GREEN MATRICES OF WEIGHTED GRAPHS WITH PENDANT VERTICES

Silvia Gago*

joint work with Angeles Carmona[♣], Andrés M. Encinas[♣], Margarida Mitjana★

Midsummer Combinatorial Workshop XX Prague, 28 July- 1 August 2014

Department of Applied Mathematics 3[®] and 1[★], Universitat Politècnica de Catalunya, UPCTech SPAIN

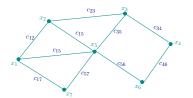
Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices

- 1 Discrete Potential Theory
 - Definitions and concepts
- 2 The Poisson equation
 - Applications
 - Effective Resistances
 - Kirchhoff index
- 3 Previous results
- 4 Adding new pendant vertices
 - Adding one pendant vertex
 - Adding several pendant vertices

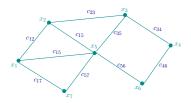
DISCRETE POTENTIAL THEORY

Discrete Potential Theory •00000	The Poisson equation	Previous results	Adding new pendant vertices
DEFINITIONS ANI	D CONCEPTS		

- **A** weighted graph $\Gamma = (V, E, c)$ is composed by:
 - V is a set of elements called vertices.
 - \Box *E* is a set of elements called edges.
 - □ $c: V \times V \longrightarrow [0, \infty)$ is an application named conductance associated to the edges.
- $\square \ u, v \text{ are adjacent, } u \sim v \text{ iff } c(u, v) = c_{uv} \neq 0.$
- $\Box \text{ The degree of a vertex } u \text{ is } d_u = \sum_{v \in V} c_{uv}.$



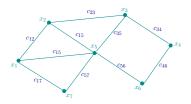
Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices



Consider the set of real-valued functions on V, C(V), where every function on V is a vector in \mathbb{R}^n .

$$\begin{array}{rccc} \mathcal{C}(V) & \longleftrightarrow & \mathbb{R}^n \\ u & \longleftrightarrow & \left[u(x_1), \dots, u(x_n) \right]^T. \end{array}$$

Discrete Potential Theory 00000	The Poisson equation	Previous results	Adding new pendant vertices



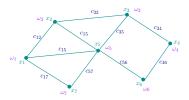
Consider the set of real-valued functions on V, C(V), where every function on V is a vector in \mathbb{R}^n .

$$\begin{array}{rccc} \mathcal{C}(V) & \longleftrightarrow & \mathbb{R}^n \\ u & \longleftrightarrow & \left[u(x_1), \dots, u(x_n) \right]^T. \end{array}$$

The scalar product is

$$\langle u, v \rangle = \sum_{x \in V} u(x)v(x) = uv^T.$$

Discrete Potential Theory 00000	The Poisson equation	Previous results	Adding new pendant vertices



Consider the set of real-valued functions on V, C(V), where every function on V is a vector in \mathbb{R}^n .

$$\begin{array}{rccc} \mathcal{C}(V) & \longleftrightarrow & \mathbb{R}^n \\ u & \longleftrightarrow & [u(x_1), \dots, u(x_n)]^T. \end{array}$$

The scalar product is

$$\langle u, v \rangle = \sum_{x \in V} u(x)v(x) = uv^T.$$

• A weight is a positive function $\omega: V \longrightarrow (0, +\infty)$. The set of weights is denoted by $\Omega(V)$.

Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices 00000000
DEETNITTONS AN			

Any matrix $K \in \mathcal{M}_{n \times n}$ is the kernel of the endomorphism \mathcal{K} of $\mathcal{C}(V)$ that assigns to any $u \in \mathcal{C}(V)$ the function v.

$$\begin{array}{rccc} \mathcal{K}: & \mathcal{C}(V) & \longrightarrow & \mathcal{C}(V) \\ & u & \longrightarrow & \mathcal{K}(u) = Ku = v. \end{array}$$

Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices 00000000

Any matrix $K \in \mathcal{M}_{n \times n}$ is the kernel of the endomorphism \mathcal{K} of $\mathcal{C}(V)$ that assigns to any $u \in \mathcal{C}(V)$ the function v.

$$\begin{array}{rccc} \mathcal{K}: & \mathcal{C}(V) & \longrightarrow & \mathcal{C}(V) \\ & u & \longrightarrow & \mathcal{K}(u) = Ku = v. \end{array}$$

Conversely, each endomorphism \mathcal{K} of $\mathcal{C}(V)$ determines the kernel given by

 $(K)_{x,y} = \langle \mathcal{K}(\epsilon_y), \epsilon_x \rangle$ for any $x, y \in V$.

