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1 Introduction 

1.1 THE IMPORTANCE OF GEOPHYSICAL LOGS  

Geophysical logs are continuous recordings of a physical parameter along a borehole. Many 
different types of parameter can be recorded such as natural radioactivity (the gamma-ray log), 
acoustic slowness, electrical resistivity and bulk density (see Rider and Kennedy (2011) for a 
complete discussion).  They also include imaging tools which record images the of internal 
circumferal surface of the boreholes measured using light or false colour images derived from 
resistivity, acoustic pulses or measurement of active and passive radioactivity.     

Geophysical logs are routinely used for the characterisation of rock formations in the subsurface 
where they may be important as aquifers, hydrocarbon reservoirs or potential sites for the 
storage of hydrogen or carbon dioxide. Geophysical logs are necessary because only a small 
fraction of boreholes are sampled by mechanical rock coring. For reasons of time and cost, 
coring may be limited to short intervals of a formation of interest, discrete side-wall cores or 
often omitted entirely. In many boreholes the only physical record of the subsurface geology 
comes from drill-bit cuttings which are retrieved from the circulating drilling fluid. Cuttings 
samples, however, leave a very imprecise record of the formations. Geophysical logs bridge the 
gap between cuttings and core by bringing additional ‘remotely-sensed’ data which can be used 
to reconstruct rock type and other rock properties such as fracturing at a high resolution. The 
relatively low cost of geophysical logging relative to continuous rock coring means that these 
data are routinely collected.  

Geophysical logs are probably the single largest source of continuous, quantitative 
stratigraphical data in the British Geological Survey archives and their potential as stratigraphic 
tools has long been known (Whittaker et al. 1985). They are, however, still relatively 
underexploited for this purpose particularly given the huge advances in log handling and 
analysis that has been made since these pre-digital studies. Geophysical logs offer the potential 
to not only pick gross lithostratigraphic contacts but to generate refined information on the 
internal lithological (or lithofacies) composition of a formation. The latter is the primary focus of 
this report. 

1.2 AIM OF THE REPORT 

The aims of this report are to document: 

1. A range of methods that are currently used by the BGS stratigraphers to extract lithological 

information from geophysical logs (includes manual classification, cut-off analysis, mineral 

composition by linear inversion).  

2. Alternative methods which, at present, are not routinely applied but are sufficiently 

practical and accessible that they could become important, including unsupervised (k-

mean clustering) and supervised machine learning approaches.  

The report does not aim or claim to be a complete inventory of all possible methods to derive 
lithological information from geophysical logs. The authors welcome correspondence and 
information on any additional methods that are available or emerging. 

1.3 THE PROBLEM OF DERIVING LITHOFACIES FROM GEOPHYSICAL LOG DATA 

The derivation of rock lithology or lithofacies using geophysical log data is complicated by a 
number of factors including (Figure 1) – 

1. Lithological (or lithofacies) classes are assumed to be discrete categories but in reality 

often represent a continuum e.g. sandstone merging to a mudstone by a progressive 

decrease in sand content/increase in mud content. 
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2. Downhole sampling of lithologies by geophysical logging tools is imperfect and signals are 

often mixed (convolved) from multiple rock types where boundaries are crossed or the 

bed thickness is less than the relatively coarse resolution of the logging tools. 

3. Logging tools operate in difficult environments where variations in borehole diameter, 

drilling muds, pore-filling fluids, logging speed, tool calibration, high temperatures and 

pressures, borehole wall caving which affect contact between the lithology and some 

logging tools and other factors introduce many uncertainties in the process of determining 

lithology form logs signals. 

4. Geophysical log archives assembled over many decades are extremely heterogeneous in 

the quantity and quality of information they contain. 

5. Like all analytical equipment geophysical logs have ranges of optimum measurement 

resolution. Lithologies that record outside that range (such as very low gamma–ray values 

in very pure limestones, like the White Chalk Subgroup or high gamma–ray values in 

highly radioactive mudstone like the Kimmeridge Clay Formation) become much less 

reliable and measurements suitable for only qualitative rather than quantitative 

techniques.  

 

Figure 1. Some issues in the derivation of discrete lithofacies from geophysical log data 

2 Manual picking 

2.1 BASIC PRINCIPAL AND RATIONALE 

The manual approach to lithofacies classification of geophysical logs is a digitising process. 
This is generally (and most efficiently) undertaken within log interpretation software such as 
WellCAD where lithofacies boundaries can be inserted, dragged and edited using a mouse 
within a lithofacies track (Figure 2). The lithofacies track is placed adjacent (or overlain) on other 
log tracks such as gamma-ray and sonic transit time. These input logs form the basis for picking 
the lithofacies boundaries. The input logs are not (necessarily) required for any quantitative 
analysis so it is possible to use scaled raster scans of the logs in place of the digital versions if 
required. This can be advantageous in negating the need for log digitisation where digital 
versions are unavailable 

The primary advantage of this manual approach is that the geologist can place the lithofacies 
boundaries where they wish. This brings into play all of the experience and tacit knowledge that 
the geologist possesses on the formation under investigation. This might include the typical 
range of lithofacies that are found, the usual thickness of beds and any known recurring 
patterns of lithofacies that define cycles and rhythms within the formation. Moreover because 
the logs are not being used quantitatively the quality (and quantity) of the log data is less critical 
than other methods. The geologist can use their experience to interactively recognise, correct 
and account for poor log quality throughout the classification process. The disadvantages of this 
technique is that the geologist’s preconceived ideas of what they expect to see can influence 
their decision making and can lead to over interpretion that identifies subtle variations that are 
not effectively demonstrated at the resolution of logging tools or conversely missing subtle 
facies variations. Such issues can be effectively remediated by robust peer-review.   
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Figure 2. Typical track set-up for manual lithofacies digitising within a geophysical log 
package (WellCAD) 

The technique can be particularly applicable to some superficially ‘homogeneous’ carbonate-
dominated systems such as the Chalk Group where log responses are often subtle compared to 
other types of formation (e.g. siliciclastic). Moreover units such as the Chalk Group of the UK 
are penetrated by boreholes drilled for many different purposes (hydrocarbon, water, 
geotechnical, research) resulting in extremely heterogeneous geophysical log suites of vastly 
varying quality. This can hamper blanket automated recognition of lithofacies within the Chalk. 
To illustrate some of these issues and demonstrate the value of manual approaches in these 
types of scenario the Chalk is considered in more detail below. 

2.2 MANUAL CLASSIFICATION OF LITHOFACIES EXAMPLE: THE CHALK GROUP 

2.2.1 Optimal geophysical log combinations 

The most widely available geophysical logs that are useful for interpreting stratigraphy and 
facies in the Chalk are gamma, resistivity and sonic. Induction logs are also valuable for 
deriving resistivity profiles for air-filled borehole intervals that cannot be recorded by resistivity 
tools, and digital image logs (where they exist) allow direct feature observation and refine 
understanding of corresponding geophysical responses. Ideally, a combination of gamma-ray 
and resistivity/sonic logs is desirable for maximum confidence of interpretation, but this rarely 
exists for the total depth range of Chalk in boreholes. In deep boreholes drilled for hydrocarbons 
exploration, the only logs typically run in the Chalk Group are caliper and low-resolution (often 
through casing) gamma-ray. For these boreholes, the availability of digital log data and ability to 
adjust the scale range is key to optimising interpretation value. For shallower boreholes (typical 
those less than 150 m deep), which in the Chalk Group have usually been drilled in connection 
with groundwater or major civil engineering investigations, there is usually complete coverage of 
gamma-ray logs and partial coverage of resistivity/sonic logs, the latter typically being restricted 
by the location of the water table and/or borehole construction (particularly borehole lining). 
However these often drilled by civil engineering focussed contractor recording in non-
standardised units with quality standards below those adopted for oil industry work making 
quantitative assessment very difficult. In some instances, caliper logs may be a useful guide to 
stratigraphical boundaries (particularly where these correspond to changes in cementation), and 
for identifying particular types of feature (e.g. fracturing). 

