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Abstract

This paper deals with the question of completing a monotone increasing family of
subsets I' of a finite set 2 to obtain the linearly dependent subsets of a family of
vectors of a vector space. Specifically, we demonstrate that such vectorial comple-
tions of the family of subsets I' exist and, in addition, we show that the minimal
vectorial completions of the family I'" provide a decomposition of the clutter A of the
inclusion-minimal elements of I'. The computation of such vectorial decomposition
of clutters is also discussed in some cases.
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1 Introduction

A monotone increasing family of subsets I' of a finite set 2 is a collection of
subsets of €2 such that any superset of a set in the family I' must be in I'. All
the inclusion-minimal elements of I determine a clutter A, that is, a collection

1 Research supported by the Ministerio de Educacién y Ciencia (Spain) and the European
Regional Development Fund under project MTM2011-28800-C02-01.
2 Email: jaume.marti@ma4.upc.edu



of subsets of €2 none of which is a proper subset of another. Clutters are also
known as antichains, Sperner systems or simple hypergraphs.

A wide variety of examples of monotone increasing families exist, among
which we find the collection of the linearly dependent subsets of vectors in a
vector space. We say that a clutter A is LD-vectorial if its elements are the
inclusion-minimal linearly dependent subsets of an indexed family of vectors
of a vector space. In other words, the LD-vectorial clutters are exactely those
corresponding to the set of circuits of representable matroids.

In some cases it is convenient to use clutters that are either LD-vectorial
or are closed to be LD-vectorial. Examples of this situation can be found in
the context of secret-sharing schemes [3,5], or in the framework of algebraic
combinatorics and commutative algebra [1,6]. For instance, in the context
of secret-sharing schemes, the LD-vectorial clutters become a crucial issue
for providing general bounds on the optimal information rate of the scheme,
while in the framework of algebraic combinatorics and commutative algebra,
they are useful for controlling certain arithmetic properties of either monomial
ideals or the face rings of simplicial complexes.

In general, a clutter is far from being LD-vectorial. Therefore it is of inter-
est to determine how it can be transformed into an LD-vectorial clutter. This
paper deals with this issue; that is, with the question of finding LD-vectorial
completions of a clutter. Specifically, the goal of this paper is to prove that
these completions exist and that the minimal ones provide a decomposition of
the clutter.

The outline of the paper is as follows. In Section 2 we recall some def-
initions and basic facts about clutters and present the problem of the LD-
vectorial completion of a clutter. Our main results are gathered in Section 3;
namely, we present two theorems concerning LD-vectorial decomposition of
clutters (Theorem 3.1 and Theorem 3.2). Finally, Section 4 is devoted to
analyzing the computation of such decompositions (Proposition 4.1). Due to
limitations of space, the proofs are omitted.

2 LD-vectorial clutters and LD-vectorial completions

In this section we present the definitions and basic facts concerning families
of subsets, clutters and LD-vectorial clutters that are used in the paper.

Let €2 be a finite set. A family of subsets I' of €2 is monotone increasing if
any superset of a set in I' must be in I'; that is, if A€ I"and A C A" C Q,
then A" € I'. A clutter of € is a collection of subsets A of 2, none of which is
a proper subset of another; that is, if A, A’ € A and A C A’ then A = A"



Observe that if ' is a monotone increasing family of subsets of €2, then
the collection min(I") of its inclusion-minimal elements is a clutter; while if
A is a clutter on Q, then the family AT = {A C Q : Ay C A for some
Ay € A} is a monotone increasing family of subsets. Clearly I' = (min(I"))™*
and A = min (A"). So a monotone increasing family of subsets I is determined
uniquely by the clutter min(I'), while a clutter A is determined uniquely by
the monotone increasing family A*.

Let Ay, Ay be two clutters on . It is clear that if A; C Ay then A} C AJ.
However, the converse is not true; that is, there exist clutters with Ay € A,
and A} C AJ. For instance, on the finite set Q = {1,2, 3}, let us consider the
clutters Ay = {{1,2}, {2,3}} and Ay = {{1},{2,3}}. Then Ay € A,, while
A7 = ({12}, {2.31,11,2,3}} C ({1}, {1,2}, {1,3},{2,3} {1,2,3}} = A}.

