## GREEN MATRICES OF WEIGHTED GRAPHS WITH PENDANT VERTICES

Silvia Gagó.<br>joint work with<br>Angeles Carmona*, Andrés M. Encinas*, Margarida Mitjanaぇ<br>Midsummer Combinatorial Workshop XX<br>Prague, 28 July- 1 August 2014



## OUTLINE

1 Discrete Potential Theory

- Definitions and concepts

2 The Poisson equation

- Applications
- Effective Resistances
- Kirchhoff index

3 Previous results
4 Adding new pendant vertices
■ Adding one pendant vertex
■ Adding several pendant vertices


## DEFINITIONS AND CONCEPTS

- A weighted graph $\Gamma=(V, E, c)$ is composed by:
$\square V$ is a set of elements called vertices.
$\square E$ is a set of elements called edges.
$\square c: V \times V \longrightarrow[0, \infty)$ is an application named conductance associated to the edges.
$\square u, v$ are adjacent, $u \sim v$ iff $c(u, v)=c_{u v} \neq 0$.
$\square$ The degree of a vertex $u$ is $d_{u}=\sum_{v \in V} c_{u v}$.



## DEFINITIONS AND CONCEPTS



Consider the set of real-valued functions on $V, \mathcal{C}(V)$, where every function on $V$ is a vector in $\mathbb{R}^{n}$.


## DEFINITIONS AND CONCEPTS



Consider the set of real-valued functions on $V, \mathcal{C}(V)$, where every function on $V$ is a vector in $\mathbb{R}^{n}$.

$$
\begin{aligned}
\mathcal{C}(V) & \longleftrightarrow \mathbb{R}^{n} \\
u & \longleftrightarrow\left[u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right]^{T}
\end{aligned}
$$

- The scalar product is

$$
\langle u, v\rangle=\sum_{x \in V} u(x) v(x)=u v^{T}
$$

## DEFINITIONS AND CONCEPTS



Consider the set of real-valued functions on $V, \mathcal{C}(V)$, where every function on $V$ is a vector in $\mathbb{R}^{n}$.

$$
\begin{aligned}
\mathcal{C}(V) & \longleftrightarrow \mathbb{R}^{n} \\
u & \longleftrightarrow\left[u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right]^{T}
\end{aligned}
$$

- The scalar product is

$$
\langle u, v\rangle=\sum_{x \in V} u(x) v(x)=u v^{T}
$$

- A weight is a positive function $\omega: V \longrightarrow(0,+\infty)$. The set of weights is denoted by $\Omega(V)$.


## DEFINITIONS AND CONCEPTS

$\square$ Any matrix $K \in \mathcal{M}_{n \times n}$ is the kernel of the endomorphism $\mathcal{K}$ of $\mathcal{C}(V)$ that assigns to any $u \in \mathcal{C}(V)$ the function $v$.

$$
\begin{aligned}
\mathcal{K}: \mathcal{C}(V) & \longrightarrow \mathcal{C}(V) \\
u & \longrightarrow \mathcal{K}(u)=K u=v .
\end{aligned}
$$

## DEFINITIONS AND CONCEPTS

$\square$ Any matrix $K \in \mathcal{M}_{n \times n}$ is the kernel of the endomorphism $\mathcal{K}$ of $\mathcal{C}(V)$ that assigns to any $u \in \mathcal{C}(V)$ the function $v$.

$$
\begin{aligned}
\mathcal{K}: \mathcal{C}(V) & \longrightarrow \mathcal{C}(V) \\
u & \longrightarrow \mathcal{K}(u)=K u=v .
\end{aligned}
$$

- Conversely, each endomorphism $\mathcal{K}$ of $\mathcal{C}(V)$ determines the kernel given by

$$
(K)_{x, y}=\left\langle\mathcal{K}\left(\epsilon_{y}\right), \epsilon_{x}\right\rangle \quad \text { for any } x, y \in V .
$$

## DEFINITIONS AND CONCEPTS

$\square$ Any matrix $K \in \mathcal{M}_{n \times n}$ is the kernel of the endomorphism $\mathcal{K}$ of $\mathcal{C}(V)$ that assigns to any $u \in \mathcal{C}(V)$ the function $v$.

