Then, each monitored column will be characterized by its highest VT SRAM cell (the weakest cell in the column). These 
measured values, determine the needed recovery time length (Di) for each memory column. Fig. 2 depicts the procedure flow of 
our adaptive technique. After the test, the memory columns will be sorted from minimum to maximum (from the column with 
SRAM cell of highest VT to the column with SRAM cell with lowest VT), and according to VT values the appropriate recovery 
periods are calculated. 
 

 
 
 
 
 

 
 

Figure 2.  Adaptive proactive approach flow. 

Our recovery period calculation approach is based on the range between the weakest and strongest SRAM cells VT values 
(min is the value of the minimum (best) VT column, and max is the value of the maximum (worst) VT column) in the memory 
columns. Firstly, we consider a number of VT ranges in which we want to classify the memory columns among them. Then, we 
calculate the ∆VT, which is the difference value between the best and worst column VT values. Finally, the specific ranges are 
determined by the mentioned values. The columns are divided between these ranges such that the columns with higher VT values 
will have longer recovery times. For instance, we have considered an example in Table I where the number of ranges is equal to 
4. Note that the recovery periods are multiples of TR (104 seconds), which is the minimum, needed time for a complete BTI 
recovery [9]. 

TABLE I. ROUND ROBIN DYNAMIC RANGES FOR OUR EXAMPLE. 

VT-ranges Recovery time 
min<VT<(min)+(1/4×∆VT) 1×TR 

(min)+(1/4 ×∆VT)<VT<(min)+(2/4×∆VT) 2×TR 
(min)+(2/4×∆VT)<VT<(min)+(3/4×∆VT) 3×TR 

(min)+(3/4×∆VT)<VT 4×TR 

B. Single Spare Proactive Reconfiguration Case 

In each reconfiguration step of adaptive proactive reconfiguration, the spare column replaces the working column that goes 
into recovery mode and the column’s data is copied in the spare column. When the memory column becomes active the copied 
data is written back before the next column reconfiguration step. Fig. 3 presents our adaptive proactive technique among the 5 
memory columns. It shows that our approach with an Rf=30% extends further the memory columns lifetime in presence of 
process variability and BTI aging times. The obtained value is a 25% better than the IBM approach (dashed lines of Fig. 1), 190 
months in front of 152. 

 
Figure 3.  Adaptive proactive reconfiguration among 5 memory coulumns has resulted to uniform activity distribution and value convergance.  

By using Matlab simulations, we compare the lifetime of our proactive proposal with a non-proactive reconfiguration 
scheme. We randomly generate fresh VT values for a set of SRAM memory columns under normal distribution, with a given 
mean and standard deviation values (300mV and 30mV, respectively in our numerical examples). The maximum acceptable VT 
aging value (H) before cell failure (when any dynamic parameter or the static noise margin, SNM, reach an unacceptable level) is 
assumed 400mV. The wear-out recovery factor is assumed at three different levels: 0%, 30% and 50%, in order to include 
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different technologies. Moreover, we have considered different number of active memory columns and performed 1000 Monte 
Carlo simulations. Table II compares both proactive technique’s lifetimes in respect to a non-proactive scenario. As the results 
show, the adaptive technique can enhance the lifetime significantly. 

TABLE II. MEMORY LIFETIME EXTENSION IN FUNCTION OF THE RF VALUES, THE APPLIED ALGORITHM AND STRUCTURES, IN 
COMPARISON WITH NON-PROACTIVE CONFIGURATION. 

Configuration IBM Adaptive 
 

4+1 
1.4X @ Rf=0% 

2.3X @ Rf=30% 
3.5X @ Rf=50% 

1.8X @ Rf=0% 
3.2X @ Rf=30% 
5X @ Rf=50% 

 
8+1 

1.3X @ Rf=0% 
2.1X @ Rf=30% 
3.1X @ Rf=50% 

1.5X @ Rf=0% 
2.7X @ Rf=30% 
4.2X @ Rf=50% 

 
16+1 

1.1X @ Rf=0% 
1.8X @ Rf=30% 
2.4X @ Rf=50% 

1.3X @ Rf=0% 
2.2X @ Rf=30% 
3.3X @ Rf=50% 

VI. PROACTIVE ARCHITECTURE, MONITORING CIRCUITS AND TEST PROCEDURE  
In this section, we depict our proposed adaptive proactive architecture inside a SRAM cache memory system. Then, we 

define our test procedure and circuits to monitor the variability and aging of SRAM cells in the columns and finally the control 
configuration and the implementation cost evaluation.  