Discrete Potential Theory 00●000	The Poisson equation	Previous results	Adding new pendant vertices

Any matrix $K \in \mathcal{M}_{n \times n}$ is the kernel of the endomorphism \mathcal{K} of $\mathcal{C}(V)$ that assigns to any $u \in \mathcal{C}(V)$ the function v.

$$\begin{array}{rccc} \mathcal{K}: & \mathcal{C}(V) & \longrightarrow & \mathcal{C}(V) \\ & u & \longrightarrow & \mathcal{K}(u) = Ku = v. \end{array}$$

Conversely, each endomorphism \mathcal{K} of $\mathcal{C}(V)$ determines the kernel given by

 $(K)_{x,y} = \langle \mathcal{K}(\epsilon_y), \epsilon_x \rangle$ for any $x, y \in V$.

Common used operators

 $\begin{array}{ccc} & \mathsf{Operator} & \mathsf{Kernel} \\ \mathsf{Identity} & \mathcal{I} & I \\ \mathsf{Projector} \text{ on } \sigma \text{ along } \tau & \mathcal{P}_{\sigma,\tau}(u) = \langle \tau, u \rangle \sigma & P_{\sigma,\tau} = \sigma \otimes \tau \\ \mathsf{Projector} \text{ on } \omega & \mathcal{P}_{\omega}(u) = \langle \omega, u \rangle \omega & P_{\omega} = \omega \otimes \omega \end{array}$

Discrete Potential Theory	
000000	

Adding new pendant vertices 000000000

LAPLACIAN OPERATOR AND LAPLACIAN MATRIX

 $\square \quad \text{The Laplacian operator } \mathcal{L} \text{ is }$

$$\begin{array}{cccc} \mathcal{C}: & \mathcal{C}(V) & \longrightarrow & \mathcal{C}(V) \\ & u & \longrightarrow & \mathcal{L}(u) = \sum_{x,y \in V} c_{xy}[u(x) - u(y)]. \end{array}$$

The corresponding Laplacian matrix is

$$(L)_{ij} = \begin{cases} d_i & if \quad i = j, \\ -c_{ij} & if \quad i \neq j. \end{cases}$$

- For a simple graph, $c_{ij} = 1$ for any $i, j \in V$ and the applications of its spectrum have been widely studied in Spectral Graph Theory (The Laplacian Spectrum of Graphs, B. Mohar).
- □ The general case has not been so well studied.

DISCRETE POTENTIAL THEORY

Definition

The Schrödinger \mathcal{L}_q operator on a network with potential q is a generalization of the Laplacian operator \mathcal{L} defined as

$$\mathcal{L}_q: \quad \mathcal{C}(V) \longrightarrow \quad \mathcal{C}(V)$$

 $u \longrightarrow \quad \mathcal{L}_q(u) = \mathcal{L}(u) + qu,$

where $qu \in \mathcal{C}(V)$ is defined as qu(x) = q(x)u(x), for all $x \in V$.

D The Schrödinger matrix of a network Γ with potential Q is defined as

$$L_q = L + Q, \quad Q = diag(q_1, \dots, q_n).$$

Observe that \mathcal{L}_q can be also considered as the Laplacian operator of a network with loops of value q_i associated of each vertex.

Discrete Potential Theory 00000●	The Poisson equation	Previous results	Adding new pendant vertices
DISORFTE POTEN	τται τηέωρν		

- **Any Schrödinger operator** \mathcal{L}_q is selfadjoint.
- □ If \mathcal{L}_q is positive definite, then it is invertible and its inverse is called Green's operator.
- However we are interested in those Schrödinger operators \mathcal{L}_q who are positive semi-definite.

Now consider $q_{\omega} = -\frac{1}{\omega}\mathcal{L}(\omega) \in \mathcal{C}(V)$, it is called the potential determined by a weight $\omega \in \Omega(V)$.

