
Evaluation of Vectorization Potential
of Graph500 on Intel’s Xeon Phi

Milan Stanic∗, Oscar Palomar∗‡, Ivan Ratkovic∗, Milovan Duric∗, Osman Unsal∗, Adrian Cristal∗‡§, Mateo Valero∗‡
∗ Computer Sciences, Barcelona Supercomputing Center, Barcelona, Spain

‡ Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona, Spain
§ Artificial Intelligence Research Institute (IIIA), Centro Superior de Investigaciones Cientı́ficas (CSIC), Barcelona, Spain

Email: {first}.{last}@bsc.es

Abstract—Graph500 is a data intensive application for high
performance computing and it is an increasingly important work-
load because graphs are a core part of most analytic applications.
So far there is no work that examines if Graph500 is suitable for
vectorization mostly due a lack of vector memory instructions for
irregular memory accesses. The Xeon Phi is a massively parallel
processor recently released by Intel with new features such as a
wide 512-bit vector unit and vector scatter/gather instructions.
Thus, the Xeon Phi allows for more efficient parallelization of
Graph500 that is combined with vectorization.

In this paper we vectorize Graph500 and analyze the impact of
vectorization and prefetching on the Xeon Phi. We also show that
the combination of parallelization, vectorization and prefetching
yields a speedup of 27% over a parallel version with prefetching
that does not leverage the vector capabilities of the Xeon Phi.

Keywords—Multi-Core Architectures and Support, Data Inten-
sive Supercomputing, Large Scale Scientific Computing

I. INTRODUCTION

The Graph500 [1] benchmark is a data intensive, high per-
formance computing application. It complements TOP500, the
performance evaluation metric used to rank supercomputers,
and targets five graph-related business areas: Cybersecurity,
Medical Informatics, Data Enrichment, Social Networks, and
Symbolic Networks. Graph500 is used for performance rank-
ing and has attracted attention in recent years. The Graph500
list ranks the first 500 supercomputers with highest perfor-
mance running the Graph500 benchmark.

Graph500 implements three kernels: concurrent search, op-
timization (single source shortest path), and edge-oriented
(maximal independent set). They access a single data structure
representing a weighted, undirected graph. The main kernel
of Graph500, Breadth First Search (BFS), contains a lot
of irregular memory accesses. Most of SIMD ISAs do not
provide support for indexed memory accesses and this lack
has prevented vectorization of BFS.

The Xeon Phi is a recent massively parallel x86 micropro-
cessor designed by Intel and is based on the Larrabee GPU

The research leading to these results has received funding from the
European Research Council under the European Unions 7th FP (FP/2007-
2013) / ERC GA n. 321253. It has been partially funded by the Spanish
Government (TIN2012-34557).

[2]. Its new features, such as scatter/gather instructions, satisfy
missing requirements that prevent vectorization of Graph500.
It has a large number of cores and each core contains a
wide 512-bit vector processing unit. It delivers substantial
performance and has been designed for power efficiency when
executing highly parallel applications that can benefit from
parallelization and vectorization. These characteristics make
the Xeon Phi an attractive processor for building supercom-
puters. The most powerful supercomputer according to the
TOP500 list from November 2013a, Tianhe-2 (MilkyWay-2),
is built using Xeon Phi co-processors.

Currently there are two supercomputers on the Graph500
list that are built using the Xeon Phi. However, in their imple-
mentation of the Graph500 they just exploit the parallelization
features of the Xeon Phi, following the work done by Saule
et al. [3] and ignore the vector features offered by the Xeon
Phi that allows for more efficient parallelization.

The major contributions of this paper are a vectorization
of Graph500, an analysis of the peformance of vectorization
for Graph500 and a study of the impact of prefetching on
the performance of the Xeon Phi. The Xeon Phi cores are
in-order, which makes it very sensitive to cache misses. We
also provide two observations for Xeon Phi users: the initial
results for vectorization can be misleading and prefetching is
of maximum importance if data is not cache resident. We also
prove that the combination of vectorization and parallelization
is beneficial for workloads running on the Xeon Phi. All
this allows for achieving higher performance than just using
parallelization.

