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Abstract—Analog and mixed-signal circuit testing is a challeng-
ing task demanding large amounts of resources. In order to battle
against this drawback, alternate testing has been established as an
efficient way of testing analog and M-S circuits by using indirect
measures instead of the classic specification based testing. In
this work we propose the use of Kendall’s Tau rank correlation
coefficient for rating the suitability of a set of candidate indirect
measures to be used in mixed-signal testing. Such criterion is
shown to be adequate since it allows to avoid or minimize
information redundancy in the measures set. As a proof of
concept, a 4th order band-pass Butterworth filter has been
simulated under the presence of process variations. The circuit
has been tested using a subset of measures selected according to
minimum Kendall’s Tau coefficient. Analog test efficiency metrics
are reported showing test misclassification rate is among the best
15% possible, therefore validating the proposal.

Index Terms—Mixed-Signal Test, Analog Test, Alternate Test,
Indirect Measurements, Alternate Feature Selection, Signature
Selection, Optimum Measures Selection, Quadtrees, Octrees,
Analog Filter

I. INTRODUCTION

Testing analog and mixed-signal circuits is a challenging
task due to the limitations of current analog automatic test
equipment and the partial availability of systematic procedures.
This fact causes a significant increase of the incurred costs
which are reflected in the final product [1]. Alternate testing
methodologies are widely used in contrast to the classic spec-
ification based testing and have been presented as a suitable
and low cost solution for analog and M-S circuits [2]–[4].

Alternate testing strategies require the selection of a set of
easy to measure parameters to be used as indirect measures. To
that purpose, many options exist, some of them entirely relying
on designer’s expertise and experience. Some authors have
proposed the use of the sensitivity matrix between circuit’s
functional specifications and indirect measurements with the
goal of maximizing its rank [5]. This allows the avoidance
of redundant information. Statistical methods have been also
proposed, most of them relying on correlations and regressions
techniques between the set of functional specifications and the
set of indirect measurements. For instance, in [6], the authors
use the Brownian distance correlation together with a greedy
algorithm in order to select a meaningful subset of measures
adequate for analog/RF circuits testing.

In this work, the use of Kendall’s Tau rank correlation
coefficient [7] is proposed for rating the suitability of a
set of candidate measures to be used in alternate testing.

The underlying concept is to choose the minimum number
of measures while avoiding or minimizing the redundancy
among them. The method has been applied to test a band-
pass Butterworth filter with successful results.

The work is organized as follows. Section II discusses the
attributes to be satisfied by an arbitrary set of measures to be
used in alternate mixed-signal testing. Kendall’s Tau rank cor-
relation coefficient is introduced as a measure of redundancy
among all the possible measures. In section III, the case study
circuit and the set of candidate test measures are presented. A
4th order band-pass Butterworth filter excited with a multitone
signal is used to validate the proposal. Section IV reports some
Monte Carlo simulation results. The previously discussed
criterion for selecting a reliable set of indirect measures is
applied and validated by computing test misclassifications us-
ing octrees to encode the acceptance/rejection regions. Finally,
section V summarizes the results and concludes the work.

II. INDIRECT MEASURES IN MIXED-SIGNAL
CIRCUITS TESTING

The procedure of testing analog and mixed-signal circuits
can be formalized as the classification of any candidate circuit
into pass/fail clusters. Such classification can be performed
according to a set of parameters of different nature. The most
common space for testing is the functional specifications space
in which the specifications based testing technique takes place.
In this space is where the design goals are directly tested.

Process variations can make the circuit not to be accom-
plishing the whole set of functional specifications. This is be-
cause CUT components (transistors, capacitors, resistors,. . . )
have varied their nominal value inducing the circuit not to be
within specifications and therefore failing the test. In this work
we will be referring this space as the components space.