Overarching approach to classifying a thick carbonate formation 

For the purpose of geophysical log interpretation, the stratigraphy of the Chalk (Mortimore, 
1986) can be thought of as comprising broad-shifts in mud content and/or cementation, within 
which is embedded a detailed framework of marker-beds. The marker-beds include the 
following: 

• Very thin calcareous mudstones (marls) including bentonites (typically 50 – 100  mm thick) 
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• Hardgrounds, locally enriched with pyrite, glauconite and phosphate 

• Sponge beds (cemented, typically with sponges preserved as iron-rich mesh-works) 

• Flint bands (named flints typically ca. +30 cm & closely spaced/semi-continuous) 

The marker-beds and facies units each have particular geophysical log features that allow their 
recognition, and these combine into packages of markers and facies defining lithostratigraphical 
units with distinctive associations of inflection patterns.  

2.2.2 Recognition of key marker-beds 

The methodology for interpreting marker-beds in the Chalk is described below: 

Marls: Typically seen as localised sharply developed peaks in gamma-ray log values, 

corresponding with localised sharp drops in the resistivity log profile, and localised sharp 

increases in interval transit time on sonic logs. Geophysical log response varies with marl-type, 

from relatively stronger, higher amplitude signatures in solid closed marl seams and bentonitic 

marls, to weaker responses in anastomosing plexus marls that intercalate significant chalk 

sediment, and thin marl wisps and coatings on stylolitic surfaces. In Northern England, the 

development of high concentrations of thin marl seams in the Flamborough Chalk is signalled by 

an increase in “spikiness” of gamma-ray logs, and corresponding response of sonic logs (Woods, 

2018;Figure 3). 

 

Figure 3. Gamma-ray and sonic log responses to the increase in marl content in the 
Flamborough Chalk Formation 

Hardgrounds: Hardgrounds correspond to localised, very sharp increases in resistivity log values 

and localised sharp reductions in interval transit time. Corresponding gamma-ray logs typically 

show sharp increases because of the tendency of these features to concentrate iron and 

phosphate minerals (e.g. glauconite & apatite). Where both gamma-ray and resistivity/sonic logs 

are available, then the coupled response described above is strong evidence for hardground 

identification (Figure 4). When only a single log type is available, significantly more caution is 

required, and interpretations should take account of the stratigraphical context provided by 

interpretations of adjacent intervals and any laterally related boreholes. The shape of the peak in 

gamma-ray log values is typically somewhat different from marl seams, usually broader and 

blunter (reflecting the fact that hardgrounds are typically thicker (dm) than marls (cm), with much 

higher amplitude. Sharp peaks on resistivity and sonic logs can also be produced by very thick 

flint seams (typically with low gamma-ray values), or where flint seams are highly concentrated, 

and might be difficult to distinguish from hardgrounds if no gamma-ray log is available. 
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Figure 4. Gamma-ray and sonic log responses to hardgrounds (1) and marl seams (2) in the 
Lewes Nodular Chalk Formation 

Hardgrounds imply significant stratigraphical omission, but other thin, hard cemented units in 
the Chalk that are not hardgrounds, and likely represent reductions in the rate of sedimentation 
(e.g. sponge beds), may have a similar geophysical log response. Typically both the gamma-ray 
and resistivity/sonic responses are lower amplitude compared to hardgrounds (because 
cementation is less extreme & mineral enrichment is limited to thin films of iron-oxide/hydroxide 
associated with sponge preservation), but understanding this relative difference can be difficult 
if undoubted hardground signatures are not available for comparison. Again, the stratigraphical 
context provided by interpretation of adjacent intervals and laterally related boreholes will be an 
important guide to feature discrimination. 

Flints: Although flint is widely distributed in the Chalk, and there are a number of important named 

flint marker-beds that can be traced laterally for 100s km. However, it is often difficult to recognise 

their individual signatures on geophysical logs. This may partly reflect the brittle character of flint, 

and its tendency to fragment during coring rather than providing a clean, solid surface for 

instrument detection. There are a few examples of where recognition has proved possible, 

particularly in the Chalk of northern England, where thick (+30cm) bands of laterally continuous 

flint form a series of named markers at the base of the Late Turonian Burnham Chalk Formation 

(Fig. 3). These flints can be identified by sharply defined high resistivity / ‘fast’ sonic (low interval 

transit time) peaks and low gamma-ray log values.  
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Figure 5. Gamma-ray and resistivity log responses to major flint seams in the basal part of the 
Burnham Chalk Formation. *Note no scale available for Killingholme DG1 gamma-ray log. 

2.2.3 Manual log interpretation of facies units 

The creation of a regional geological model of the Chalk across southern England (Woods et 
al., 2016; Newell et al., 2018) included information about chalk facies units derived from 
borehole geophysical logs. In addition to facies types represented by marker-beds (see above), 
these included: 

• Hard chalk 

• Marly chalk 

• Mudstone 

• Limestone 

• Phosphatic chalk 

In the above list, ‘Limestone’ in this context refers to cemented carbonate units that are not 
dominated by nannofossils and lack typical chalk fabrics. There is a close association of the 
limestone and mudstone facies, and in this report (below) they are discussed as ‘Interbedded 
limestone/mudstone facies’. Although not forming part of the previous facies modelling work, it 
is also possible to identify very flint-rich chalk, also described below. 

Hard Chalk: Strong lateral shifts in resistivity and sonic logs to higher values (resistivity) and 
fast interval transit times (sonic), that are sustained over 10s of metres of strata, can generally 
be used to infer the presence of hard chalk. In combination with marker-bed information, and 
knowledge of coeval successions at outcrop and in boreholes, inference of ’nodular’ fabrics is 
possible. Interpretational ambiguity can be caused by high concentrations of flint, which 
collectively may cause similar but usually less marked shifts in resistivity and sonic profiles. If 
the shift itself occurs gradually, over 10s of m, then in the context of the known mechanisms 
that typically influence broad patterns of hardness in the Chalk (relative sea level change and 
basin architecture), a response to flint content should be suspected. Additionally, regional 
knowledge and stratigraphical context can provide valuable supporting evidence about the 
potential influence of flint on geophysical logs.  

Flint-rich chalk: Some intervals in the Chalk contain high concentrations of flint over narrow 
stratigraphical intervals that are laterally persistent, particularly in the Late Turonian (e.g. 
Brandon Flint Series; Mortimore & Wood, 1986). Individual flints and flint-rich intervals typically 
correspond with very low background gamma-ray log values, serving to distinguish the 
corresponding fast sonic and elevated resistivity log responses from highly cemented chalk 
intervals. 
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Marly Chalk: This facies represents chalk with a greater background mud content, but is 
distinct from a marl seam where there is greater separation of mud and chalk phases. On 
geophysical logs, marly chalk is represented by an increase in average gamma-ray log values 
with correspondingly lower resistivity/slower sonic responses. In the Chalk, the admixture of 
mud and chalk usually results in a relatively poorly cemented lithology. In contrast, carbonate 
systems that are not dominated by nannofossils, the equivalent facies (wackestone) is typically 
highly cemented. The Late Cenomanian Grey Chalk Subgroup provides a good example of 
marly chalk facies (Figure 6), in which massive-bedded units of creamy-grey chalk have 
significantly higher gamma-ray log values than the purer chalk deposited in the Early Turonian. 

 

Figure 6. Marly chalk facies in the Grey Chalk Subgroup indicated by significant increase in 
average gamma-ray log values. 