II. PARALLEL BFS IMPLEMENTATIONS

Breadth First Search (BFS) is the main kernel of Graph500.
BFS begins at a random node called start node and inspects
all its neighboring nodes. Then, for each of those neighbor
nodes in turn, it inspects their neighbor nodes which were yet
unvisited, and so on. In Graph500, there is freedom to change
the algorithm, the implementation and the data structures used.
In order to be able to compare the performance of BFS im-
plementations across a variety of architectures, programming

ahttp://top500.org/lists/2013/11/

978-1-4799-5313-4/14/$31.00 ©2014 IEEE 47

models, languages and frameworks, the performance metric
TEPS (traversed edges per second) is used. It is defined as
the ratio of the number of edges in the input graph to the
execution time. In this section we describe the current default
implementation that we have used in our experiments, as
well as an overview of recently proposed alternative BFS
implementations.

A. Current BFS Implementation

The default parallel implementation of BFS is queue-based
with local per-thread next-level queues. Fig. 1 shows the
pseudo-code of that implementation. It is a level synchronous
BFS algorithm with two optimization techniques borrowed
from [4]: ‘test and test-and-set’ operation and use of local
next-level queues. It means that the search of unvisited neigh-
bor nodes (neighbors) is done in parallel (partition per thread)
and there is synchronization before the algorithm starts to
search their neighbors. The algorithm manages two sets of
nodes: the visited (parent) set and the next-nodes (next) set.
BFS starts searching from the start node. In each iteration, the
algorithm visits all the nodes in the next set in parallel and for
each node, the ‘test and test-and-set’ operation (lines 8-9) is
used to check if the neighbors have not been visited already
(line 8). If this is true, the parent node is assigned to the parent
set (line 9). Unvisited nodes are first stored in the per-thread
local queue (local queue) until they are bulk inserted into the
global queue (lines 12, 20). Fig. 2 shows an example of the
graph traversed using this implementation. The start node is
A. In the first iteration, all its neighbors are visited (gray nodes
- B, C, D) and added to the next set. In the next iteration, the
neighbors of gray nodes are visited and only unvisited nodes
(yellow nodes - E, F, G, H) are added to the next set.

B. Other BFS Implementations

In this subsection we describe alternative implementations
of BFS.

1) Bitmap: A bitmap is used to compactly represent the
visited set as an optimization to the default algorithm that has
been discussed above. The main benefit is to reduce the size of
the structure, thus reducing cache misses. Since this structure
is the most frequently accessed data in the algorithm, the use
of a bitmap in shared-memory machines with large last-level
caches is effective.

2) Read-based: Read-based BFS is proposed in [5] and it
also keeps the visited set as a bitmap. In contrast to the current
BFS implementation, it keeps a node’s level in the next set.
During the search, if a node belongs to the current level, it
means that its neighbors should be searched in the current
iteration. For example, in Fig. 2, the blue node will have level
0, the gray nodes will have level 1 and the yellow nodes will
have level 2. The advantages of this method are the elimination
of queue overhead (it removes atomic instuctions and also
saves cache and memory bandwidth) and the replacement

1. function breadth-first-search(vertices, source)
2. next ← {source}
3. parents ← [-1,-1,...,-1]
4. parents[source] = 0
5. while next ≠ {} do
6. for v next.partition[tid] ∈ do
7. for n neighbors[v] ∈ do
8. if parents[n] = -1 then
9. if parents[n].atomicSet(v) = 1 then
10. local_queue[tid] <- n
11. if local_queue[tid].isFull() then
12. next.safeBulkPush(local_queue[tid])
13. local_queue[tid] ← {}
14. end if
15. end if
16. end if
17. end for
18. end for
19. if local_queue[tid].notEmpty() then
20. next.safeBulkPush(local_queue[tid])
21. local_queue[tid] ← {}
22. end if
23. end while
24. return parents

Figure 1. Pseudo-code for the Graph500 BFS algorithm.