Specification based testing can be difficult and time consum-
ing. To overcome these drawbacks, indirect testing methods
have been widely adopted as a successful solution. They are
based on the measurement of different parameters and use
them to perform the test, therefore validating the functional
specifications. In this work, the term measure space will be
used to identify such space. From now on, the mapping of
the pass region in the measure space will be referred as
the acceptance region and the fail region as rejection region.
The separation between these two regions is the test decision
boundary.
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When a candidate set of indirect measurements is proposed
to be used for testing, two main properties are desirable for
such set. (1) The measures need to reflect circuit’s functional
specifications variability in order to allow the test to be per-
formed efficiently. (2) An optimum set of measures should not
be redundant to avoid incurring in extra costs. Last condition
may be relaxed if the objective is to improve test robustness
against noisy measures.

In this work, the use of Kendall’s Tau rank correlation
coefficient [7], [8] is proposed for rating the suitability of a
set of candidate measures to be used in alternate testing. Let
(x1, y1), (x2, y2), . . . , (xn, yn) be a set of bivariate data. Given
two bivariate data points, Pi = (xi, yi) and Pj = (xj , yj),
they are said to be concordant when xi < xj and yi < yj or
xi > xj and yi > yj , i.e. when components of the difference
point Pi−Pj have the same sign. If they present different sign,
the pairs are said to be discordant. Under such definitions,
Kendall’s Tau rank correlation coefficient [7] is defined as,

τ =
(# concordant)− (# discordant)

1
2n(n− 1)

(1)

Note that −1 ≤ τ ≤ 1 since the denominator corresponds to
the total number of possible pairs given n bivariate data points.
Kendall’s Tau is a suitable indicator of correlation of any
nature since it does not require the data to be linear to present
high correlation values. This feature is remarkably desired
since in general, the mapping between functional specifications
space and indirect measures space is highly nonlinear.

In this work, Kendall’s Tau correlation coefficient is used
to rate the most adequate measures with the aim of reducing
redundant information provided by the selected measurements.
In the next section, a continuous time 4th order band-pass
filter is presented and the set of indirect measures to be used
is defined.

III. CASE STUDY:
BAND-PASS BUTTERWORTH FILTER

A. Nominal Circuit

In order to validate the proposal, a continuous time 4th order
band-pass Butterworth filter has been designed and studied
under the presence of statistical variability. The nominal filter
is characterized by the following transfer function,
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Being ω0 the characteristic angular frequency, Q the quality
factor which determines its bandwidth as f2−f1 = f0/Q and
G the gain in the band-pass. Corner frequencies f1 and f2
correspond to those frequencies in which the gain is attenuated
3 dB. They can be determined as f0/F and f0F respectively,

where F is a dimensionless factor depending on the quality
factor, F = (1/Q+

√
4 + 1/Q2)/2.

Fig. 1 shows the signal flow graph description of the
nominal transfer function, where coefficients a, b and c relate
to filter’s functional specifications in this way, a =

√
2/Q,

b = 2 + 1/Q2 and c = G/Q2.
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Fig. 1. Signal flow graph of the 4th order Butterworth filter realized
with inverting integrators. Its implementation with operational amplifiers is
straightforward.

Previous signal flow graph description can be easily imple-
mented in hardware using inverting integrators and a feedback
network as the schematic in Fig. 2 depicts [9]. In this case, 5
operational amplifiers and 14 passive components (4 capacitors
and 10 resistors) were used.

Passive components R and C determine filter’s characteris-
tic frequency as f0 = 1/(2πRC). In this work the following
component values have been chosen for the nominal filter,
R = 1 kΩ and C = 1.6 nF. This selection fixes filter’s
characteristic frequency at about f0 = 100 kHz while the
quality factor has been established to Q = 2 and the gain
set to G = 1 V/V.
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Fig. 2. Schematic of the 4th order band-pass Butterworth filter implemented
using passive components and operational amplifiers. The chosen implemen-
tation topology corresponds to the so called feedforward form [10].