$$
\begin{aligned}
\mathcal{K}: \mathcal{C}(V) & \longrightarrow \mathcal{C}(V) \\
u & \longrightarrow \mathcal{K}(u)=K u=v .
\end{aligned}
$$

- Conversely, each endomorphism $\mathcal{K}$ of $\mathcal{C}(V)$ determines the kernel given by

$$
(K)_{x, y}=\left\langle\mathcal{K}\left(\epsilon_{y}\right), \epsilon_{x}\right\rangle \quad \text { for any } x, y \in V
$$

## Common used operators

Identity
Projector on $\sigma$ along $\tau$
Projector on $\omega$

Operator
I
$\mathcal{P}_{\sigma, \tau}(u)=\langle\tau, u\rangle \sigma$
$P_{\sigma, \tau}=\sigma \otimes \tau$
$\mathcal{P}_{\omega}(u)=\langle\omega, u\rangle \omega$

## LAPLACIAN OPERATOR AND LAPLACIAN MATRIX

. The Laplacian operator $\mathcal{L}$ is

$$
\begin{aligned}
\mathcal{L}: \mathcal{C}(V) & \longrightarrow \mathcal{C}(V) \\
u & \longrightarrow \mathcal{L}(u)=\sum_{x, y \in V} c_{x y}[u(x)-u(y)]
\end{aligned}
$$

- The corresponding Laplacian matrix is

$$
(L)_{i j}=\left\{\begin{array}{rll}
d_{i} & \text { if } & i=j \\
-c_{i j} & \text { if } & i \neq j
\end{array}\right.
$$

$\square$ For a simple graph, $c_{i j}=1$ for any $i, j \in V$ and the applications of its spectrum have been widely studied in Spectral Graph Theory (The Laplacian Spectrum of Graphs, B. Mohar).
$\square$ The general case has not been so well studied.

## DISCRETE POTENTIAL THEORY

## Definition

The Schrödinger $\mathcal{L}_{q}$ operator on a network with potential $q$ is a generalization of the Laplacian operator $\mathcal{L}$ defined as

$$
\begin{aligned}
& \mathcal{L}_{q}: \mathcal{C}(V) \longrightarrow \mathcal{C}(V) \\
& u \longrightarrow \\
& \mathcal{L}_{q}(u)=\mathcal{L}(u)+q u
\end{aligned}
$$

where $q u \in \mathcal{C}(V)$ is defined as $q u(x)=q(x) u(x)$, for all $x \in V$.
$\square$ The Schrödinger matrix of a network $\Gamma$ with potential $Q$ is defined as

$$
L_{q}=L+Q, \quad Q=\operatorname{diag}\left(q_{1}, \ldots, q_{n}\right)
$$

Observe that $\mathcal{L}_{q}$ can be also considered as the Laplacian operator of a network with loops of value $q_{i}$ associated of each vertex.


## DISCRETE POTENTIAL THEORY

- Any Schrödinger operator $\mathcal{L}_{q}$ is selfadjoint.
$\square$ If $\mathcal{L}_{q}$ is positive definite, then it is invertible and its inverse is called Green's operator.
- However we are interested in those Schrödinger operators $\mathcal{L}_{q}$ who are positive semi-definite.
$\square$ Now consider $q_{\omega}=-\frac{1}{\omega} \mathcal{L}(\omega) \in \mathcal{C}(V)$, it is called the potential determined by a weight $\omega \in \Omega(V)$.


## Proposition

The Schrödinger operator $\mathcal{L}_{q}$ with potential $q$ is positive semidefinite iff there exists a weight $\omega \in \Omega(V)$ and a real number $\lambda \geq 0$ such that $q=q_{\omega}+\lambda$. In this case $\lambda$ is the lowest eigenvalue and its associated eigenfunctions are multiples of $\omega$.

## DISCRETE POTENTIAL THEORY

- Any Schrödinger operator $\mathcal{L}_{q}$ is selfadjoint.
$\square$ If $\mathcal{L}_{q}$ is positive definite, then it is invertible and its inverse is called Green's operator.
- However we are interested in those Schrödinger operators $\mathcal{L}_{q}$ who are positive semi-definite.
$\square$ Now consider $q_{\omega}=-\frac{1}{\omega} \mathcal{L}(\omega) \in \mathcal{C}(V)$, it is called the potential determined by a weight $\omega \in \Omega(V)$.