A. Architecture 
We consider an 1kB SRAM memory example consisting of 128 columns divided into 8 groups of 16 columns and each 

memory column contains 64 6T-cells. We assume that the 1kB memory contains 8 spare columns and each one of the spare 
columns belongs to each group. All memory bit-lines (BL and BLB) are connected to a 1-bit bus that links them with the 
monitoring circuit (see Fig. 4). The word-lines coming from the row decoder are labeled as WL (WL0-WL63), and the test word-
lines (those activated at testing phase) are named WLT (WLT0-WLT63), and controlled by the reconfiguration controller. In this 
context, Fig. 4 presents our adaptive proactive memory architecture. Each set contains 17 columns (16 functional and 1 spare), 
with the added circuits and units required to perform the test and reconfiguration.  

 
Figure 4.  Architecture used for implementation of the adaptive proactive reconfiguration technique in an 1kB SRAM cache.  

We use a single circuit to monitor all the columns of the memory, this avoids the impact of relative variability in the monitor 
circuit itself and results in a low overhead. Note that larger memory blocks can also be constructed by the architecture shown in 
Fig. 4.a, where a defined partition of columns can share the same monitoring circuit. Fig. 4.b depicts the structure of one memory 
column (column0) in our proposed approach. The column (BL and BLB) is connected to a monitoring circuit by the TML0 and 
TMR0 transistors, and they are activated independently in the test phase. Two transmission gates and control signals (TSx, TSTx) 
isolate the column memory cells from the undesired word-line during the normal memory operation and the monitoring phase. In 
this sense, the testing process does not interfere with the normal operation of the other memory columns (active columns). Next, 
we describe our monitoring technique. 

B. Monitor and Test 
In order to evaluate the time-zero variation and aging status of the SRAM cells in a cache memory array, we use an on-chip 

monitoring circuit. Note that, there exist some different approaches to measure the degradation of SRAM cells [14-15-16]. 
However in this work, we propose a novel and efficient monitoring approach that can measure the BTI (both NBTI and PBTI) 
wear-out and variability status of the individual SRAM memory cells in each memory column in a DC manner. Our proposed 
technique monitors the SRAM cells degradation in a column-by-column sequence. This strategy has no effect on the normal 
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memory operation, since it is applied when the specified column is in recovery mode, and it is disconnected during the normal 
operation of the column.  

Our monitoring circuit is based on two current mirrors, which are connected to the memory column bit-lines. They track the 
current passing by each SRAM transistor and since the current value depends on the device status, in this way we can also 
analyze the process variation among the SRAM transistors and among all SRAM cells. Fig. 5 shows an example scheme of our 
proposed monitoring circuit for a SRAM cell. The test process for each column starts when the column goes to recovery mode 
and it requires two steps. The first one is to write a logic value ‘1’ in all the SRAM storage nodes. Then, a counter enables each 
word-line (WLT) one-by-one in order to measure the aging and process variability value of the pull-down transistors (the right 
NMOS, NR) and pull-up transistors (the left PMOS, PL) in SRAM cells of specific column. As an example, to monitor the NR 
transistor aging in the first column (column0) in Fig. 5, the controller enables the switches TMR0 and T4 (the switch that selects 
the appropriate current mirror in respect to the N or PMOS), selects the input2 (the voltage value is generated by current mirror 
and the resistor) from Mux1, and input2 (voltage generated by digital current source and the resistor) from Mux2. Then it enables 
switches TML0 and T1 and selects input1 from Mux1 and Mux2 to monitor the aging in PL. Next, a ‘0’ is written to all the SRAM 
storage nodes in the column, and again the counter turns on each word-line (WLT) one-by-one and this time the monitoring 
circuit tracks the degradation in (NL) and (PR) transistors of SRAM cells. To avoid short channel effects and assure a good 
match of mirrored current, the devices used to measure the aging performance, TM and the current mirror transistors, are 
designed as long and wide channel devices. Note that since our monitoring circuit is applied to all the columns to order them 
based on their aging value, the possible mismatch or deviation does not have significance in the columns ordering.  

We have designed and simulated our monitoring technique by using PTM (Predictive Technology Model) transistor [17] in 
HSPICE. As an example, we have assumed a logic value ‘1’ is written in the SRAM storage node, and we monitor the aging in 
NR transistor of the SRAM cell. The dotted red line inserted in Fig. 5 illustrates the measurement path to test and monitor the 
performance of this specific SRAM transistor. The INR current is mirrored in the current mirror, and when the current Idig gets 
equal to ICS2 the comparator output changes its state and the current value is recorded in the register file. The digital current 
source (Idig) is shown in the inset of Fig. 5 and is implemented by a current mirror with elemental sources, and has a resolution of 
8 bits. The measured current flows through the path made by SRAM pull down NR, access transistor (AC1) and the test switch 
(TMR0) device. 