Proposition

The Schrödinger operator \mathcal{L}_q with potential q is positive semidefinite iff there exists a weight $\omega \in \Omega(V)$ and a real number $\lambda \geq 0$ such that $q = q_\omega + \lambda$. In this case λ is the lowest eigenvalue and its associated eigenfunctions are multiples of ω .

Discrete Potential Theory 00000●	The Poisson equation	Previous results	Adding new pendant vertices
DISORFTE POTEN	ΤΤΔΙ ΤΗΓΩΡΥ		

- **Any Schrödinger operator** \mathcal{L}_q is selfadjoint.
- □ If \mathcal{L}_q is positive definite, then it is invertible and its inverse is called Green's operator.
- However we are interested in those Schrödinger operators \mathcal{L}_q who are positive semi-definite.

Now consider $q_{\omega} = -\frac{1}{\omega}\mathcal{L}(\omega) \in \mathcal{C}(V)$, it is called the potential determined by a weight $\omega \in \Omega(V)$.

Proposition

The Schrödinger operator \mathcal{L}_q with potential q is positive semidefinite iff there exists a weight $\omega \in \Omega(V)$ and a real number $\lambda \geq 0$ such that $q = q_\omega + \lambda$. In this case λ is the lowest eigenvalue and its associated eigenfunctions are multiples of ω .

THE POISSON EQUATION

Discrete Potential Theory 000000	The Poisson equation	Previous results	Adding new pendant vertices
THE POTSSON FOL	ΙΑΤΤΟΝ		

□ Our goal is to solve the Poisson equation for \mathcal{F} on V with data $f \in V$, that is to find $u \in V$ such that

$$\mathcal{L}_q(u) = f.$$

It \mathcal{L}_q is positive semidefinite, then the operator that assigns to each function $f \in \mathcal{C}(V)$ the unique $u \in \mathcal{C}(V)$ such that

$$\mathcal{L}_q(u) = f - \mathcal{P}_\omega(f),$$

is called orthogonal Green's operator \mathcal{G}_q , and its kernel G_q is called Green's matrix.

Notice that

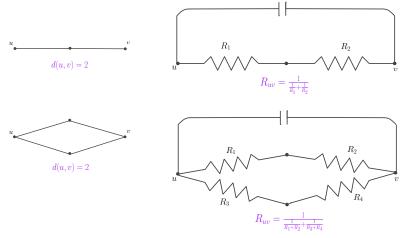
$$\mathcal{G}_q(\omega) = \begin{cases} \frac{1}{\lambda} & \text{if } \lambda \neq 0\\ 0 & \text{if } \lambda = 0. \end{cases}$$

Some applications: by knowing the Green's matrix G_q we can compute the effective resistances and the Kirchhoff index of the weighted graph.

Discrete Potential Theory 000000 The Poisson equation Previous results Adding new pendant vertices 00000000

APPLICATIONS: EFFECTIVE RESISTANCES

Klein and Rándic (93) proposed a distance measure between two vertices of electrical networks called the effective resistance



Green Matrices of Weighted Graphs with Pendant Vertices

MCW XX, Prague 28 July-2 August 12/28

Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices

APPLICATIONS: EFFECTIVE RESISTANCES

■ Bendito, Carmona, Encinas, Gesto (2008) proved that the resistance distance between any pair of vertices $x, y \in V$ can be computed as the solution of the following linear problem

$$\mathcal{L}(u) = \pi_{x,y}$$
 ,

where \mathcal{L} is the Laplacian operator of the weighted graph and $\pi_{x,y} = \varepsilon_x - \varepsilon_y$ is called the dipole between x and y.

Discrete Potential Theory	The Poisson equation ⊙●O	Previous results	Adding new pendant vertices

APPLICATIONS: EFFECTIVE RESISTANCES

■ Bendito, Carmona, Encinas, Gesto (2008) proved that the resistance distance between any pair of vertices $x, y \in V$ can be computed as the solution of the following linear problem

$\mathcal{L}(u) = \pi_{x,y}$,

where \mathcal{L} is the Laplacian operator of the weighted graph and $\pi_{x,y} = \varepsilon_x - \varepsilon_y$ is called the dipole between x and y.