Intercalated mudstone/limestone facies: This facies is typical of mixed carbonate systems, its 
development in the lower part of the Chalk Group (Grey Chalk Subgroup) reflecting the 
influence of Milankovitch cycles immediately prior to deep flooding of continental shelves (and 
corresponding restriction of clastic input) in the earliest Turonian (Gale et al., 1999). Gamma, 
resistivity and sonic logs show a pronounced, high frequency, out-of-phase oscillations over 
wavelengths of 1 – 5 m, with high gamma-ray log intervals corresponding with low resistivity/fast 
sonic response (Figure 7). 
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Figure 7. Out-of-phase oscillations of gamma-ray and sonic logs that is characteristic of 
interbedded limestone/mudstone facies in the lower (Early - Mid Cenomanian) part of the Grey 
Chalk Subgroup. 

Sandy (including glauconitic) chalk: This facies is exemplified by intervals in the basal and 
lower parts of the Chalk Group (Grey Chalk Subgroup), and corresponds with significantly 
elevated gamma-ray log values that may extend for 5 – 10 m. The strong gamma-ray log 
response is driven by glauconite and dispersed mud content, usually boosted by significant 
quantities of phosphatic clasts. Patterns of log serration are a response to the piping-down of 
more chalky sediment infilling burrow systems that are usually pervasive. Moderately elevated 
resistivity and intermediate interval transit times on sonic logs reflect the significant sand 
content (Figure 8), but the responses of these logs are generally less amplified than for 
cemented chalk and hardground intervals.  

 

Figure 8. Gamma-ray and sonic log responses to sandy chalk facies (with glauconite) at the 
base of the Chalk Group 
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Phosphatic Chalk: In the Chalk, this facies may be developed as a conglomerate of phosphatic 
nodules and phosphate-encrusted limestone cobbles, usually less than a metre thick, or as 
intervals of fine granular phosphate, sometimes more than 10 m thick. Where developed as a 
phosphatic conglomerate, the geophysical log response can be hard to separate from that of a 
hardground, since in both gamma-ray log values tend to be sharply elevated and coincide with 
high resistivity/fast sonic log responses (Figure 9). In many ways these intervals resemble 
hardgrounds, being associated with condensed sedimentation with nodules/cobbles bored and 
encrusted with marine serplulids and molluscs. A distinction is that erosion and winnowing 
appear to dominate over in-situ sediment lithification that characterises hardgrounds. 
Understanding the stratigraphical context of these inflection patterns, and knowledge about the 
likely distribution of erosion surfaces, provides a valuable guide to their correct interpretation. 

 

Figure 9. Sonic and gamma-ray log responses to inferred phosphatic conglomerate (grey 
highlight) at the base of the Chalk Group 

Relatively thick intervals (+15 m) of granular phosphatic chalk have recently been reported and 
geophysically logged along the alignment of a proposed road tunnel adjacent to Stonehenge 
(Mortimore, 2014, fig. 3.26c). The gamma-ray log signature rapidly builds out over a few metres, 
from background values of 40 API in the host chalk, to 140 API in the phosphatic interval. The 
signature shows high frequency oscillations and longer wavelength variability, the latter 
probably reflecting detail of the internal sedimentary geometry. In Chalk, there is usually a close 
association between the development of these features and patterns of channelling developed 
in response to local structure (Mortimore et al., 2017). These may be evident on seismic profiles 
(Evans and Hopson, 2000).  

2.2.4 Manual log interpretation of facies packages that define formational units 

Onshore UK Chalk Group stratigraphy was rationalised by Rawson et al. (2001), and comprises 
a highly distinctive arrangement of marker-beds and facies units (Mortimore, 1986; Wood & 
Smith, 1978; Whitham, 1991, 1993) into broader packages with particular geophysical log 
patterns. These facies packages correspond with Chalk formational units, and the methodology 
for their recognition is described below. 

1. Look for any broad shifts in log profile that act to anchor the interpretation at one or more 

levels. A good example is the Cenomanian/Turonian boundary, at the base of the Holywell 

Nodular Chalk, where the mud-rich Plenus Marls are overlain by the highly cemented 

Melbourn Rock. This stark contrast in physical properties is marked by a major inflection 

in both resistivity/sonic and gamma-ray logs, and gamma-ray values below the Plenus 

Marls are consistently higher than above because of higher overall mud content (Figure 

10). Another distinctive ‘event bundle’ occurs in Late Turonian Chalk successions, where 

a closely spaced successions of marls and hardgrounds in the lower part of the Lewes 

Nodular Chalk produce a series of sharp oscillations in resistivity/sonic and gamma-ray 
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log signatures (Figure 11A). Confirm that this is consistent with any local or regionally 

available control data (e.g. published log interpretations, SOBI borehole data, and 

regionally relevant thickness data). 

 

Figure 10. Strong inflection patterns across the boundary of the Grey Chalk and White Chalk 
subgroups form a characteristic 'event-bundle' for anchoring interpretations and correlations. 

 

Figure 11. (a): Sonic and gamma-ray log 'event bundle' characterising Late Turonian Chalk. 
The bundle consists of a marl-rich, low resistivity/slow sonic interval, overlain by a succession 
that progressively builds in resistivity/sonic velocity, interrupted by inflections representing marl 
seams. The bundle is capped by a high resistivity/high sonic velocity hardground-rich interval; 
(b): Transitional log responses across the boundary of the Holywell Nodular Chalk and New Pit 
Chalk formations, marked by declining resistivity and increasing gamma-ray log values. Care is 
needed to consistently identify boundary levels within these transitional responses.  

2. Look for finer-scale marker-bed event bundles. These second-order features are usually 

slightly less obvious because they are either changes to a single log type, or trends in the 

pattern or amplitude of log values through a broader depth range. Typically these events 

only become more meaningful for interpretation in the context of the parameters set by 

the first order log features. Examples of second-order events are: 1) increase in gamma-

ray log serrations 15 – 30 m above the base of the Plenus Marls (indicative of the marl-

rich New Pit Chalk); 2) significant low-resistivity punctuations coincident with high gamma-

ray peaks in the middle and higher part of the New Pit Chalk, coinciding with increased 
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frequency and thickness of marl seams; 3) discrete series of typically 6 gamma-ray log 

peaks just above the base of the Seaford Chalk. 

3. Where interpreting a series of spatially associated boreholes, explore the detailed pattern 

of inflections between the anchor points formed by marker-beds in adjacent boreholes. 

This has three important functions: 1) patterns that closely match enhance confidence of 

interpretation; 2) trends in the spatial organisation of these inflections provides refined 

understanding of where sedimentary packages are expanded or condensed locally within 

successions; 3) where there is variability in the quality or availability of log data for different 

boreholes, but high confidence in likely correlation, then flattening adjacent boreholes on 

a common stratigraphical datum can provide increased information about the likely 

position of stratigraphical boundaries. 

4. Confirm that stratigraphical picks are consistent with regional structural trends and up-to-

date geological map data from the borehole vicinity. Consider the availability of outcrop 

biostratigraphical data to constrain near-surface log interpretations. If inconsistencies are 

apparent, determine if there are other data to support a stratigraphical/structural 

explanation for this. If not, re-evaluate correlation and decide if the error is likely to be with 

first or second-order features. If first-order features are suspected to be incorrectly 

assigned, consider the wider implications of this for other borehole correlations and if 

necessary re-evaluate the correlation of all first-order features in all boreholes. 

5. Refine interpretation of stratigraphical boundaries to ensure consistency. In the Chalk 

Group, consistency of interpretation is affected by two issues: 1) the transitional nature of 

facies changes at stratigraphical boundaries, and 2) log resolution. In stratotype sections 

the boundaries of Chalk units are named marker-beds, but these are not always easily 

recognisable as discrete entities on borehole logs, and the associated shifts in facies 

patterns that they signal are rarely precisely coincident. In such cases, trends in log 

patterns, for example increasing/declining resistivity/gamma-ray profiles become 

important for boundary interpretation, and a consistent decision needs to be made about 

where along the trend line a boundary is likely to be located.  