A

CB D

FE HG

Figure 2. An example of graph traversed by the BFS algorithm.

of some indexed memory accesses with sequential memory
accesses.

3) Bottom-Up: Bottom-up BFS [6] proposes searching in
the opposite direction compared to previous methods. Instead
of each node in the next set attempting to become the parent
of all of its neighbors, each unvisited node attempts to find
any parent among its neighbors. A neighbor can be a parent
if the neighbor is a member of the next set. For example, in
the first iteration for the graph in Fig. 2 only node A is in
the next set. It means that only the gray nodes (B, C, D) can
find a valid parent in the first iteration. This approach is more
efficient when the next set is large. It reduces a lot the total
number of edges examined.

4) Hybrid: Hybrid BFS [6] is the state-of-the-art BFS
implementation and it is part of pre-released version of

48

Graph500 benchmark. It combines top-down and bottom-up
approches because they are complementary. It uses the top-
down approach when the next set is small and the bottom-up
approach when the next set is large.

III. VECTORIZATION OF GRAPH500

We vectorized by hand two versions of BFS: sequential and
parallel OpenMP versions based on the current implementa-
tion. Both versions are vectorized practically in the same way
using intrinsics. The part of code that is actually vectorized is
the loop where a node searches for its neighbors (lines 7-17
in Fig. 1). All neighbors of the node are loaded using vector
load instructions (line 7). Line 8, where the algorithm checks
if a neighbor is not visited, is vectorized using an indexed
vector load from the parent set and comparing loaded values
with -1. The neighbors that are loaded in the previous step
are used as indices. The two previous steps are exactly the
same for the sequential and parallel versions. The next step,
where the parent and next sets have to be updated, is different.
In the parallel version, unvisited neighbors are stored to a
temporal array using the vector packstore instruction to store
selected elements to consecutive memory locations using a
vector mask. Then scalar atomic instructions are used to ensure
that all the threads correctly update the unvisited nodes to the
parent and next sets. This is done with scalar code. In the
sequential version, the parent set is updated using an indexed
vector store, while the next set is updated using the vector
packstore instruction.

Each core in Xeon Phi [7] uses a short in-order pipeline and
is capable of supporting 4 threads in hardware. It contains a
vector processing unit (VPU) that implements a novel 512-
bit SIMD instruction set. A mask register was added to allow
predicated execution and it also supports gather and scatter
instructions. The VPU can execute 8 operations per cycle with
64-bit data or 16 operations per cycle with 32-bit data.

As mentioned above, the Xeon Phi operates on 512-bit
vectors. Our implementation of Graph500 uses 32-bit data,
thus each Xeon Phi vector instruction operates on 16 elements
at a time. This is known as the vector length. If the number
of iterations in a loop is longer than the vector length,
the strip-mining technique [8] is applied during the process
of vectorization. Strip-mining is a technique that allows for
operating on stripes of data that has length less than or equal
to the vector length. If the number of iterations is not a
multiple of the vector length there is a remaining part, called
epilogue. The epilogue can be vectorized in the Xeon Phi using
vector masked instructions or it can be left as scalar code.
Please note that when the number of iterations is smaller than
the vector length, the whole loop is considered the epilogue.
Xeon Phi has support for gather vector memory instruction
that has an index vector with elements of a maximum of
32 bits. Since elements that are loaded from memory and
used as index vector, we are forced to use 32-bit elements
for graph representation instead of 64-bit elements like the
original implementation of Graph500.