Proposition [Bendito, Carmona, Encinas, Gesto (2009)]

For any $x, y \in V$ it is verified that

$$R_{\lambda,\omega}(x,y) = \frac{(G_q)_{x,x}}{\omega_x^2} + \frac{(G_q)_{y,y}}{\omega_y^2} - \frac{2(G_q)_{x,y}}{\omega_x\omega_y}$$

Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices

APPLICATIONS: KIRCHHOFF INDEX

- Introduced in Chemistry as a better alternative to other parameters for discriminating among different molecules with similar shapes and structures.
- The Kirchhoff index or Total Resistance of the weighted graph is the sum of all the effective resistances between any pair of vertices of the weighted graph.

Corollary [Bendito, Carmona, Encinas, Gesto (2009)]

For any $x, y \in V$ it is verified that

$$k(\lambda, \omega) = trace(G_q) - \begin{cases} \frac{1}{\lambda} & \text{if } \lambda \neq 0\\ 0 & \text{if } \lambda = 0. \end{cases}$$

PREVIOUS RESULTS

Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices
PREVIOUS RESULTS			

The Green matrix has been computed for

- Cluster graphs
- Some composite weighted graphs
- Generalized linear polyominoes
- Join graphs
- Perturbations of an edge

Discrete Potential Theory	
000000	

Adding new pendant vertices 00000000

PERTURBING THE CONDUCTANCE OF AN EDGE

Corollary [Carmona, Encinas, Mitjana]

Consider $\sigma \in \mathcal{C}(V)$, the perturbation of \mathcal{F} by σ and the operator

 $\mathcal{H}_{\sigma}=\mathcal{F}+\mathcal{P}_{\sigma}$

then when
$$\langle \sigma, \omega \rangle = 0$$

$$\mathcal{G}^{\mathcal{H}} = \mathcal{G} - \frac{1}{1 + \langle \mathcal{G}(\sigma), \sigma \rangle} \mathcal{P}_{\mathcal{G}(\sigma)},$$

whereas, when $\langle \sigma, \omega \rangle \neq 0$

$$\mathcal{H}^{-1} = \mathcal{G} - \frac{1}{\beta} \Big[\lambda \mathcal{P}_{\mathcal{G}(\sigma)} - \langle \sigma, \omega \rangle \left(\mathcal{P}_{\mathcal{G}(\sigma), \omega} - \mathcal{P}_{\omega, \mathcal{G}(\sigma)} \right) - \left(1 + \langle \sigma, \omega \rangle \right) \mathcal{P}_{\omega} \Big],$$

where $\beta = \lambda (1 + \langle \mathcal{G}(\sigma), \sigma \rangle) + \langle \sigma, \omega \rangle^2$.

Discrete Potential Theory 000000 The Poisson equation

Previous results

Adding new pendant vertices 00000000

ADDING PENDANT VERTICES

Goal

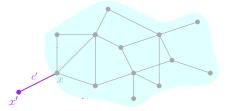
To study the perturbation of the Green matrix of a weighted graph caused by the perturbation due to add a pendant vertex, relating both Green matrices.

ADDING NEW PENDANT VERTICES

Discrete Potential Theory 000000	The Poisson equation	Previous results	Adding new pendant vertices

ADDING ONE PENDANT VERTEX X'

- □ New network: $\Gamma' = (V', E', c')$, $V' = V \cup \{x'\}$, $E' = E \cup \{e_{x,x'}\}$, c' = c'(x, x') > 0
- New weight: $\omega_{x'} \in \Omega(V')$, such that $\omega'_{x_i} = \omega_{x_i}/\sqrt{1+\omega_{x'}^2}$ for any $x_i \in V'$, i = 0, ..., n



It holds
$$\omega'_i / \omega'_j = \omega_i / \omega_j$$
 for any $i, j \in V'$.

ADDING ONE PENDANT VERTEX X'

The Schrödinger operator of Γ' is

$$\mathcal{L}'_q(u) = \mathcal{L}'(u) + q'u,$$

with $q' = q'_{\omega'} + \lambda$ and $q'_{\omega'} = -\frac{1}{\omega'}\mathcal{L}'(\omega') \in \mathcal{C}(V').$

The relation between the kernels of both Schrödinger operators is given by

$$L'_{q'} = \begin{pmatrix} L'_q & -c'\varepsilon_x \\ -c'\varepsilon_x^{\mathsf{T}} & q'_{x,x'} \end{pmatrix},$$

where $L'_q = L_q + c' \frac{\omega_{x'}}{\omega_x} P_{\varepsilon_x}$ is the kernel of the perturbed operator $\mathcal{L}'_q = \mathcal{L}_q + \mathcal{P}_{\sigma_{x,x'}}$, with $\sigma_{x,x'} = \sqrt{c' \frac{\omega_{x'}}{\omega_x}} \varepsilon_x$ and $q'_{x,x'} = c' \frac{\omega_x}{\omega_{x'}} + \lambda \in \mathbb{R}$.