Inability to identify stratigraphy-defining marker-beds can be associated with geophysical data of 
particular vintage.  A significant number of single point resistivity logs in BGS archives record 
data at widely spaced depth increments. Although the trends are still meaningful for 
stratigraphical interpretation, multiple marker-beds that are usually separately resolved on 
continuous logs may be covered by a single inflection on vintage logs. This problem can be 
mitigated if gamma-ray logs are also available. A good example of facies transition at a 
stratigraphical boundary is the junction of the Holywell Nodular Chalk and New Pit Chalk (Figure 
11B), and Figure 12 compares the difference in marker-bed resolution revealed by vintage 
single point and modern continuous resistivity logging. Therefore log age and quality is a proxy 
of data uncertainty; borehole with less uncertain data should be prioritised and the most 
uncertain data considered for exclusion.   
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Figure 12. Differences in inflection detail between single point resistivity logs (red line) and 
continuous resistivity logs. 

2.2.5 Manual facies interpretation in offshore Chalk successions (North Sea) 

Manually picked geophysical log responses underpin the stratigraphical nomenclature for the 
Chalk in the North Sea (here including strata of earliest Palaeocene age) (Johnson & Lott, 1993; 
Lott & Knox, 1994; Gradstein & Waters, 2018; Figure 13). Formations are recognised by broad 
increases or decreases in gamma-ray and sonic log values, and by recognition of particular 
patterns of inflections in a series of reference boreholes, with microfossils (foraminifera, 
dinoflagellate cysts & nannofossils) where available providing a correlatable framework of age-
related marker-horizons. Patterns of intraformational log variability (that are not stratigraphically 
formalised) have been described in the context of facies variation, for example, significantly high 
gamma-ray log responses in the basal part of the Ekofisk Formation, corresponding with a mud-
rich chalk interval (Johnson & Lott, 1993). The logs illustrated by Johnson and Lott (1993) and 
Lott and Knox (1994) suggest significant potential for identifying facies subdivisions, and 
Mortimore (2014, figs 5.5 – 5.9) highlighted some of these on logs that he illustrated. In the 
context of the history of North Sea Chalk sedimentation (Mortimore, 2014), these facies are 
likely to be significantly more variable and diachronous than for onshore Chalk successions. 

 

Figure 13. Chalk Group units recognised by geophysical log inflection patterns in the North 
Sea. 
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2.3 PROS AND CONS OF MANUAL FACIES INTERPRETATION ON GEOPHYSICAL 
LOGS IN CARBONATE-DOMINATED SYSTEMS 

For carbonate systems like the Chalk, the main advantage of manually interpreting carbonate 
facies on geophysical logs is that it overcomes the problem of subtle log-responses to facies 
contrasts, and the difficulty this creates for establishing appropriate cut-off values for automated 
systems of facies interpretation. For the Chalk Group, recognising changes in the frequency and 
overall pattern of low amplitude geophysical log responses is the most important aspect of 
facies and stratigraphy interpretation. This conclusion likely reflects the fact that the Chalk was 
deposited on a deeply flooded shelf, with more subtle facies responses to sea level oscillation 
than might be predicted for a shallow carbonate platform or ramp setting. The main 
disadvantages of the manual picking methodology are that it is usually time-consuming; 
requires detailed knowledge of stratigraphical trends and regional facies variation, and may be 
guided by a conceptual model that is flawed and over-looks the significance of log responses 
that are inconsistent with this model. Where large-scale log responses are developed in 
carbonate facies systems, there is a potential role for using threshold cut-off values to highlight 
first-order anchor points for log interpretation and correlation. 

3 Lithology determination using log cut-off values 

3.1 INTRODUCTION 

The geophysical log response of different rock types generally occurs within a defined range of 
values that (partly) reflects the bulk chemical composition of the rock framework and cementing 
materials. Table 1 shows a selection of typical log values for some common rock types taken 
from the more complete listing of Rider (2000). Although the range of log response values for a 
particular rock type are often large and there are frequently substantial overlaps in response 
between different rock types, it is often possible to compute a continuous lithology log in a semi-
automated way by using defined ranges on one or more geophysical logs. The ranges are 
defined by one or more ‘cut-off’ values. 

Table 1. Typical logging-tool response values for a selection of common rock types (after 
Rider, 2000). 

 

Figure 14 provides a simple example where a cut-off value of 30 API on a gamma-ray curve 
could be used to subdivide halite-rich sedimentary rocks (with a low gamma-ray response) from 
those that are predominantly mudstone. The cut-off value creates a continuous lithological log 
using a method that does not require any manual digitising. 
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Figure 14. Illustration of how a log cut off value on a gamma-ray curve can be used to 
automatically subdivide a sequence of halite-rich strata (H) from halite-poor mudstones (M) in 
the Mercia Mudstone Group of the Winterborne Kingston borehole. 

3.2 REQUIRED INPUT DATA 

Cut-off methods can be undertaken on almost any geophysical log data, from a single curve 
which may have been digitised from a vintage paper record to a modern suite of digital logs. 
While the input logs should ideally pass the quality control checks listed in Table 2 this is often 
not possible and, with due care, does not necessarily preclude the application of cut-off 
lithological classification. Most projects undertaken in BGS unavoidably combine log data that 
has been acquired across many decades, was run to meet the needs of many different 
geoscience sectors (e.g. water, oil, coal), is of vastly varying quality and quantity, and may have 
been received and archived with little supporting metadata. 

Table 2. Quality checklist for geophysical log data in order to avoid working with erroneous 
data 

 

The risks and uncertainties associated with cut-off analysis using sub-optimal input data can be 
greatly reduced by starting projects with as much background geological information as 
possible. This should include information on the expected number of lithologies, the likely 
proportion of each lithology within the stratigraphic interval of interest, their typical mineralogy 
(with particular regard to the presence of radiogenic minerals such as glauconite) and the 
expected range of bed thickness and other parameters of the stratal architecture. The source of 
this information might be from the well itself in the form of cuttings descriptions, short cored 
intervals or sidewall cores, or from image logs (optical, acoustic or resistivity). Additional 
information on the geological formation under consideration might come from regional 
understanding gained from outcrop descriptions and adjacent boreholes. Finally, a general 
understanding of the depositional system under investigation can help control and verify the 
types, stacking order and bed thickness of lithologies that are being generated by the applied 
cut-offs. 

3.3 NORMALISATION OF WELL LOG DATA 

Normalisation of well log data is a routine process within petrophysical workflows and is used to 
correct for inconsistencies between wells in the distribution of values recorded by a log for a 
particular lithology (Shier, 2004). These variations can arise for many different reasons such as 
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incorrect tool calibrations, varying tool vintage and changes in downhole environmental 
conditions between wells. 

Some form of normalisation will be required in nearly all cases where cut-off analysis is 
attempted as a batch process. Exceptions might occur where a cluster of similarly drilled and 
constructed wells have been logged by one service company who have applied a consistent set 
of corrections and calibration procedures to the log data.  

The normalisation process is a re-scaling or re-calibration procedure so that all logs in the set 
under consideration are consistent. A defined set of cut-off values in one well should therefore 
generate the same lithological classification in another. Normalization is commonly applied to 
gamma-ray logs, but can also be applied to all logs that sample bulk rock properties such as 
neutron porosity, bulk density, sonic and spontaneous potential logs. Resistivity logs, which are 
heavily affected by dynamic fluid properties, are generally not normalized unless there is a 
sufficient reason to do so (Shier, 2004). 