IV. METHODOLOGY

This section presents our experimental setup. We measured
the performance of our various vectorized BFS implementa-
tions and we compared them against the original Graph500
implementations. Edgefactor and SCALE are the main input
parameters of the graph generator. SCALE is the log2 of the
number of nodes in the graph. This parameter determines
the graph size and consequently the size of data structures
needed to store it. Edgefactor is the ratio of the graph’s edge
count to its node count (i.e., half the average degree of a
node in the graph). For higher edgefactor, the average size of
the adjacency list is also higher. In particular, this parameter
has a direct effect on the length of the vectorized loop and,
consequently, on the amount of vectorized code when the
epilogue is executed with scalar instructions.

We use an edgefactor of 8 and a SCALE of 23 in our
experiments unless specified otherwise. This is the highest
value of SCALE that can be used in our system. The graphs are
stored in Compressed Sparse Row (CSR) format. It merges the
adjacency lists of all nodes into a single array, with the initial
location of each node’s adjacency list stored in a separate
array. We used Intel’s compiler version 13.0.1 with the -O3
optimization level.

We run our experiments on a compute node that contains
two Intel Xeon CPU E5-2670 @ 2.60GHz processors (8
cores/processor), 64 GB of RAM memory and two Intel Xeon
Phi 5110P (60 cores and four hardware threads per core). In
our experiments we use a single Xeon Phi processor.

As mentioned above, Traversed Edges per Second (TEPS)
is used to benchmark performance and it represents the ratio
of the number of edges in the input graph to the runtime.
Graph500 performs 64 searches (starting from a random node)
per run. We use the harmonic mean of TEPS of all 64 searches
(harm TEPS).

For the sake of clarity, we label the experiments in the
following way: the name of experiment has three parts; the
first part indicates whether it is vectorized (vect) or sequential
(seq) code; the second part tells if sequential prefetching is
applied (spf), vectorized (vpf), both are combined (vspf) or
there is no prefetching (npf); this is followed by a number
that indicates if it is a single-thread execution (1) or multi-
thread execution (n being the number of threads used). For
example, seq npf 1 is a sequential single-thread execution
without prefetching. Additional information is appended to the
name in some cases.

Two modes of execution are used to run experiments on the
Xeon Phi: “offload” and “native” mode. In “offload” mode,
an application runs on the host machine and the parts of the
code that are specified to be executed on the Xeon Phi are
“offloaded” during execution to the co-processor. Data has
to be copied to the co-processor memory before and after
“offloading”. In our experiments in “offload” mode, the whole
BFS kernel is executed on the Xeon Phi. In “native” mode,

49

the application is executed completely on the Xeon Phi.

V. EXPERIMENTAL RESULTS

In the first part of our experiments, we evaluated our vec-
torized implementation of BFS against the sequential imple-
mentation for single-thread execution. In the second part, we
focused on parallel OpenMP implementations. Our main goal
was to check if there is any benefit of applying vectorization
on Graph500 using the Xeon Phi.

A. Single-Thread Results

For the single-thread execution, we focused on three types
of experiments. We compared results when only vectoriza-
tion is applied, then we applied prefetching and finally we
measured hardware counters using the PAPI library to better
understand the results that we obtained in the previous exper-
iments.

1) Manual vectorization and memory alignment: We com-
pared our sequential implementations of Graph500 against the
original sequential Compressed Sparse Row (CSR) implemen-
tation from the benchmark suite.

The CSR format is used to store the graph. It merges the
adjacency lists of all nodes into a single array, and the offset
to the initial location of each node’s adjacency list is stored
in a separate array. By storing the list consecutively, the lists
are typically unaligned at the 512-bit boundary. This implies
that two vector memory instructions are needed to load/store
a 512-bit vector with a node’s adjacency list in the Xeon Phi.
We have implemented a padded version of this structure to
enforce 512-bit aligned accesses, thus reducing the access to
a single vector memory instruction.