This fact leads us to consider a binary relation < defined on the set of
clutters on 2. Namely, if A; and Ay are two clutters on €2, then we say that
Ay < Ay if and only if A7 C AJ. The following lemma will be used several
times throughout the paper.

Lemma 2.1 Let Q be a finite set. The following statements hold:

(1) If A1, Ay are two clutters on S then, Ay < Ay if and only if for all A; € Ay
there exists Ay € Ay such that Ay C A;.

(ii) The binary relation < is a partial order on the set of clutters of Q.

There are many interesting families of clutters that can be considered.
However, because of their applications, we are interested in those clutters
that are LD-vectorial.

Let Q = {x1,...,x,} be a finite set of n elements. A monotone increasing
family I' of subsets of €2 is said to be an LD-vectorial family if there exists an
indexed family of vectors vy,. .., v, of a K-vector space (that can be v; = v;)
such that {x;,,...,z; } € I' if and only if {v;,,...,v; } is a linearly dependent
set of vectors. A clutter A on  is said to be an LD-vectorial clutter if the
monotone increasing family A1 is an LD-vectorial family.

In other words, a monotone increasing family of subsets I' is LD-vectorial
if I is the family of the dependent sets of a representable matroid M with
ground set €2; whereas a clutter A is LD-vectorial if the clutter A is the set
of circuits of a representable matroid M with ground set 2. (The reader
is referred to [4,7] for general references on matroid theory). Observe that
since the binary relation < is a partial order on the set of clutters of €, it is
also a partial order on the set of LD-vectorial clutters, and therefore < is a
partial order on the set of representable matroids. In matroid theory, this is



equivalent to the weak order (see [4, Proposition 7.3.11]).

There are clutters on a finite set {2 that are not LD-vectorial (in fact, there
are matroids that are not representable matroids). So, a natural question that
arises at this point is to determine how to complete a clutter A to obtain
an LD-vectorial clutter. In order to look for LD-vectorial completions, it is
important to take into account the binary relation < rather than the inclusion
C. This is due to the fact that, as the following example shows, there exist
clutters A such that A € A’ for any LD-vectorial clutter A’.

Example 2.2 Let us consider the clutter A = {{1,2},{1,3},{2,3,4}} on the
finite set Q = {1,2,3,4}. Observe that ({1,2} U {1,3}) \ {1} = {2,3} C
{2,3,4}. Hence it follows that A is not an LD-vectorial clutter and, moreover,
A Z A for any LD-vectorial clutter A’. However, we have that A < A’, where
A’ is the LD-vectorial clutter A’ = {{1},{2,3,4}} (an LD-vectorial realization
of A’ is given by the set of vectors {v,vs,v3,v4} where v; = (0,0,0), v =
(1,0,0), v3 = (0,1,0) and vs = (0,0,1)). Futhermore, if A” is the clutter on
Q defined by A” = {{1,2},{1,3},{2,3}}, then we have that A < A” and that
the clutter A” is also an LD-vectorial clutter (an LD-vectorial realization of A”
is given by the set of vectors {wy, wq, w3, ws} where wy = (1,1), wy = (1,1),
ws = (1,1) and wy = (0,1)). Notice that now the clutter A can be obtained
from the LD-vectorial clutters A’ and A”. Indeed, it is easy to check that
A = min {A’UA” where A’ € A" and A” € A”}. Therefore, the clutters A’ and
A" in some way provide a decomposition of A.

The above example leads us to the following definition. Let A be a clutter
on a finite set . An LD-vectorial completion of the clutter A is an LD-
vectorial clutter A’ on the finite set 2 such that A < A’.

The set of all the LD-vectorial completions of a clutter A is denoted by
LD-Vect(A). Observe that if ) € A, then A = {0}, and thus LD-Vect(A) = ().
So, from now on, throughout the paper we assume that # € A if A is a clutter.
As shown in the next section, this assumption guarantees that LD-Vect(A) # ()
for all clutters and, in addition, we demonstrate that suitable clutters in the
non-empty set LD-Vect(A) provide a decomposition of the clutter A in the
same way as in Example 2.2.

3 Two results on LD-vectorial decompositions

The aim of this section is to present two theoretical results concerning the
“decomposition” of a clutter A into LD-vectorial clutters Aq,...,A,, (Theo-
rem 3.1 and Theorem 3.2). The general case is considered in the first theorem,



while the second deals with those “decompositions” of A whose LD-vectorial
components Aq, ..., A, admit vectorial realizations over a fixed field K.