Discrete Potential Theory 000000 The Poisson equation

Previous results

Adding new pendant vertices

ADDING ONE PENDANT VERTEX

Proposition

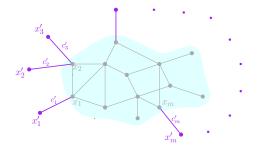
The kernel of $\mathcal{L}'_{q'}^{-1}$ is $(L'_{q'})^{-1} = \begin{pmatrix} H^{-1} & \frac{c'}{q'_{x,x'}} H^{-1} \varepsilon_x \\ \frac{c'}{q'_{x,x'}} \varepsilon_x^{\mathsf{T}} H^{-1} & \frac{1}{q'_{x,x'}} - \frac{c'}{(q'_{x,x'})^2} \varepsilon_x^{\mathsf{T}} H^{-1} \varepsilon_x \end{pmatrix}, \quad (1)$ where H^{-1} is the kernel of the operator $\mathcal{H}^{-1} = \mathcal{G}_{\lambda,\omega} - \frac{1}{\beta} \Big[\lambda \mathcal{P}_{\mathcal{G}_{\lambda,\omega}(\sigma_{x,x'})} - \langle \sigma_{x,x'}, \omega \rangle \left(\mathcal{P}_{\mathcal{G}_{\lambda,\omega}(\sigma_{x,x'}),\omega} - \mathcal{P}_{\omega,\mathcal{G}_{\lambda,\omega}(\sigma_{x,x'})} \right) - (1 + \langle \sigma_{x,x'}, \omega \rangle) \mathcal{P}_{\omega} \Big],$

and
$$\beta = \lambda (1 + \langle \mathcal{G}_{\lambda,\omega}(\sigma_{x,x'}), \sigma_{x,x'} \rangle) + \langle \sigma_{x,x'}, \omega \rangle^2$$

Discrete Potential Theory 000000	The Poisson equation	Previous results	Adding new pendant vertices
ADDING SEVERA	L PENDANT VER	TICES X'_1, \ldots, Z	X'_M

□ New network: $\Gamma' = (V', E', c')$, $V' = V \cup \{x'_1, \dots, x'_m\}$, $E' = E \cup \{e_{x_1, x'_1}, \dots, e_{x_m, x'_m}\}$ and $c'_i = c'(x_i, x'_i) > 0$ for $i = 1, \dots, m$

• New weight: $\omega_{x'} \in \Omega(V')$, such that $\omega'_x = \omega_x / \sqrt{1 + \sum_{i=1}^m \omega_{x'_i}^2}$ for any $x_i \in V'$, i = 0, ..., n



Discrete Potential Theory	The Poisson equation	Previous results	Adding new pendant vertices
			v7/

ADDING SEVERAL PENDANT VERTICES X_1',\ldots,X_M'

- The Schrödinger operator of Γ' is $\mathcal{L}'_q(u) = \mathcal{L}'(u) + q'u$, with $q' = q'_{\omega'} + \lambda$ and $q'_{\omega'} = -\frac{1}{\omega'}\mathcal{L}'(\omega')$.
- The relation between the kernels of both Schrödinger operators is given by

$$L'_{q'} = \left(\begin{array}{cc} L'_q & B\\ B^{\mathsf{T}} & D_{q'} \end{array}\right),$$

where $L'_q = L_q + \sum_{i=1}^m c'_i \frac{\omega_{x'_i}}{\omega_{x_i}} P_{\varepsilon_{x_i}}$, $B = (-c'_{x_1} \varepsilon_{x_1}, \dots, -c'_{x_m} \varepsilon_{x_m})$, and $D_{q'}$ is an invertible diagonal matrix having in the diagonal the potential of the new vertices $q'_{x_i,x'_i} = c'_i \frac{\omega_{x_i}}{\omega_{x'_i}} + \lambda \neq 0$.