Fig. 3 shows the speedup over the original implemen-
tation for different single-threaded versions of Graph500:
sequential original CSR (seq npf 1), a vectorized version
with aligned accesses (vect npf 1+alig), a vectorized version
with unaligned accesses to the original (non-padded) data
structure (vect npf 1+unalig), and vect npf 1+unalig+epil,
which is the same but with a vectorized epilogue using
masked operations. The epilogue is executed in scalar fash-
ion in vect npf 1+alig and vect npf 1+unalig versions. The
speedups are computed for harmonic TEPS over seq npf 1.

In Fig. 3, one may notice that vectorized implementations
yield small speedups, ranging from 3% for unaligned+epilogue
up to 7% for unaligned. Another interesting point is that we
did not get better results when aligned memory accesses are
enforced. The main reason is the increased cache miss rate due
to the use of a larger structure to store the input graph. We
also run experiments using the “native” mode of execution
and we almost got the same results for the sequential and
aligned versions. We experimented with an edgefactor of 16
to increase the lenght of the vectorized loop. However, we saw
only a 3.5% speedup for the unaligned version. Subsequent
experiments assume vectorized code with unaligned memory
accesses and scalar epilogue.

0.96

0.98

1

1.02

1.04

1.06

1.08

harm TEPS

S
p
e
e
d
u
p

Figure 3. Results for different implementations using single-thread run.

2) Vectorization Prefetching vs Sequential Prefetching:
Since the results of vectorization were not satisfying, we de-
cided to apply prefetching to the original sequential code and
our implementation. The Intel compiler has good automatic
prefetching capabilities but in our experiments it does not
provide significant speedup. The main reason is the abundance
of indexed memory accesses, which the compiler does not
prefetch automatically. Therefore, we decided to manually
insert prefetching intrinsics. We used scalar prefetch instruc-
tions for the sequential version and vector gather prefetch
instructions for our vectorized implementation with unaligned
accesses to memory. The results are presented only for the
“native” mode but the results for “offload” are very similar.

For sequential prefetching, we experimented with six dif-
ferent prefetch distances. Fig. 4 (a) shows results for these ex-
periments. The y-axis presents the speedups over the original
implementation (seq npf 1) and the x-axis shows experiments
with different prefetch distances. Scalar prefetching allows for
significant speedups. A prefetch distance of two provides the
maximum speedup, 3.01x.

We implemented six variants for vectorized prefetching.
Prefetching is applied to the vectorized for loop in line 7 of
Fig. 1. In the first variant (n iter+n node), we prefetched the
next iteration of the vectorized loop (neighbor’s nodes) for the
current node in the next set or the first iteration of the next node
in the next set if we are in the last iteration of the vectorized
for loop. In the second variant (2 its), we prefetched the next
two iterations if possible. In order to implement prefetching,
we need to load the index vector for the gather vector prefetch
instruction. We separated the vector load and the vector gather
prefetch instructions in the third (splited ld gth) and fourth
(splited ld gth II) variants and placed them in different places
of the code. The fifth variant (2nd iter L2) is similar to the
second one, the only difference is that the second iteration
is prefetched to the L2 cache. The last variant (vect vspf 1)
combines the first variant for vectorized code and sequential
prefetching for the epilogue. As explained above, the epilogue
is implemented with scalar instructions.

Results for prefetching in the vectorized code are presented
in Fig. 4 (b). Speedups are computed over the vectorized

50

0

0.5

1

1.5

2

2.5

3

3.5

harm TEPS

(a) Sequential prefetching

S
p

e
e

d
u

p

0

0.5

1

1.5

2

2.5

3

3.5

harm TEPS

(b) Vectorized prefetching

S
p

e
e

d
u

p

Figure 4. Results with prefetching for single-thread run.

implementation without prefetching. Prefetch again provides
significant speedups, up to 2.99x for the sixth variant that
combines sequential and vector prefetching. It is interesting
to notice that the best results are obtained when sequential
prefetching is included. The speedup is 1.07x over the best
vector-only prefetching variant (first variant). The combination
of both prefetching (vspf) schemes in the vectorized version
provides a speedup of 1.04x over the best sequential variant.
The next section aims to explain these results by analyzing
measurements obtained with hardware counters.