## Proposition

The Schrödinger operator $\mathcal{L}_{q}$ with potential $q$ is positive semidefinite iff there exists a weight $\omega \in \Omega(V)$ and a real number $\lambda \geq 0$ such that $q=q_{\omega}+\lambda$. In this case $\lambda$ is the lowest eigenvalue and its associated eigenfunctions are multiples of $\omega$.


## THE POISSON EQUATION

- Our goal is to solve the Poisson equation for $\mathcal{F}$ on $V$ with data $f \in V$, that is to find $u \in V$ such that

$$
\mathcal{L}_{q}(u)=f
$$

- It $\mathcal{L}_{q}$ is positive semidefinite, then the operator that assigns to each function $f \in \mathcal{C}(V)$ the unique $u \in \mathcal{C}(V)$ such that

$$
\mathcal{L}_{q}(u)=f-\mathcal{P}_{\omega}(f),
$$

is called orthogonal Green's operator $\mathcal{G}_{q}$, and its kernel $G_{q}$ is called Green's matrix.

- Notice that

$$
\mathcal{G}_{q}(\omega)=\left\{\begin{array}{lll}
\frac{1}{\lambda} & \text { if } & \lambda \neq 0 \\
0 & \text { if } & \lambda=0 .
\end{array}\right.
$$

- Some applications: by knowing the Green's matrix $G_{q}$ we can compute the effective resistances and the Kirchhoff index of the weighted graph.


## APPLICATIONS: EFFECTIVE RESISTANCES

Klein and Rándic (93) proposed a distance measure between two vertices of electrical networks called the effective resistance


## APPLICATIONS: EFFECTIVE RESISTANCES

$\square$ Bendito, Carmona, Encinas, Gesto (2008) proved that the resistance distance between any pair of vertices $x, y \in V$ can be computed as the solution of the following linear problem

$$
\mathcal{L}(u)=\pi_{x, y}
$$

where $\mathcal{L}$ is the Laplacian operator of the weighted graph and $\pi_{x, y}=\varepsilon_{x}-\varepsilon_{y}$ is called the dipole between $x$ and $y$.

## APPLICATIONS: EFFECTIVE RESISTANCES

$\square$ Bendito, Carmona, Encinas, Gesto (2008) proved that the resistance distance between any pair of vertices $x, y \in V$ can be computed as the solution of the following linear problem

$$
\mathcal{L}(u)=\pi_{x, y}
$$

where $\mathcal{L}$ is the Laplacian operator of the weighted graph and $\pi_{x, y}=\varepsilon_{x}-\varepsilon_{y}$ is called the dipole between $x$ and $y$.

## Proposition [Bendito, Carmona, Encinas, Gesto (2009)]

For any $x, y \in V$ it is verified that

$$
R_{\lambda, \omega}(x, y)=\frac{\left(G_{q}\right)_{x, x}}{\omega_{x}^{2}}+\frac{\left(G_{q}\right)_{y, y}}{\omega_{y}^{2}}-\frac{2\left(G_{q}\right)_{x, y}}{\omega_{x} \omega_{y}} .
$$

## APPLICATIONS: KIRCHHOFF INDEX

- Introduced in Chemistry as a better alternative to other parameters for discriminating among different molecules with similar shapes and structures.
- The Kirchhoff index or Total Resistance of the weighted graph is the sum of all the effective resistances between any pair of vertices of the weighted graph.


## Corollary [Bendito, Carmona, Encinas, Gesto (2009)]

For any $x, y \in V$ it is verified that

$$
k(\lambda, \omega)=\operatorname{trace}\left(G_{q}\right)-\left\{\begin{array}{ccc}
\frac{1}{\lambda} & \text { if } & \lambda \neq 0 \\
0 & \text { if } & \lambda=0 .
\end{array}\right.
$$



## PREVIOUS RESULTS

The Green matrix has been computed for

- Cluster graphs
- Some composite weighted graphs
- Generalized linear polyominoes
- Join graphs
- Perturbations of an edge