 
Figure 5.  Process variation and aging sensing scheme in column 0,the inset shows the digital current source implemented by the current mirrors 
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The TMR0 transistor is designed with larger size than the 
SRAM cell transistors, and only switches during the cell´s test 
mode, so it is slightly affected by aging and process variations. 
The access transistor (AC1) is also not affected by aging 
because it only switches when the cell is accessed from the decoder to read or write into the cell. Therefore, the important 
transistor to monitor aging in the path is the SRAM transistor (NR). Furthermore, when the current flows in this branch at the 
monitoring phase, the AC1 and TMR0 transistors are at their linear region while the (NR) transistor is in saturation region, so the 
measured current value will highly depend on the NR transistor current, and not on the access and TMR0 transistors. Fig. 6.a 
presents the current value in the branch, after a 1000 sample Monte-Carlo analysis and considering only variability in AC1 and 
fixed aging in NR transistors. The result shows that the current is slightly modified around the ISN1 (140uA), and it is the NR 
transistor that has the biggest impact on the current in the measurement path. Finally, Fig. 6.b shows the degradation in a NMOS 
device, and the relation between their VT-shift and current weakening, after 1000 Monte-Carlo simulation at each aging point. It 
is observed that as the NMOS is stressed the VT starts to shift down from its nominal value, and the device current reduces in 
accordance with it. Also it demonstrates that the current swing due to aging in NR is large enough and slightly affected by the 
process variation in access transistor, therefore we can order the columns correctly in respect to their aging.    

C. Control and Evaluation Results 
In order to manage this monitoring circuitry a control scheme is required, Fig. 7 shows the block diagram of the proactive 

reconfiguration control unit. 
 

 
Figure 7. Reconfiguration control scheme. 

The CPU itself is included in the control saving area, it reads the digital values of BTI in each memory column, and computes 
the appropriate adaptive recovery periods of each column. Each column and the corresponding spare one in that set is connected 
to a 2-1 multiplexer (Fig. 4.a). The controller is a built-in state machine, which controls the switching of the columns between 
active and recovery mode and outputs the correct column by controlling the multiplexers.  

We evaluate our implementation in terms of silicon area overhead through area estimation. The digital units (register file, 
counters and the state machine) were coded in VHDL and synthesized with RTL compiler toward CMOS 45nm LP (low power) 
technology library [18]. Table III states the area overhead estimation, the area of our monitoring circuit implementation and the 
overall proactive reconfiguration monitoring design. Consider that the overall extra circuit implementation requires a silicon area 
of 670 um2, which is around 12% of the 1kB 45nm SRAM silicon area [18]. 

TABLE III. ADAPTIVE PROACTIVE MONITORING DESIGN AREA IN SRAM  

Component Area µm2 

1kB 45nm 6T SRAM 6000 [18] 
Controller, register file and counters 350 

Our monitoring circuit 320 [19] 
Overall monitoring components  670 (12%) 

In comparison with the IBM approach our approach has only the additional overhead of the monitoring circuits. Our 
implemented methodology in the SRAM memory has slight effect on the memory cache performance. In each column 
reconfiguration step, the CPU copies the working column’s data that goes into recovery mode in the spare column and this 
copied data is written back in the column before the next column reconfiguration step, with no impact on normal operation. One 
complete proactive reconfiguration of all the memory columns can take up to couple of the days and the frequency of 
reconfiguration process among the columns is very low, which allows the copying process to have enough time, therefore the 
small performance loss would be only at the switching time of a column to another, and the monitoring process of the recovery 
column can be a DC measurement. 

VII. CONCLUSIONS 
This work presents an adaptive proactive reconfiguration technique for SRAM-based memory systems. We analytically show 

that our adaptive proactive approach extends the system lifetime larger than the former (IBM) proactive approach. Moreover, we 
have proposed a specific monitoring circuit that tracks the time zero process variation and BTI aging of SRAM cells during 

Figure 6.   Monte-Carlo simulation considering variability in access 
transistor, b) Current decrease during VT shift, representing aging of a 

NMOS  
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operation. With an adaptive proactive reconfiguration it is possible to extend the memory lifetime between 2X to 5X with around 
a 12% area overhead and negligible drop of performance. 
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