3) PAPI Profiling Results: For further analysis of the results
that we obtained using vectorization and vector prefetching,
we used PAPI [9] hardware counters. We run experiments
for five different implementations: sequential, vectorized, se-
quential with prefetching, vectorized with vector prefetching
and vectorized version with combined sequential and vector
prefetching. The experiments were run using the “native”
mode of execution. Table I summarizes the results that we
collected with PAPI counters, while aggregating the results for
64 BFS calls. The first column lists the different implemen-
tations of BFS. The second column presents the percentage
of vector instructions executed in the benchmark. Third and
fourth columns are L1 and L2 cache miss rates, respectively.

The fifth column is the number of vector instructions executed.
Finally, the last column is the number of execution cycles.

Table I shows that the results for the original and vectorized
versions are similar. Provided that the epilogue is executed
with scalar instructions, one may guess that there is a small
amount of vector instructions and there are no benefits of
vectorization, but it is actually not the case. 42.71% of all
executed instructions are vector and the main reason why we
observe similar performance for sequential and vectorized ver-
sions is cache behaviour. The use of gather/scatter instructions
increases the L1 cache miss rate and therefore reduces the
benefit of vectorization.

As can be expected, the use of prefetch instructions (rows
three and four) decreases a lot L1 and L2 cache miss rates
and this is the main reason for the significant speedups
shown in Fig. 4. However, another interesing point is that
L1 and L2 cache miss rates for the vectorized version with
prefetching are again higher than L1 and L2 cache miss rates
for sequential prefetching. This is the reason why experiments
with sequential prefetching achieve higher speedups in Fig. 4.
L2 cache miss rate is always higher than L1 cache miss rate
because the data set is not L2 cache resident.

The combination of vector and scalar prefetching provides
better cache utilization, allowing the vectorized version to
outperform the best sequential version by 4%.

B. Results for OpenMP Implementation

The Xeon Phi provides the best performance when both,
parallelization and vectorization, are applied together. In this
section we explore the effect of vectorization on the CSR
version of Graph500 parallelized using OpenMP.

1) Manual vs. Automatic Vectorization: Fig. 5 presents
results for three different parallel versions of Graph500.
seq npf n is the original parallel version, seq npf n-vect is
the same but with auto-vectorization disabled and vect npf n
is our vectorized version of parallel Graph500. All three
version are compiled using the -O3 optimization level without
prefetching. The y-axis presents measured performance in
harmonic TEPS and the x-axis represents the number of
threads used (n).

The results show that vectorization does not have significant
impact on the measured performance. The difference between
seq npf n-vect and seq npf n is also negligible because the
compiler is not able to vectorize any part of BFS code.
While vectorization seems inefficient, the increased number of
threads provides better performance. For example, the parallel
vectorized version with 40 threads in “offload” mode is 14
times faster than the best single-thread implementation. The
results scale well for “native” mode of execution while they
saturate for “offload” mode if we use more than 160 threads.
The main reason for better results and scalability in “native”
mode is substantial data transfer overhead before and after
“offloading”.

51

TABLE I
OBTAINED RESULTS USING HARDWARE COUNTERS.

Implementation % of vector instructions L1 cache miss rate L2 cache miss rate # of instructions # of cycles
Sequential 0.07 44.98 89.34 11.3×108 47.8×109
Vectorized 42.71 66.78 89.99 6.36×108 47.5×109
Seq prefetching 0.01 1.96 15.87 30.1×108 12.0×109
Vect prefetching 53.78 12.68 47.14 9.83×108 15.9×109
Seq vect prefetching 41.55 4.54 19.34 12.7×108 11.8×109

0 50 100 150 200 250
0.0E+00
5.0E+06
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
3.5E+07
4.0E+07
4.5E+07

Offload mode

 seq_npf_n - vect

 seq_npf_n

 vect_npf_n

threads

h
a

rm
o

n
ic

 T
E

P
S

0 50 100 150 200 250
0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

Native mode

seq_npf_n - vect

seq_npf_n

vect_npf_n

threads

h
a

rm
o

n
ic

 T
E

P
S

Figure 5. Results for hand-written vectorization, auto-vectorization and no
vectorization.