## PERTURBING THE CONDUCTANCE OF AN EDGE

## Corollary [Carmona, Encinas, Mitjana]

Consider $\sigma \in \mathcal{C}(V)$, the perturbation of $\mathcal{F}$ by $\sigma$ and the operator

$$
\mathcal{H}_{\sigma}=\mathcal{F}+\mathcal{P}_{\sigma}
$$

then when $\langle\sigma, \omega\rangle=0$

$$
\mathcal{G}^{\mathcal{H}}=\mathcal{G}-\frac{1}{1+\langle\mathcal{G}(\sigma), \sigma\rangle} \mathcal{P}_{\mathcal{G}(\sigma)},
$$

whereas, when $\langle\sigma, \omega\rangle \neq 0$

$$
\begin{aligned}
\mathcal{H}^{-1} & =\mathcal{G}-\frac{1}{\beta}\left[\lambda \mathcal{P}_{\mathcal{G}(\sigma)}-\langle\sigma, \omega\rangle\left(\mathcal{P}_{\mathcal{G}(\sigma), \omega}-\mathcal{P}_{\omega, \mathcal{G}(\sigma)}\right)-(1+\langle\sigma, \omega\rangle) \mathcal{P}_{\omega}\right] \\
\text { where } \beta & =\lambda(1+\langle\mathcal{G}(\sigma), \sigma\rangle)+\langle\sigma, \omega\rangle^{2}
\end{aligned}
$$

## ADDING PENDANT VERTICES

## Goal

To study the perturbation of the Green matrix of a weighted graph caused by the perturbation due to add a pendant vertex, relating both Green matrices.


## ADDING ONE PENDANT VERTEX $X^{\prime}$

ㅁ New network: $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}, c^{\prime}\right), V^{\prime}=V \cup\left\{x^{\prime}\right\}, E^{\prime}=E \cup\left\{e_{x, x^{\prime}}\right\}$, $c^{\prime}=c^{\prime}\left(x, x^{\prime}\right)>0$

ㅁ New weight: $\omega_{x^{\prime}} \in \Omega\left(V^{\prime}\right)$, such that $\omega_{x_{i}}^{\prime}=\omega_{x_{i}} / \sqrt{1+\omega_{x^{\prime}}^{2}}$ for any $x_{i} \in V^{\prime}, i=0, \ldots, n$


- It holds $\omega_{i}^{\prime} / \omega_{j}^{\prime}=\omega_{i} / \omega_{j}$ for any $i, j \in V^{\prime}$.


## ADDING ONE PENDANT VERTEX $X^{\prime}$

- The Schrödinger operator of $\Gamma^{\prime}$ is

$$
\mathcal{L}_{q}^{\prime}(u)=\mathcal{L}^{\prime}(u)+q^{\prime} u,
$$

with $q^{\prime}=q_{\omega^{\prime}}^{\prime}+\lambda$ and $q_{\omega^{\prime}}^{\prime}=-\frac{1}{\omega^{\prime}} \mathcal{L}^{\prime}\left(\omega^{\prime}\right) \in \mathcal{C}\left(V^{\prime}\right)$.

- The relation between the kernels of both Schrödinger operators is given by

$$
L_{q^{\prime}}^{\prime}=\left(\begin{array}{cc}
L_{q}^{\prime} & -c^{\prime} \varepsilon_{x} \\
-c^{\prime} \varepsilon_{x}^{\top} & q_{x, x^{\prime}}^{\prime}
\end{array}\right),
$$

where $L_{q}^{\prime}=L_{q}+c^{\prime} \frac{\omega_{x^{\prime}}}{\omega_{x}} P_{\varepsilon_{x}}$ is the kernel of the perturbed operator $\mathcal{L}_{q}^{\prime}=\mathcal{L}_{q}+\mathcal{P}_{\sigma_{x, x^{\prime}}}$, with $\sigma_{x, x^{\prime}}=\sqrt{c^{\prime} \frac{\omega_{x^{\prime}}}{\omega_{x}}} \varepsilon_{x}$ and $q_{x, x^{\prime}}^{\prime}=c^{\prime} \frac{\omega_{x}}{\omega_{x^{\prime}}}+\lambda \in \mathbb{R}$.