There are a number of different approaches to log normalisation –  

Normalisation might be carried out by using a simple linear shift of the log curve. This applies 
particularly where data has been recorded in different units. 

𝐶𝑢𝑟𝑣𝑒𝑛𝑜𝑟𝑚 = 𝐶𝑢𝑟𝑣𝑒 + 𝑆ℎ𝑖𝑓𝑡 

In unity-based normalisation curves are rescaled to the minimum and maximum values, bringing 
all the values within the range [0,1]. The output values are dimensionless and any reference to 
the original absolute magnitude of the log response is lost. 

𝐶𝑢𝑟𝑣𝑒𝑛𝑜𝑟𝑚 = (
𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒 − 𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑛

𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒𝑚𝑎𝑥 − 𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑛
) 

An alternative approach involves selecting a reference well (Ref) from within the dataset under 
consideration. Curves values from other wells (Curve) are then stretched and squeezed to 
match the minimum and maximum values of the corresponding curve in the reference well. This 
approach is frequently applied to gamma-ray data (Shier, 2004). 

𝐶𝑢𝑟𝑣𝑒𝑛𝑜𝑟𝑚 = 𝑅𝑒𝑓𝑚𝑖𝑛 + (𝑅𝑒𝑓𝑚𝑎𝑥 − 𝑅𝑒𝑓𝑚𝑖𝑛) ∗ (
𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒 − 𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑛

𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒𝑚𝑎𝑥 − 𝐶𝑢𝑟𝑣𝑒𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑛
) 

Anomalous outliers in curve values will adversely impact the outcome of normalisation 
processes using minimum and maximum values.  For this reason it is common practise to use 
percentiles in the frequency distribution (e.g. 5th and 95th) in place of minimum and maximum 
values. A quick check on the descriptive statistics of the log data under consideration prior to 
normalisation will establish whether this is necessary. 

In addition to normalising curve data between wells, the types of approach outlined above can 
also be useful to correct data within a single well. For example, normalising a gamma-ray curve 
that over some of its length has an attenuated signal due to being run through steel casing 
(Quatero et al. 2014). 

Finally it should be noted that an alternative to normalisation is to simply avoid batch processing 
and work on a well-by-well basis, generating a bespoke set of cut-off criteria for each well. This 
may sometimes be the most efficient approach and has the advantage of preserving the 
integrity (including all of the inherent errors) of the original log data. There is always a risk that 
normalising log data will remove or alter real geological signal and it should be approached 
carefully. 

3.4 METHOD 

Applying cut-off values to a well log is a relatively simple process and most geophysical log 
handing software has built in functionality to define cut-offs and output a derived lithological log. 
Figure 15 illustrates the facies calculator in SKUA-GOCAD 2019 as an example. Lithological 
classifications are achieved in four main steps. 
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1. Well selection. Wells can be selected and worked on either individually or in batches of 
any size.  

2. Well Region. Where the well length is greater than stratigraphic interval of interest it is 
generally advantageous to work within a corresponding sub-selection of the log data. Creating 
and working within pre-defined well ‘regions’ (in the terminology of SKUA-GOCAD ) avoids the 
need to fragment and subsample the original continuous log dataset. 

3. Classification. A pre-defined table is selected which lists the lithologies or sedimentary 
facies that will be generated by the cut-offs. Each facies is assigned a numerical value and a 
colour or pattern fill. This table can be edited and augmented as the project proceeds. 

4. Input properties. One or more logs are selected that will be used in the analysis. The 
logs can be either primary measurements or logs that have been derived and modified from 

these primary measurements (e.g. normalised curves or shale volume Vshale). 

 

 

Figure 15. Facies calculator in SKUA-GOCAD 2019 

5. Cut off values and assigned lithology. In the final step lithologies that have been pre-
defined in the classification table are assigned to the available permutations of log type and cut-
off value. Clicking ‘apply’ will generate a continuous lithological log based on these input data for 
the input wells. 

3.5 SELECTING CUT-OFF VALUES 

Selecting appropriate cut-off values is clearly the most critical step in this classification 
approach. There is no singular robust statistical method for determining cut-offs because of the 
infinite number of ways in which geophysical tools imperfectly sample and respond to the 
complexities of real-world geology. Cut-offs are often defined both empirically and heuristically 
to achieve an end-product that is imperfect but deemed geologically plausible. The process 
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generally involves the determination of clusters within the dataset which are then mapped to 
specific lithologies using both the absolute magnitude of the responses (e.g. Table 1) but also 
soft supporting information such as cuttings descriptions and broader geological knowledge. 
The outcome of a cut-off analysis might also vary with the purpose of the study. For example, in 
an aquifer study the cut-offs might be deliberately biased toward the recognition of potential flow 
barriers such as mudstones, even if this overestimates reality. In addition to analysing 
geophysical logs within conventional downhole tracks (e.g. (Figure 16A) the most commonly 
used tools for the initial recognition of lithology clusters are frequency distribution histograms 
and multivariate scatter-plots. There are numerous statistical tools that can be used to enhance 
the recognition of clusters within these basic types of plot (Ma, 2011; 2019). Cases are 
considered below of lithology determination based on a single log and using multiple logs. 

3.5.1 Case 1: Using a single log type 

Where only one lithology log is available (quite often the gamma-ray log) an exploratory 
analysis of the frequency distribution histogram can help in identifying populations and potential 
cut-off values (Figure 16B). It is often necessary to experiment with bin sizes to reveal the 
populations within the histogram. Once the populations are identified a somewhat arbitrary and 
artificial ‘wall’ or cut-off is selected and used to generate the continuous lithology log. The 
effectiveness of the cut-off is usually judged against supporting lithological information such as 
core or cuttings descriptions. 

  

 

Figure 16. A lithology log (with a simple two-fold classification) created for a short section of 
Carboniferous Millstone Grit using a gamma-ray log. A histogram highlights the bimodal 
distribution created by interbedded sandstone and mudstone. The histogram shows distinct 
modes at 40API and 90API.  A cut-off value of 70 API produces the lithology log shown in A. 
Note that the cut-off is a rather arbitrarily placed ‘wall’  in the lithofacies-component histogram. 

In many cases, frequency distribution histograms of log values will not display distinct 
populations but are single mode histograms with a skewed long tail. This can occur even where 
the geology consists of two well-defined rock types, such as the Triassic St Bees Sandstone 
Formation illustrated below which is predominantly sandstone but also contains subordinate 
mudstone (Figure 17). 
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Figure 17. (A) Gamma-ray log of the Triassic St Bees Sandstone in NW England (B) histogram 
of the gamma-ray values (C) Outcrop of the St Bees Sandstones showing thinly interbedded 
sandstones and mudstones (D) gamma-derived lithology log. 

Gamma-ray spikes related to thin interbedded mudstones are clearly seen on the gamma-ray 
log (Figure 17A) but they do not form a distinct population on the unimodal skewed histogram 
(Figure 17B). This is a common feature of geological units that contain thin beds because the 
logging tool will record a signal that is a mixture of the formation properties within the tool's 
vertical range of investigation. For example the zone of investigation of gamma-ray tool records 
signals from a hemispherical zone that is typically around 0.9 m across vertically. Coupled with 
continuous downhole logging-tool travel, thinly interbedded mudstones such as those illustrated 
in Figure 17C will always produce a convoluted or ‘mixed-lithology’ signal mid-range between 
sandstone and mudstone end members. This drowns the presence of a distinct peak in the 
histogram for thinly bedded mudstones. The vertical resolution will vary according to the type of 
tool (Figure 18) as well as other factors, in particular logging speed. 

 

Figure 18. Common logs ranked from lowest to highest vertical resolution as follows. The 
absolute resolution of a given log varies depending on the tool, the sampling rate, logging 
speed, and processing methods. 
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While efforts can be made to deconvolve the long tail of the histogram into additional 
populations (Ma 2019) the selection of a cut-off value is generally based on supporting 
information from core and cuttings and on a regional understanding of the typical bulk 
proportion and bed thickness of mudstone within the St Bees Sandstone Formation. 