Let A be a clutter on a finite set 2. Our first result, Theorem 3.1, states
that the set LD-Vect (A) of its LD-vectorial completions is a non-empty set
and that its minimal elements provide a decomposition of A (in the sense that
the elements A of the clutter A can be obtained from the elements A; of its
minimal LD-vectorial completions Aj, ..., A;).

Theorem 3.1 Let A be a clutter on a finite set Q. Then, LD-Vect(A) # 0
and A =min{A; U...UA, where A; € \;} where Ay, ..., A, are the minimal
elements of the poset (LD-Vect(A), <) of the LD-vectorial completions of A.
In particular, the clutter A has a unique minimal LD-vectorial completion if,
and only if, A is an LD-vectorial clutter.

Observe that the previous theorem, Theorem 3.1, deals with LD-vectorial
completions and decompositions in the case where no field restrictions are
assumed. The next theorem, Theorem 3.2, states that a similar result occurs
if we consider only the case in which the vector spaces of the LD-vectorial
completions are over a fixed field K. Before stating the theorem, we introduce
some notations.

Let A be a clutter on a finite set {2 and let K be a field. Let us denote by
LD-Vect x(A) the set whose elements are the LD-vectorial completions of A
over K; that is, the elements of LD-Vect x(A) are the LD-vectorial clutters A’
over K with A < A’. Therefore, LD-Vect (A) = [Ji LD-Vect x (A).

The next theorem states that the set LD-Vect g (A) is a non-empty set and
that its minimal elements provides a decomposition of the clutter A (in the
sense that the elements of A can be obtained from the elements of its minimal
LD-vectorial completions over K).

Theorem 3.2 Let A be a clutter on a finite set 2 and let K be a field. Then,
LD-Vectg(A) # 0 and A = min {A;U...UA, where A; € \;} where Ay, ... A,
are the minimal elements of the poset (LD-Vectx(A), < ). In particular, the
clutter A has a unique minimal LD-vectorial completion over K if, and only
if, A is an LD-vectorial clutter over K.

4 Computing LD-vectorial decompositions

This section is devoted to the computation of the LD-vectorial decomposition
of clutters. First we present a partial result (Proposition 4.1). After this, sev-
eral examples are given in order to illustrate this proposition (Example 4.2 and



Example 4.3). Finally, an example where the proposition cannot be applied
is analyzed (Example 4.4).

Our result, Proposition 4.1, provides a complete description of the minimal
LD-vectorial completion of a clutter A on a finite set ) of size at most seven.
In order to state this proposition, we need to introduce two transformations
of clutters, the I-transformation and the T -transformation (see [2]).

Let A be a clutter on a finite set ). For a subset X C , we denote
by I5(X) the intersection of the subsets A in A contained in X, that is,
I\(X) =()4 A where A € A and A C X, (this intersection is the one involved
in the characterization of the set of circuits in connected matroids, see [4,
Theorem 4.3.2]). We say that a clutter A’ is an I-transformation of the clutter
Aif A" = min (AU{A; N As}) where Ay, Ay € A are two different subsets with
IA(A; U Ag) # 0.

The definition of T -transformation is more involved. Let A be a clutter.
We define the elementary transformations 7 (A) and 7@ (A) of the clutter
A as the clutters TW(A) = min (A U {(A; U Ay) \ {7}, where A}, Ay € A are
different and z € A1 N AQ}) and 7’(2) (A) = min (A U {(Al U AQ) \ ]A(Al U Ag),
where A;, Ay € A are different}). Since TW(A) and TP (A) are clutters,
we can apply the elementary transformations again. Hence, for (ij, i) €
{1,2} x {1,2} we can consider the clutter 7@ (T (A)). At this point we
proceed in a recursive way. Let r > 2 be a non-negative integer and let
(i1,...,i,) € {1,2}" be an r-tuple. Then we define the clutter 7¢1-)(A) by
the recursion formula T i) (A) = T ) (TGir-1)(A)); that is, T (A)
is the i, elementary transformation of 7 (t+~r-1)(A). We say that a clutter
A is a T -transformation of the clutter A if it is obtained from A in this way,
that is, if A’ = 7 i) (A) for some r-tuple (iy, ... ,4,).