## ADDING ONE PENDANT VERTEX

## Proposition

The kernel of $\mathcal{L}_{q^{\prime}}^{\prime-1}$ is

$$
\left(L_{q^{\prime}}^{\prime}\right)^{-1}=\left(\begin{array}{cc}
H^{-1} & \frac{c^{\prime}}{q_{x, x^{\prime}}^{\prime}} H^{-1} \varepsilon_{x}  \tag{1}\\
\frac{c^{\prime}}{q_{x, x^{\prime}}^{\prime}} \varepsilon_{x}^{\top} H^{-1} & \frac{1}{q_{x, x^{\prime}}^{\prime}}-\frac{c^{\prime}}{\left(q_{x, x^{\prime}}^{\prime}\right)^{2}} \varepsilon_{x}^{\top} H^{-1} \varepsilon_{x}
\end{array}\right)
$$

where $H^{-1}$ is the kernel of the operator

$$
\begin{array}{r}
\mathcal{H}^{-1}=\mathcal{G}_{\lambda, \omega}-\frac{1}{\beta}\left[\lambda \mathcal{P}_{\mathcal{G}_{\lambda, \omega}\left(\sigma_{x, x^{\prime}}\right)}-\left\langle\sigma_{x, x^{\prime}}, \omega\right\rangle\left(\mathcal{P}_{\mathcal{G}_{\lambda, \omega}\left(\sigma_{x, x^{\prime}}\right), \omega}-\mathcal{P}_{\omega, \mathcal{G}_{\lambda, \omega}\left(\sigma_{x, x^{\prime}}\right)}\right)\right. \\
\left.-\left(1+\left\langle\sigma_{x, x^{\prime}}, \omega\right\rangle\right) \mathcal{P}_{\omega}\right]
\end{array}
$$

$$
\text { and } \beta=\lambda\left(1+\left\langle\mathcal{G}_{\lambda, \omega}\left(\sigma_{x, x^{\prime}}\right), \sigma_{x, x^{\prime}}\right\rangle\right)+\left\langle\sigma_{x, x^{\prime}}, \omega\right\rangle^{2}
$$

## ADDING SEVERAL PENDANT VERTICES $X_{1}^{\prime}, \ldots, X_{M}^{\prime}$

- New network: $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}, c^{\prime}\right), V^{\prime}=V \cup\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$, $E^{\prime}=E \cup\left\{e_{x_{1}, x_{1}^{\prime}}, \ldots, e_{x_{m}, x_{m}^{\prime}}\right\}$ and $c_{i}^{\prime}=c^{\prime}\left(x_{i}, x_{i}^{\prime}\right)>0$ for $i=1, \ldots, m$

ㅁ New weight: $\omega_{x^{\prime}} \in \Omega\left(V^{\prime}\right)$, such that $\omega_{x}^{\prime}=\omega_{x} / \sqrt{1+\sum_{i=1}^{m} \omega_{x_{i}^{\prime}}^{2}}$ for any $x_{i} \in V^{\prime}, i=0, \ldots, n$


## ADDING SEVERAL PENDANT VERTICES $X_{1}^{\prime}, \ldots, X_{M}^{\prime}$

- The Schrödinger operator of $\Gamma^{\prime}$ is $\mathcal{L}_{q}^{\prime}(u)=\mathcal{L}^{\prime}(u)+q^{\prime} u$, with $q^{\prime}=q_{\omega^{\prime}}^{\prime}+\lambda$ and $q_{\omega^{\prime}}^{\prime}=-\frac{1}{\omega^{\prime}} \mathcal{L}^{\prime}\left(\omega^{\prime}\right)$.
- The relation between the kernels of both Schrödinger operators is given by

$$
L_{q^{\prime}}^{\prime}=\left(\begin{array}{cc}
L_{q}^{\prime} & B \\
B^{\top} & D_{q^{\prime}}
\end{array}\right),
$$

where $L_{q}^{\prime}=L_{q}+\sum_{i=1}^{m} c_{i}^{\prime} \frac{\omega_{x_{i}^{\prime}}^{\prime}}{\omega_{x_{i}}} P_{\varepsilon_{x_{i}}}, B=\left(-c_{x_{1}}^{\prime} \varepsilon_{x_{1}}, \ldots,-c_{x_{m}}^{\prime} \varepsilon_{x_{m}}\right)$, and $D_{q^{\prime}}$ is an invertible diagonal matrix having in the diagonal the potential of the new vertices $q_{x_{i}, x_{i}^{\prime}}^{\prime}=c_{i}^{\prime} \frac{\omega_{x_{i}}}{\omega_{x_{i}^{\prime}}}+\lambda \neq 0$.