B. Measures Definition

In this work, we will use the input/output Lissajous com-
position method [11] by applying a 3 tone input stimulus
to the filter. Such compositions can be considered as an
analog signature due to their sensitivity to parametric defects.
Lissajous based testing technique composes two DUT signals
and uses such information for testing purposes. For instance,
Fig. 3 shows the output of the filter depicted in Fig. 2 when it
is excited using 3 tone stimulus. The applied tones are tuned
at frequencies f0/2, f0 and 2f0.

Considering a reference and a deviated Lissajous trace
(green and red traces), the measures are defined as the set
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Fig. 3. Input-output composition when a 3 tone signal is applied to the filter
sketched in Fig. 2. Green trace corresponds to the nominal filter response
while the red trace corresponds to a filter out of specifications.

of (∆xi,∆yi) displacements of the shifted curve with respect
to the nominal one. The points taken in consideration are the
tangency points of vertical and horizontal tangent lines to the
Lissajous composition as Fig. 3 depicts. The selection of these
points allows an easy and systematic approach facilitating
further data processing while keeping Lissajous signature
information [12].

IV. SIMULATION RESULTS

A. Monte Carlo Simulations

With the purpose of obtaining a representative sample of
circuits population, 5000 Monte Carlo simulations have been
carried out considering passive components values distribute
according to independent normal distributions. Different 3σ
spreads have been considered for resistors and capacitors being
a 3% and 5% of their nominal value respectively. Table I
summarizes filter’s specifications as well as the lower and
upper test limits for each functional specification.

TABLE I
BUTTERWORTH FILTER FUNCTIONAL SPECIFICATIONS

Specification Symbol Nominal Lower Upper

Characteristic freq f0 (kHz) 100± 2% 98 102

Band-pass gain G (V/V) 1± 25% 0.75 1.25

Quality factor Q (-) 2± 30% 1.4 2.6

In general, given a transfer function affected by component
deviations, it is not possible to compare its coefficients against
the ones in the nominal transfer function with the aim of
deriving its specifications. Because of that, the following

rules have been followed to explicitly measure every circuit
performances:

• Characteristic frequency is the frequency at which trans-
fer function phase is zero.

• Band-pass gain is the gain at the previously defined
characteristic frequency.

• Quality factor is computed by measuring corner frequen-
cies first. Such frequencies correspond to those at which
the band-pass gain has been attenuated 3 dB.

The resulting Bode diagrams of the 5000 Monte Carlo filters
can be seen in Fig. 4. Green traces correspond to circuits
fullfilling the specifications listed in Table I while red traces
correspond to circuits violating at least one specification. The
thick black trace correspond to the nominal transfer function
in Equation (2).

Fig. 4. Bode diagrams obtained by Monte Carlo simulation. Green traces
correspond to circuits satisfying all the specifications listed in Table I while
red traces correspond to circuits violating, at least, one specification.

Functional specifications histograms and the test acceptance
limits of the circuits depicted in Fig. 4 can be seen in
Fig. 5. Characteristic frequency can be considered normally
distributed according to Anderson-Darling normality test while
pass-band gain and quality factor distributions clearly present
a nonzero skewness parameter.

The study of possible correlations between functional spec-
ifications is desirable in order to find out how many indepen-
dent variables are involved. Fig. 6 shows the scatter plots of
filter’s functional specifications, f0, G and Q. As can observed,
band-pass gain and quality factors are strongly correlated
presenting a Pearson linear correlation coefficient of 0.9938.
This fact suggests the total number of independent variables
is 2 and therefore only a pair of indirect measures will be
required in order to successfully encode the acceptance and
rejection regions.
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Fig. 5. Histograms of the measured specifications for the set of 5000 Monte
Carlo circuits and their test limits. Histograms represent, from left to right,
characteristic frequency (f0), pass-band gain (G) and quality factor (Q).

Fig. 6. Scatter plots highlighting Monte Carlo circuits specifications
correlations. As can be observed, functional specifications G and Q are
strongly correlated with a linear correlation coefficient of 0.9938.