2) Vectorization Prefetching vs Sequential Prefetching:
We further explore the effects of prefetching on the parallel
version of Graph500. We applied prefetching on the original
OpenMP implementation using sequential prefetch instruc-
tions while we used vector scatter/gather prefetch instructions
for our implemenation. We experimented with several different
prefetch distances for sequential prefetching as well as six
different variants for the vectorized version. These are the
same prefetching schemes presented in subsection V-A. All
experiments were performed using 160 threads.

Fig. 6 shows the speedup for the original OpenMP im-
plementation with sequential prefetch instructions that use
different prefetch distances. The speedup is computed over
the original OpenMP implementation. Prefetching increases
the performance of Graph500 for all prefetch distances in
both modes, “offload” and “native”. For example, the highest
speedups are 2.07x and 2.36x for “offload” and “native” modes
respectively, for a prefetch distance of eight.

The results for vectorized prefetching are presented in Fig.
7. The y-axis presents speedups computed over our vectorized
OpenMP implementation and the x-axis shows our differ-
ent prefetching implementations. Again prefetching increases
performance significantly and the best results are obtained
for the combined vector and sequential prefetching scheme.

0

0.5

1

1.5

2

2.5

Offload mode

Native mode

S
p
e
e
d
u
p

Figure 6. Results for Omp version with sequential prefetching.

0

0.5

1

1.5

2

2.5

3

3.5

Offload mode

Native mode

S
p
e
e
d
u
p

Figure 7. Results for vectorized version with gather/scatter prefetching.

Speedups are 1.66x and 2.94x for “offload” and “native”
modes, respectively.

Our implementation outperforms the best implementation
from Fig. 6 providing 10% and 27% higher harmonic TEPS
in “offload” and “native” modes respectively. The Xeon Phi
provides the best performance when both, parallelization and
vectorization are applied and Graph500 clearly can benefit
from it.

3) Scalability: Fig. 8 shows the results for different number
of threads for the OpenMP implementation with sequential
prefetching and the vectorized version with combined vector-
sequential prefetching. It can be seen that “native” mode
performance scales better than the results for the “offload”
mode due to substantial data transfer overhead in the “offload”
mode. In the “offload” mode, the harmonic TEPS seem to

52

0 50 100 150 200 250
0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Offload mode

vect_vspf_n

sec_spf_n

of threads

h
a

rm
o

n
ic

 T
E

P
S

0 50 100 150 200 250
0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

Native mode

vect_vspf_n

sec_spf_n

of threads

h
a

rm
o

n
ic

 T
E

P
S

Figure 8. Results for prefetching using different number of threads.

10 12 14 16 18 20 22 24
0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

3.50E+008

vect_vspf_160

seq_spf_160+16

SCALE

h
a

rm
o

n
ic

 T
E

P
S

Figure 9. Impact of SCALE on performance in native mode.

saturate after 120 threads, while performance still grows,
albeit slower, for “native” execution. It is also noticeable that
the vectorized version consistently outperforms the sequential
version, for any number of threads and both execution modes.

4) Scale and Edgefactor: Finally, we experimented with
different values for SCALE and edgefactor. We compared
again the OpenMP implementation with sequential prefetching
and the vectorized version with combined vector-sequential
prefetching. We used a fixed number of threads (160) for all
experiments and run them in “native” mode.