## ADDING SEVERAL PENDANT VERTICES

## Proposition

The kernel of $\left(\mathcal{L}^{\prime}{ }_{q^{\prime}}\right)^{-1}$ is

$$
\left(L_{q^{\prime}}^{\prime}\right)^{-1}=\left(\begin{array}{cc}
H^{-1} & -H^{-1} B D^{-1} \\
-D^{-1} B^{\top} H^{-1} & D^{-1}+D^{-1} B^{\top} H^{-1} B D^{-1}
\end{array}\right)
$$

where $H^{-1}$ is the kernel of the operator

$$
\begin{aligned}
& \quad \mathcal{H}^{-1}=\mathcal{G}+\alpha \mathcal{P}_{\omega}+\sum_{i=1}^{m} \beta_{i}\left[\mathcal{P}_{\mathcal{G}\left(\sigma_{i}\right), \omega}-\mathcal{P}_{\omega, \mathcal{G}\left(\sigma_{i}\right)}\right]-\sum_{i, j=1}^{m} \gamma_{i j} \mathcal{P}_{\mathcal{G}\left(\sigma_{i}\right), \mathcal{G}\left(\sigma_{j}\right)}, \\
& \text { and }\left(b_{i j}\right)=\left(I+\left\langle\mathcal{G}\left(\sigma_{j}\right), \sigma_{i}\right\rangle\right)^{-1}, \alpha=\left(\lambda+\sum_{r, s} b_{r, s}\left\langle\mathcal{G}\left(\sigma_{j}\right), \sigma_{i}\right\rangle\left\langle\sigma_{s}, \omega\right\rangle\right)^{-1}, \\
& \beta_{i}=\alpha \sum_{r=1}^{m} b_{i r}\left\langle\sigma_{r}, \omega\right\rangle \quad \text { and } \quad \gamma_{i j}=b_{i j}-\alpha\left(\sum_{r=1}^{m} b_{i r}\left\langle\sigma_{r}, \omega\right\rangle\right)\left(\sum_{r=1}^{m} b_{j r}\left\langle\sigma_{r}, \omega\right\rangle\right) .
\end{aligned}
$$

## EXAMPLE

## Green matrix of a Star graph $S_{n}$

We compute the Green matrix of a Star graph $S_{n}$ with constant weight $\omega=\frac{1}{\sqrt{n}} j$ by adding $n-2$ pendant vertices to a $S_{2}$.

$$
\left.\begin{array}{c}
\text { Starting from } \\
L_{\lambda, 2}=\left(\begin{array}{cc}
1+\lambda & -1 \\
-1 & 1+\lambda
\end{array}\right), \quad B=\binom{-j_{n-2}}{0_{n-2}}, \\
H=\left(\begin{array}{cc}
\frac{\lambda^{2}+n \lambda+1}{\lambda+1} & -1 \\
-1 & 1+\lambda
\end{array}\right) \Rightarrow H^{-1}=\left(\begin{array}{cc}
\frac{1+\lambda}{\lambda^{2}+n \lambda} & \frac{1}{\lambda^{2}+n \lambda} \\
\frac{1}{\lambda^{2}+n \lambda} & \frac{\lambda^{2}+n \lambda+1}{(\lambda+1)\left(\lambda^{2}+n \lambda\right)}
\end{array}\right) . \\
G_{\lambda, n}=\left(\begin{array}{ccc}
\frac{n-1}{n(\lambda+n)} & \cdots & \frac{-1}{n(\lambda+n)} \\
\frac{-1}{n(\lambda+n)} & \frac{-1}{n(\lambda+n)} \\
\vdots & \vdots & \cdots+\left(n^{2}-n-1\right) \\
n(\lambda+1)(\lambda+n) & \cdots & -\frac{\lambda+n+1}{n(\lambda+n)(\lambda+1)} \\
\frac{-1}{n(\lambda+n)} & -\frac{\lambda+n+1}{n(\lambda+n)(\lambda+1)} & \cdots
\end{array}\right) \frac{(n-1) \lambda+\left(n^{2}-n-1\right)}{n(\lambda+1)(\lambda+n)}
\end{array}\right) .
$$

## TO KNOW MORE ABOUT THIS TOPIC ....

## Advanced Course on Combinatorial Matrix Theory

Date: February 2015
Location: Centre de Recerca Matemàtica (CRM), Barcelona


# Thanks for your attention 

## Děkuji za pozornost

Gracias por su atención