3.5.2 Case 2: Using multiple log types 

Using two or more log types will often produce a clearer separation of lithofacies from 
geophysical log datasets. There are no fixed rules on what logs can be combined but some 
advocate against combining logs that are highly correlated because they do not bring significant 
additional information into the lithofacies classification process (Ma, 2019). The main limiting 
factor in many projects undertaken in BGS using data archives assembled over many decades 
and derived from many heterogeneous sources are the low number of wells with comparable 
datasets of similar curve types and log quality.. 

Two logs can be readily plotted on a 2D scatter-plot. Figure 19  illustrates a cross-plot of sonic 
and gamma-ray for the Mercia Mudstone and Penarth Group in the Winterborne Kingston 
borehole in South Dorset (see Figure 22). While there are substantial overlaps, a number of 
high-density points clusters points toward the existence of at least four distinct lithologies in the 
stratigraphic interval. 

 

Figure 19. Cross-plot of gamma-ray and sonic logs for the Mercia Mudstone Group of the 
Winterborne Kingston Borehole (see Fig. 7) reveals four high density (darker red) clusters more 
effectively than logs plotted as individual distributions. 

Additional lithological resolution can be achieved by colouring the points with a third property 
such as density. Figure 20 shows how this can be used to distinguish anhydrite (which has a 
relatively high density) within the scatter plot. 
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Figure 20. (A) Histogram of density log data for the Mercia Mudstone and Penarth Groups of 
the Winterborne Kingston borehole. The typical densities for a range of rock materials are 
shown on the plot. Cross-plot of sonic and gamma-ray logs with points coloured up by the 
density log. This reveals a cluster of high density anhydrite which was not apparent before 
including the additional log information on the 2D cross-plot. 

An alternative method of cross-plotting three properties is to use a 3D scatter plot (Figure 21). A 
fourth property can be used to colour up the points, or as shown in Figure 21 this can be used 
to highlight the derived lithological clusters. Such 3D plots can however become difficult to 
interpret. Any addition of further properties requires the application of techniques such as 
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principal component analysis which reduces dimensional data into a low dimensional sub-space 
that can be visualized in 2–3 dimensions. 

 

 

Figure 21. 3D scatter plot of density, sonic and gamma-ray for the Mercia Mudstone Group of 
the Winterborne Kingston borehole with the points coloured by derived lithology information. 

Once the optimal combination of logs has been established for the stratigraphic interval under 
consideration a table of cut-off values can be created and the analysis run (Figure 22). As in 
most cases of cut-off analysis the approach is highly iterative.  Cut-off values can be adjusted 
and the lithological log re-created in a highly interactive way until there is a close match 
between the lithology profile and what should be expected from additional evidence such as 
cuttings and general stratigraphic understanding.  
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Figure 22. Resultant lithology log (central track, see A for key to colours). 

3.6 THE IMPORTANCE OF WORKING WITHIN WELL REGIONS 

The main difficulty of using simple cut-off analysis is discriminating lithologies when there is 
large overlap in their log properties. Figure 23 illustrates an example from the Winterborne 
Kingston borehole in South Dorset where the dolomitic siltstones and mudstones of the Blue 
Anchor Formation show a remarkably similar log response to the Sherwood Sandstone at 
greater burial depth. While effort could be expended to discriminate these rock types by 
introducing additional logs or by applying more sophisticated clustering techniques a simple 
solution is to restrict the analysis to a shorter well region that excludes the overlapping rock 
types. 
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Figure 24. Gamma-ray and sonic log from Triassic strata in the Winterborne Kingston Borehole 
in South Dorset. The interbedded mudstones and dolomitic siltstones of the Blue Anchor 
Formation show a large overlap in their gamma-ray and sonic log response with the interbedded 
sandstones and mudstones of the Sherwood Sandstone at greater depth. Rather than 
attempting to discriminate lithofacies by introducing more log data it is often simpler and more 
efficient to work in smaller well regions e.g. B rather than A. 

4 Mineral composition analysis by linear inversion of 
log data 

4.1 BACKGROUND 

The volumetric determination of mineral composition from petrophysical logs has a long history 
originating in efforts to estimate reliable porosity values from rocks with variable mineralogy and 
associated log responses (Doveton, 2018). By (mathematically) generating mixtures of 
mineralogical components with known petrophysical properties (Table 3) and comparing their 
calculated log response against the observed values it was possible to inverse model the likely 
composition of the rock by solving a system of linear equations. 
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Table 3. Table showing a section of the library of petrophysical properties used in the inverse 
modelling process. (DENS density, DT Compressional Delta Time (Slowness), DTS Shear Delta 
Time, VP P-Wave velocity), VS S-Wave velocity, PE Photoelectric Index (barns/electron) 

 

Since the log response is a product of both the rock matrix and the fluid fill of the pore space, 
the fluid composition and their variable petrophysical properties must be taken into account 
(Table 3). 

The method works as an iterative search procedure. The input logs and the output mineralogical 
components (and pore-space filling fluid) are first defined and an initial composition is 
estimated. A series of intermediate solutions is calculated each comparing the input log 
responses with those predicted from the computed mineral proportions. The process terminates 
when convergence has been reached and there is no appreciable difference between 
successive solutions.  

The appropriate logs for this method are those that discriminate well between the various 
mineralogical components under consideration. The method traditionally uses those logs which 
are indicative of porosity (density, neutron porosity and sonic) but today can include resistivity, 
spectral gamma-ray and geochemical logs. The number of available logs has a direct limiting 
effect on the number of mineralogical components that can be distinguished. 

This method is useful for carbonate rocks of mixed calcite-dolomite composition and a wide 
range of other lithologies, although shales, mudstones and clay minerals can present problems 
because of their compositional variability. The method can generate reproducible solutions that 
are entirely erroneous if the initial mineral component model is incorrectly specified. Meaningful 
results are thus best obtained with as much a priori knowledge of the rock formation under 
consideration as possible. Careful geological evaluation of a range of possible solutions is a 
good approach together with pre-model calibration and post-model validation against cored 
intervals and cuttings where possible. 

4.2 PRACTICAL APPLICATION 

Functionality to estimate mineral composition from petrophysical logs is a standard feature in 
many log analysis software packages and has also been implemented within Excel 
spreadsheets. Amosu and Sun (2018) provide an openly available MATLAB program 
(MinInversion) for petrophysical composition analysis of geophysical well log data that features 
an easy-to-use graphical user interface, a selection of inputs that include LAS and a choice of 

Mineral DENS(g/cc) DT(μsec/ft) DTS(μsec/ft) VP(m/s) VS(m/s) PE 

Quartz 2.65 43.90 88.80 6037.62 4120.82 1.82

Shale 2.60 62.50 150.00 2559.92 1129.87 3.42

Calcite 2.71 47.20 89.90 2559.92 3436.29 5.09

Clay 2.65 64.30 98.90 5966.29 3079.51 3.03

Dolomite 2.87 43.90 74.80 7346.57 3959.73 3.13

Anhydrite 2.95 50.00 85.00 6105.55 3366.50 5.08

Gypsum 2.35 52.40 85.40 6513.39 3603.75 4.04

Muscovite 2.83 47.20 91.10 5773.50 3342.19 2.40

Biotite 3.20 55.50 100.60 5374.84 3027.65 8.59

Kaolinite 2.64 64.30 101.70 5637.62 2995.90 1.47

Glauconite 2.83 55.50 157.40 3257.57 1935.28 4.77

Illite 2.77 64.30 98.90 5966.29 3079.51 3.03

Chlorite 2.87 55.50 61.30 9268.86 4969.11 4.77

Orthoclase 2.54 68.90 84.90 4926.98 3586.24 2.87

Siderite 3.91 43.90 84.90 6957.66 3588.70 14.30

Pyrite 5.00 39.60 55.90 8429.07 5448.05 16.40

Halite 2.03 66.70 114.50 4594.68 2661.45 4.00

FreshWater 1.00 205.00 -999.25 1482.00 -999.25 0.36

Brine 1.10 188.00 -999.25 1522.00 -999.25 0.81

Oil 0.85 238.00 -999.25 1280.00 -999.25 0.12
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three inversions methods. The underpinning table of mineral/fluid components and their 
petrophysical values is user editable. 