Previous results

Adding new pendant vertices

ADDING SEVERAL PENDANT VERTICES

Proposition

The kernel of $(\mathcal{L}'_{q'})^{-1}$ is

$$(L'_{q'})^{-1} = \left(\begin{array}{cc} H^{-1} & -H^{-1}BD^{-1} \\ -D^{-1}B^{\mathsf{T}}H^{-1} & D^{-1} + D^{-1}B^{\mathsf{T}}H^{-1}BD^{-1} \end{array} \right) + C^{-1}B^{\mathsf{T}}H^{-1}BD^{-1} = 0$$

where H^{-1} is the kernel of the operator

$$\mathcal{H}^{-1} = \mathcal{G} + \alpha \mathcal{P}_{\omega} + \sum_{i=1}^{m} \beta_i [\mathcal{P}_{\mathcal{G}(\sigma_i),\omega} - \mathcal{P}_{\omega,\mathcal{G}(\sigma_i)}] - \sum_{i,j=1}^{m} \gamma_{ij} \mathcal{P}_{\mathcal{G}(\sigma_i),\mathcal{G}(\sigma_j)},$$

and
$$(b_{ij}) = (I + \langle \mathcal{G}(\sigma_j), \sigma_i \rangle)^{-1}, \alpha = \left(\lambda + \sum_{r,s} b_{r,s} \langle \mathcal{G}(\sigma_j), \sigma_i \rangle \langle \sigma_s, \omega \rangle\right)^{-1},$$

 $\beta_i = \alpha \sum_{r=1}^m b_{ir} \langle \sigma_r, \omega \rangle$ and $\gamma_{ij} = b_{ij} - \alpha \left(\sum_{r=1}^m b_{ir} \langle \sigma_r, \omega \rangle\right) \left(\sum_{r=1}^m b_{jr} \langle \sigma_r, \omega \rangle\right).$

Discrete Potential Theory 000000	The Poisson equation	Previous results	Adding new pendant vertices

Green matrix of a Star graph S_n

We compute the Green matrix of a Star graph S_n with constant weight $\omega = \frac{1}{\sqrt{n}}j$ by adding n-2 pendant vertices to a S_2 .

Starting from
$$L_{\lambda,2} = \begin{pmatrix} 1+\lambda & -1\\ -1 & 1+\lambda \end{pmatrix}$$
, $B = \begin{pmatrix} -j_{n-2}\\ 0_{n-2} \end{pmatrix}$,

$$H = \begin{pmatrix} \frac{\lambda^2 + n\lambda + 1}{\lambda + 1} & -1\\ -1 & 1 + \lambda \end{pmatrix} \Rightarrow H^{-1} = \begin{pmatrix} \frac{1+\lambda}{\lambda^2 + n\lambda} & \frac{1}{\lambda^2 + n\lambda}\\ \frac{1}{\lambda^2 + n\lambda} & \frac{\lambda^2 + n\lambda + 1}{(\lambda + 1)(\lambda^2 + n\lambda)} \end{pmatrix}.$$

$$G_{\lambda,n} = \begin{pmatrix} \frac{n-1}{n(\lambda+n)} & \frac{-1}{n(\lambda+n)} & \cdots & \frac{-1}{n(\lambda+n)} \\ \frac{-1}{n(\lambda+n)} & \frac{(n-1)\lambda+(n^2-n-1)}{n(\lambda+1)(\lambda+n)} & \cdots & -\frac{\lambda+n+1}{n(\lambda+n)(\lambda+1)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{-1}{n(\lambda+n)} & -\frac{\lambda+n+1}{n(\lambda+n)(\lambda+1)} & \cdots & \frac{(n-1)\lambda+(n^2-n-1)}{n(\lambda+1)(\lambda+n)} \end{pmatrix}$$

Discrete Potential Theory	
000000	

Previous results

Adding new pendant vertices 00000000

TO KNOW MORE ABOUT THIS TOPIC

Advanced Course on Combinatorial Matrix Theory

Date: February 2015

Location: Centre de Recerca Matemàtica (CRM), Barcelona

Discrete Potential Theory	
000000	

The Poisson equation

Previous results

Adding new pendant vertices

Thanks for your attention Děkuji za pozornost

Gracias por su atención