Proposition 4.1 Let A be a non-LD-vectorial clutter on a finite set Q0 of
size | =n < 7. Let A" be a clutter such that A < A'. Then the following
statements hold:

(i) The clutter A" is an LD-vectorial completion of A if, and only if, A’ is the
unique clutter which can be obtained from A’ by applying I-transformations
or T -transformations.

(ii) If the clutter A' is a minimal element of the poset (LD-Vect(A), < ),
then there is a monotone increasing sequence of clutters A = Ay < Ay <
... < N, = N such that for i > 1, either A\; is an I-transformation of
A1, or A; is a T-transformation of A;_1.

We now give two examples to illustrate the above proposition.



Example 4.2 First, let us consider the clutter A = {{1,2}, {1,3},{2,3,4}}
on the finite set 2 = {1,2,3,4}. In this case only two clutters are obtained
by using or by combining [-transformations and 7 -transformations; namely,
the clutters Ay = {{1},{2,3,4}} and Ay = {{1,2},{1,3},{2,3}}. Therefore,
from Proposition 4.1 it follows that the minimal LD-vectorial completions of
the clutter A are the minimal elements of {A;, Ao}, In this case, A} £ Ay and
Ay £ Ay, and so min (LD-Vect (A)) = {A1,A2}. Observe that now the LD-
vectorial decomposition of A given in Example 2.2 can be stated by applying
Theorem 3.1.

Example 4.3 Now, on the finite set Q = {1,2,3,4,5}, we consider the clutter
A ={{1,2,3},{1,2,4},{1,5},{4,5}}. In such a case, it is a straightforward
calculation to check that by using or by combining I-transformations and 7 -
transformations, eleven clutters Ay, ..., A;; can be obtained. Specifically, by
using only /-transformations we obtain the clutters Ay = {{5},{1,2}} and
Ay = {{1},{4,5}}. The clutters obtained by using only 7T -transformations
are the clutters Ay = {{1,4},{1,5},{4,5},{1,2,3},{2,3,4},{2,3,5}} and
Ay ={{1,3},{1,4},{1,5},{3,4},{3,5},{4,5}}, whereas the clutters obtained
by combining the I-transformations and the 7 -transformations are the clutters
As = {{1}7 {5}}7 Ne = {{1}7 {27 4}7 {27 5}7 {47 5}}7 A7 = {{5}7 {17 2}7 {17 4}7
{27 4}}7 A8 - {{17 2}7 {17 4}7 {17 5}7 {27 4}7 {27 5}7 {47 5}}7 A9 - {{5}7 {17 27 3}7
{1,2,4},{1,3,4},{2,3,4}}, Ao = {{5},{3,4},{1,2,3},{1,2,4}}, and Ay; =
{{4},{1,5},{1,2,3},{2,3,5}}. Therefore, by applying Proposition 4.1 we ob-
tain that the set of the minimal LD-vectorial completions of the clutter A
is min (LD-Vect (A)) = min{Ay, ..., A1} = {A1, A2, A3, Ag}. So, from Theo-
rem 3.1 we conclude that A admits an LD-vectorial decomposition with four
components.

To conclude we give an example where Proposition 4.1 cannot be applied.
In addition, the clutter in this example reveals the difference between Theo-
rem 3.1 and Theorem 3.2.

Example 4.4 On the finite set Q = {1,2,3,4} of four points, we consider the
clutter A = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}. It is easy to prove that the
clutter A is an LD-vectorial clutter over any field K # Z/(2). Therefore, by ap-
plying Theorem 3.1 and Theorem 3.2 we obtain that min (LD-Vect (A)) = {A};
that min (LD-Vectg (A)) = {A} if K # Z/(2), and that min (LD-Vectz/ ) (A))
has at least two elements. In this example, by an extensive exploration it
is not hard to show that min (LD-Vectz; ) (A)) has six elements; namely
min (LD—Veth/(g) (A)) = {A1’2,A1,3,A1’4,A2’3,A274,A374}, where if 1 S il <
7:2 S 4 and if {’L.3,Z.4} = {172,3,4} \ {Z.l,Z.Q}, then Ai17i2 = {{il,ig}7 {’il,’i3,l.4},



{i2,43,14}}. Now, from Theorem 3.2 it follows that the clutter A admits an
LD-vectorial decomposition over Z/(2) with six components.
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