Table 4. Graphical user interface of MinInversion with input data and results from the Mercia 
Mudstone Group of the Winterborne Kingston Borehole. The availability of only two input logs 
(Density and Sonic) restricts the analysis to two specified mineralogical components (halite and 
clay) and inverted porosity. 

 

5 Unsupervised cluster analysis 

5.1 BACKGROUND 

Clustering (or cluster analysis) is a technique that finds groups of similar objects that are more 
related to each other than to objects in other groups. In the case of geophysical logs the 
clusters might relate to different lithofacies types. There are many different clustering algorithms 
but one of the more widely used as a method for deriving lithologies from geophysical logs is k-
means clustering (Cerqueira et al. 2019). K-means clustering can be applied to two or more 
logs and does not use any training data to guide the formation of clusters. Training data might 
include predetermined knowledge of how geophysical response varies with lithofacies gained 
from examining borehole core or image logs. K-means clustering thus falls into the category of 
an unsupervised technique.  

In summary k-means clustering proceeds in four automated steps: 

1. From the sample points, a pre-defined number of cluster centroids, k, are randomly picked 

as initial cluster centres 

2. Each sample is assigned to the nearest centroid 

3. Centroids are then relocated to the centre of the samples that were assigned to it. The 

similarity between points is based on the squared Euclidean distance between two points 

in m-dimensional space.  

4. Repeat steps 2 and 3 until the cluster assignments do not change, or a user-defined 

tolerance or maximum number of iterations is reached. 
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A possible drawback of k-means is that the number of clusters (or lithofacies) must be specified 
before running the analysis. While the number of clusters may be obvious in datasets of only 
two log types or where the formations comprise only a few easily distinguishable rock types it 
may be less obvious when a larger number of logs are brought into the analysis. In such cases 
an ‘elbow plot’ showing sum squares of distances between each sample to the centre of its 
cluster group for a range of cluster numbers can be useful (Figure 25). The optimal number of 
clusters is generally thought to be at the point of maximum curvature. In poorly-known rock 
formations the elbow plot may give a useful initial indication of how many lithologies are present 
(or resolvable using the available logs) that is independent of any preconceived (and possibly 
erroneous) ideas of the geologist. 

 

Figure 25. K-means cluster analysis of normalised gamma-ray and sonic log data for the 
Mercia Mudstone Group of the Winterborne Kingston borehole. Seven centroids have been pre-
selected corresponding to the inflection point on the elbow plot. 

5.2 PRACTICAL IMPLEMENTATION OF K-MEANS CLUSTERING 

K-means cluster analysis can be undertaken easily and rapidly on large datasets using open-
source python tools such as those provided by scikit-learn (https://scikit-
learn.org/stable/index.html).  The geoapps project (https://pypi.org/project/geoapps/) created by 
Mira Geoscience has been used here. It includes the scikit-learn k-means clustering algorithm 
within a Jupyter-Notebook application that includes a range of Plotly visualisation tools to 
assess the results using histogram, box, scatter, inertia and cross-correlation plots (Figure 26).  

https://pypi.org/project/geoapps/
https://plotly.com/
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Figure 26. K-mean clustering as implemented in Mira Geoscience geoapps Jupyter-Notebook. 
Inbuilt Plotly visualisation tools provide a highly interactive environment. 2D and 3D cross-plots 
show normalised gamma-ray, sonic and density curve data for the Mercia Mudstone Group of 
the Winterborne Kingston Borehole.   

Results can be saved and displayed within the free Mira Geoscience ANALYST 3D viewer or 
exported as text files to use in other log handling applications.  

5.3 EXAMPLE OF RESULTS 

Figure 27 shows the results of a k-mean cluster analysis for the Mercia Mudstone Group of the 
Winterborne Kingston borehole and highlights some of the similarities and differences with the 
previous cut-off analysis. While unsupervised cluster analysis of this type is unlikely to provide a 
definitive lithological classification of a borehole based on log data it is nonetheless a rapid and 
powerful method to derive insight into the dataset and could be a guide for additional supervised 
work or manual intervention and adjustment. 
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Figure 27. Results of k-means cluster analysis (right-hand track) performed in geo-apps and 
imported to SKUA-GOCAD. Note both similarities and differences between the cut-off analysis 
and cluster analysis. 

6 Facies classification using supervised machine 
learning 

6.1 BACKGROUND 

Machine learning is essentially a set of data-analysis methods that includes classification, 
clustering, and regression. Machine learning algorithms can be used to discover similarities and 
trends within large complex datasets without being explicitly programmed, in essence learning 
from the data itself.  

Machine learning methods would appear well-suited to the task of deriving lithology categories 
from geophysical log data. In borehole datasets there are often boreholes where the lithology or 
lithofacies is known from expert-descriptions of core and other boreholes where only 
geophysical logs are available. Boreholes (or parts of boreholes) where core and geophysical 
logs coexist can be used as training data for the machine learning algorithm and the 
relationships that are established can then be applied to unknown borehole sections.  

Growth in the use of machine learning methods for facies classification of log data has occurred 
in parallel with the availability of many open-source packages, much of which used to be only 
available in proprietary software platforms. The best known general example is scikit-learn 
(http://scikit-learn.org/) a collection of machine learning tools coded in Python. These tools form 
the core of many Jupyter notebooks which have been specifically compiled for the purpose of 
classifying geophysical log data (e.g. https://github.com/brendonhall/facies_classification). This 
notebook (which employs a support vector machine or SVM) has been trialled for the purpose of 
this report and forms the basis for the discussion below.  Many other notebooks using 
alternative supervised-learning algorithms such as random forest classification are available but 
have not yet been trialled (e.g. https://github.com/seg/2016-ml-contest). 

https://github.com/brendonhall/facies_classification
https://github.com/seg/2016-ml-contest
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6.2 INPUT DATA 

The preparation of input data is straightforward and is a simple table comprising a series of log 
measurements with a known lithology or lithofacies class (Table 5). Here the training values 
represent short intervals of the borehole where the determination of lithology from the log 
response is clear from log response and cuttings. Ideally of course the training dataset should 
be based on core (or high-quality image logs) and might be assembled from multiple boreholes 
which prove the same formation within a basin. 

Table 5. Example format of training data. In this case a subset of the geophysical 
measurements (INPUT_FACIES) is used to classify the entire stratigraphic interval 
(SVM_CLASS). The training data would often be based on expert descriptions of core. 

 

6.3 RUNNING THE CLASSIFICATION 

After loading the input data file the Jupyter notebook takes the user through the SVM 
classification process in a step-by-step way with blocks of runnable Python code, text providing 
instructions and commentary and interactive tabular and graphical outputs (Figure 28). 

 

Figure 28. Part of the Jupyter notebook for facies classification 
(https://github.com/brendonhall/facies_classification) showing the typical mixture of runnable 
Python code, text providing instructions and commentary and interactive tabular output (or 
graphical plots). 

The process breaks down into three stages.  

https://github.com/brendonhall/facies_classification
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1. Examining the input data 

After the text file of training data are loaded some descriptive statistics are generated and there 
are options to plot and view the log data in conventional tracks or as cross-plots between 
different types of log measurements coloured according to lithofacies. 