B. Indirect Measures Selection

Fig. 7 shows the correlation between filter’s functional
specifications and the set of 16 indirect measures introduced in
section III. Correlations are studied using different indicators,
namely, Pearson’s linear correlation coefficient, Kendall’s Tau
rank correlation coefficient [7] and distance correlation [6],
[13]. As can be appreciated, all of them seem to be consis-
tent. Pearson’s coefficient and distance correlation present a
stronger similarity between them than Kendall’s Tau, although
all 3 show the same tendency.

Section II introduced the need for the indirect measures
to reflect the whole variability of the functional specification

space. In this case, it is clear they are related, although the
highest correlated measure does not necessarily need to be
the first to be included in the measures subset since in Fig. 7
only one-to-one correlations are represented.
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Fig. 7. Different correlation indicators, Pearson coefficient, Kendall’s Tau
and distance correlation, between filter’s functional specifications and the
candidate indirect measures. Dark blue indicates no correlation while dark
red indicates maximum correlation.

Fig. 6 shows that f0 and Q are strongly correlated what
allows us to assume 2 effective functional specifications.
Because of that, only 2 indirect measures need to be selected
since, with certain level of ambiguity, they should be sufficient
to perform the test. This fact has been verified by principal
component analysis (PCA) method over the set of candidate
measures. It reported that with only 2 principal components,
the 99.2% of variability is explained.

In section II it was also mentioned the set of measures need
to be independent, i.e. redundancy must be avoided among the
selected subset of indirect measures. Because of that, Kendall’s
Tau rank correlation coefficient is proposed to decide which
candidate measures are selected for the testing procedure itself.
Table II reports Kendall’s Tau correlation coefficient for the set
of 16 candidate measures. Fig. 8 reports the same information
in colored format.

Then, the pair to be selected as an indirect measure should
be the one presenting the minimum Kendall’s Tau coefficient.
In this case the minimum correlation value is 4.6633× 10−4

corresponding to measure pair (M08,M10). This selection will
allow to encode the acceptance and rejection regions using
the most independent pair among the 16 possible candidates,
i.e. the redundancy in the indirect measures is minimized and
therefore test efficiency metrics should improve.

C. Test Application Results

In order to validate the proposal, the acceptance and re-
jection regions using all possible measures pairs have been



TABLE II
KENDALL’S TAU RANK CORRELATION COEFFICIENT BETWEEN CANDIDATE INDIRECT MEASURES

M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16
M01 0.34 0.81 0.47 0.70 0.15 0.89 0.56 0.93 0.45 0.78 0.38 0.77 0.13 0.90 0.66

M02 0.15 0.20 0.64 0.51 0.23 0.10 0.41 0.89 0.12 0.28 0.57 0.53 0.24 0.00

M03 0.66 0.51 0.34 0.91 0.75 0.74 0.25 0.97 0.57 0.57 0.32 0.91 0.85

M04 0.17 0.68 0.57 0.90 0.39 0.09 0.69 0.91 0.23 0.66 0.57 0.80

M05 0.15 0.59 0.26 0.77 0.74 0.48 0.08 0.92 0.17 0.60 0.36

M06 0.26 0.60 0.08 0.40 0.37 0.77 0.08 0.98 0.25 0.49

M07 0.66 0.82 0.34 0.88 0.48 0.66 0.24 0.97 0.77

M08 0.48 0.00 0.77 0.82 0.32 0.58 0.65 0.89

M09 0.52 0.71 0.30 0.84 0.06 0.83 0.59

M10 0.22 0.18 0.68 0.42 0.35 0.11

M11 0.60 0.55 0.35 0.88 0.88

M12 0.14 0.75 0.48 0.71

M13 0.10 0.67 0.43

M14 0.23 0.47

M15 0.76
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Fig. 8. Colored Kendall’s Tau matrix with numerical values shown in Table II.
Minimum value of correlation (4.6633×10−4) corresponds to measures M08
and M10. It has been highlighted with a yellow border.

encoded using octrees [14], [15]. Each octree has been tested
with a set of 50×103 circuits and the number of misclassified
circuits evaluated, i.e. test escapes and test yield loss. Fig. 9
shows the resulting octree for the measure pair (M08,M10).