Fig. 9 shows results for different SCALE values. The y-axis
presents measured performance in harmonic TEPS and the x-
axis shows different values for SCALE. It can be seen that
the vectorized version consistently outperforms the sequential
version. The vectorized version achieves the highest perfor-
mance when SCALE is 21 and performance saturates for higher
numbers. For SCALE lower than 14 the vectorized version
achieves nearly no speedup and even has slowdown, for a
SCALE of 11. This SCALE is extremely small since Graph500
aims to represent applications with very large graphs. In this
case, the generated graph is small enough to fit into the L1
cache and be cache resident.

5 10 15 20 25 30 35
0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

vect_vspf_160

seq_spf_160+16

Edgefactor

h
a

rm
o

n
ic

 T
E

P
S

Figure 10. Impact of edgefactor on performance in native mode.

Fig. 10 shows results for different edgefactor values. The
y-axis presents measured performance in harmonic TEPS
and the x-axis shows different values for edgefactor. The
vectorized version again outperforms the sequential version.
As it is expected, the vectorized version benefits from a higher
edgefactor while this gain is smaller for the sequential version.
To quantify this, we have measured how often nodes are
processed with vector instructions. For an edgefactor of 8, the
vectorized loop processes 87% of the nodes, while the rest is
executed in the scalar epilogue. For edgefactor of 32, 94.2%
of the nodes are processed with vector instructions due to the
increased vector lengths.

VI. CONCLUSION

In this paper we evaluated the vectorization potential of the
Graph500 on the Xeon Phi. Applying vectorization on a single-
threaded implementation provides negligible improvement and
a hasty conclusion would be that Graph500 can not benefit of
vector instructions. This conclusion is misleading because we
achieve higher speedups when prefetching is combined with
vectorization. Prefetching is more important for Graph500
running on the Xeon Phi, because the data is not cache
resident. The combination of parallelization with vectorization
and prefetching is very important for achieving higher perfor-
mance. We achieve 27% of speedup for the best vectorized
version with applied vector prefetch instructions over the best
scalar implementation with sequential prefetching in “native”
mode.

In the future, we will try to vectorize other implementations
of Graph500. We will address issues that may be challenging
for vectorization, e.g. the usage of bitmap structures to track
unvisited nodes.

REFERENCES

[1] R. C. Murphy, K. B. Wheele, B. W. Barret, J. A. Ang: ”Introducing the
graph 500.” Cray Users Group (CUG) (2010).

[2] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, P. Hanrahan: Larrabee: a many-core x86 architecture for visual
computing. In SIGGRAPH 08, pages 18:118:15, 2008.

53

[3] E. Saule and Ü. Catalyurek: An Early Evaluation of the Scalability of
Graph Algorithms on the Intel MIC Architecture. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW ’12). IEEE Computer
Society, Washington, DC, USA, 1629-1639.

[4] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader: Scalable Graph Explo-
ration on Multicore Processors. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’10). IEEE Computer Society, Washington, DC,
USA, 1-11.

[5] S. Hong, T. Oguntebi, and K. Olukotun: Efficient Parallel Graph Explo-
ration on Multi-Core CPU and GPU. In Proceedings of the 2011 Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT ’11). IEEE Computer Society, Washington, DC, USA.

[6] S. Beamer, K. Asanović, and D. Patterson: Direction-optimizing breadth-
first search. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’12).
IEEE Computer Society Press, Los Alamitos, CA, USA, , Article 12 , 10
pages.

[7] Intel: Intel Xeon Phi TM Coprocessor Instruction Set Architecture
Reference Manual, 2012.

[8] J. L. Hennessy and D. A. Patterson: Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., 4 edition, 2006.
Appendix F.

[9] S. Browne, P. J. Mucci, C. Deane, G. Ho: Papi: A portable interface
to hardware performance counters. In Proc. of Department of Defense
HPCMP Users Group Conf., 1999.

54

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 7.20 points
 Normalise (advanced option): 'improved'

 32

 D:20140619130514
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 Full
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 5.40 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 675
 322
 Fixed
 Up
 5.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