2. Splitting the dataset 

A standard practice when training supervised-learning algorithms is to separate some data from 
the training set to evaluate the accuracy of the classifier. For example, one or more wells could 
be removed in a multi-borehole training dataset to act as test data (Figure 29).These test data 
play no part in the training or cross-validation of the SVM classifier.  

 

Figure 29. Splitting the training dataset into training data and test data 

3. Standardise the dataset 

Geophysical log measurements record a range of properties in different units of widely varying 
magnitude (e.g. see the summary statistics table in Figure 28). Many machine-learning 
algorithms however assume that all features are centred around zero and have variance in the 
same order. If one log type has a variance that is orders of magnitude larger than the others it 
will dominate the function and impede learning from the other features. For this reason all log 
data (including both training set and later input data) must be standardised to similar scale and 
deviation. This can be undertaken using the StandardScalar function in Scikit-learn. 

4. Training the support vector classifier 

Training the support vector classifier is an optimization process. The SVM classification learns 
from the training dataset the projection into a higher dimensional space where classes can be 
separated by a hyperplane (or set of hyperplanes) that maximizes the margin separating the 
classes. Hyperplanes are higher-dimensional generalisations of a plane. In 2D the hyperplane 
or decision boundary corresponds to a line (Figure 30). New uncategorised samples are 
classified according to the side of the hyperplane on which they fall when projected into the 
same space. “Soft margin” classification can accommodate some classification errors on the 
training data, in the case where data is not perfectly separable. 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Figure 30. 2D example of a linear boundary that maximises the margin between the closest 
pair of data points belonging to two classes. The support vectors are the points on the dashed 
lines. Modified from Wilimitis (2018). 

A cross-validation dataset is used to tune the parameters of the training model and is created by 
randomly splitting the training data into subsets (Figure 29). 

The SVM implementation in scikit-learn takes a number of parameters which control the 
learning rate and the specifics of the kernel functions which map the original non-linear 
inseparable observations into a higher-dimensional space in which they become separable. A 
succession of models is created with different parameter values and the combination with the 
lowest cross-validation error is used for the classifier. 

5. Evaluating the classifier 

To evaluate the accuracy of the classifier the borehole that was set aside at the beginning of the 
process can be used to compare the predicted facies with the actual ones which may have 
been determined from expert description of core. A range of accuracy metrics are calculated, or 
the observed and predicted facies can simply be visually compared in adjacent log tracks.  As 
demonstrated by periodic machine learning competitions (e.g. https://github.com/seg/2016-ml-
contest) using hidden control boreholes, SVM (and related supervised ML approaches) while 
sophisticated in their approach do not generate completely accurate results with F-1 values 
ranging from 0.4 to 0.6.  

6. Applying the classifier 

Once created the SVM classifier can be applied to other boreholes with a comparable range of 
lithofacies (e.g. they are part of the same formation) and have a similar array of geophysical 
logs. These will need to be rescaled using the same parameters used to rescale the training set. 
The results can be saved as text files and loaded into other log handling or geological modelling 
software (Figure 31).  

6.4 EXAMPLE OF RESULTS 

An example of the output is shown in Figure 31 for the Winterborne Kingston borehole. Here the 
input data were simply short extracts from three log types attributed with a lithofacies (shown in 
the input facies column). SVM is here used simply to upscale these inputs to the entire log and 
here (with well-defined lithologies) appears to produce meaningful results. 

https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f
https://github.com/seg/2016-ml-contest
https://github.com/seg/2016-ml-contest
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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Figure 31. Example of SVM classifier 

7 Conclusions 

The aim of this report has been to evaluate a range of practical and accessible methods to 
derive lithology (or lithofacies) information from geophysical logs. All of the methods have their 
advantages and disadvantages (Table 6) and none will produce perfect results because of the 
inherent fuzziness of rock classifications and the convolved sampling signal of geophysical logs. 
Future work on fuzzy methods (such as Fuzzy-C-Means or Fuzzy-SVM) may be useful for this 
reason. Thus instead of predicting just one class as output they predict a fuzzy output i.e. a rock 
could belong to 40% of class A and 60% of class B etc. 

The method chosen is likely to depend on the quality and range of the available geophysical 
logs, user preferences and the scale of the project that is being considered (e.g. one borehole 
versus many hundreds). The best solution might be to combine a number of methods e.g. k-
means to gain some initial insight into the data, classification by machine learning or cut-offs 
and finally some manual editing if required. An encouraging finding of the review is the large 
volume of high quality, open source software (mostly written in Python) that is now available for 
log handling, display and analysis. The widespread use of Jupyter notebooks makes this 
software accessible and easy to run. 

  

https://pythonhosted.org/scikit-fuzzy/auto_examples/plot_cmeans.html
https://github.com/adizz2407/Fuzzy-SVM
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Table 6. Table summarising some of the advantages and disadvantages of the different 
methods trialled. 

Method Advantage Disadvantage 

Manual classification - Uses all the background knowledge and 
expertise of the geologist 

- Tools for manual digitising are built into 
most log handling and 3D geomodelling 
software 

- Doesn’t require high-quality log datasets 
or normalisation of data for multi-well 
projects 

- Can be undertaken on raster log images if 
no digital version is available 

- Slow manual process 
- Exact criteria for each classification 

decision can vary and may not be clear or 
reproducible by other users 

 

Cut-offs  - Rapid, semi-automated method 
- Reproducible by any user applying the 

same cut-off criteria 
- Tools are built into most log handling and 

3D geomodelling software  
- User has a strong degree of control on the 

outcome by adjusting cut-offs in different 
borehole regions 

- Can work effectively on a single log such 
as gamma-ray in simple siliciclastic 
formations 

- Often requires a degree of trial and error 
to find ideal cut-offs which slows the 
process 

- Becomes complex as the number of log 
types increase above two  

- Requires normalisation of log data if 
criteria are applied across multiple 
boreholes 

Mineral composition analysis 
by linear inversion 

- Rapid automated technique 
- Provides insight into the mineralogical 

composition of the formation 
- Useful in limestone-dolomite formations 
- Realistic in the sense that geophysical log 

measurements (with wide vertical 
sampling) are often ‘averages’ across 
different lithologies and mineralogies 

- Included in many log analysis packages or 
can be undertaken in spreadsheets and 
open-source software 

- Results must be post-processed into 
more conventional discrete lithofacies 
classifications 

- Requires high-quality geophysical log 
data, in particular a diverse suite of 
(relatively uncommon) porosity logs 

- Automated technique with little 
opportunity to include the users general 
geological knowledge of the formation in 
the outcome 

Unsupervised cluster analysis 
(K-means clustering) 

- Rapid automated technique 
- Reproducible by any user using the same 

input criteria 
- Deployable using open-source Python 

tools 
- Elbow plots provide unbiased insight into 

the likely number of facies classes that 
can be resolved from a particular set of 
log measurements 

- Requires a priori knowledge on the 
number of expected facies 

- No opportunity to include general user 
geological expertise or machine-learned 
support from cored intervals 

 

Supervised cluster analysis 
(Support Vector Machines) 

- Rapid automated technique, particularly 
once the SVM training process is 
complete 

- Easy to deploy using open-source Python 
tools 

- Incorporates geological expertise by 
using training examples of what 
constitutes the “correct” clustering of a 
dataset 

- Computes a range of metrics for the 
performance of the classifier based on 
the modelled versus the observed for the 
test data 

- Some unfamiliar terms and concepts for 
new starters in machine learning 

-  Sophisticated but not infallible and (as 
shown by competitions against standard 
test datasets) will still generate lithology 
logs with many errors because of the 
inherent fuzziness of rock classifications 
and the convolved sampling signal of 
geophysical logs.  
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