Table III shows the percentage of misclassified circuits
using the indicated pairs. As can be observed, maximum
value corresponds to a 23.66% of misclassified circuits using
measure pair (M07,M15). A quick check in Table II and
Fig. 8 confirms such pair presents one of the maximum values
of Kendall’s Tau correlation. On the contrary, the minimum
percentage of misclassified circuits is for pair (M04,M09) with
1.99%. For the case of the selected pair (M08,M10), the rate
of misclassified circuits is 2.55% which is located in percentile
15% among all the obtained misclassification rates.

There exists a remarkable similitude in the patterns appre-
ciated in Fig. 8 and Fig. 10. Those pairs presenting highest
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Fig. 9. Resulting octree encoding the acceptance and rejection regions
when measures M08 and M10 are selected for testing. The octree evaluation
allows the test decision. Higher octree levels concentrate near the test decision
boundary [15].

Kendall’s Tau values correspond to those pairs exhibiting the
largest test misclassification rates. A noticeable example is the
diagonal departing from pair (M01,M09) and going down to
pair (M08,M16) in which warm colors clearly prevail.

V. CONCLUSIONS

A criterion for rating the suitability of indirect measures to
be used in alternate testing of mixed-signal circuits has been
proposed. The method relies on the use of Kendall’s Tau rank
correlation coefficient as indicator. The presented criterion
considers those candidate measures reporting the minimum
Kendall’s Tau coefficient, therefore avoiding or minimizing



TABLE III
OCTREE TEST RESULTS SHOWING THE PERCENTAGE OF MISCLASSIFIED CIRCUITS FOR EVERY MEASURE PAIR

M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16
M01 2.45 3.66 2.48 4.34 3.15 7.34 2.66 8.41 2.84 3.91 2.34 5.60 2.98 9.75 3.20

M02 2.59 2.55 5.60 4.67 2.89 2.98 3.09 10.22 2.67 3.13 5.13 4.66 2.94 2.55

M03 2.53 2.70 3.69 8.84 4.38 3.02 2.42 8.44 2.52 2.74 3.21 5.85 5.79

M04 2.75 6.20 3.45 12.89 1.99 2.25 2.91 7.90 2.42 5.49 2.27 3.88

M05 3.66 3.39 3.13 6.37 7.75 2.69 2.77 16.71 3.26 4.17 3.10

M06 3.65 4.29 2.97 3.62 4.00 8.90 3.36 13.58 3.09 3.74

M07 2.98 6.90 3.35 7.23 2.83 5.49 3.39 23.66 5.23

M08 2.93 2.55 5.69 5.83 3.23 4.10 3.77 10.36

M09 2.66 3.06 2.23 5.81 2.75 3.46 2.15

M10 2.53 2.29 4.47 3.37 2.49 2.43

M11 2.93 2.80 3.60 5.14 8.34

M12 2.67 7.71 2.59 4.44

M13 3.19 3.28 2.94

M14 2.86 3.43

M15 2.75
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Fig. 10. Percentage of misclassified circuits (test escapes and test yield
loss) with numerical values shown in Table III. The minimum Kendall’s Tau
measure pair is highlighted in yellow. Pairs giving the lowest and highest
misclassification rate are highlighted in green and red respectively.

redundancy in the information provided by each measure what
immediately translates in better test results. The presented
method can be naturally extended to arbitrary dimension
spaces.

The proposed method has been applied to select, among
a candidate set, a subset of indirect measures for testing a
band-pass Butterworth filter under the presence of process
variations. The resulting selected measures using the proposed
criterion have been used to encode the measure space using
octrees. Test misclassification for such measures is among the
best 15% possible pairs, therefore validating the proposal.
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