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Marine-friendly Antifouling Coating Based on the Use of  
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This study was devoted to examining the application of copper dodecanoate as a non-contaminant 
antifouling pigment due to its low copper content and fatty acid nature. For this purpose, antifouling 
paints with mono-component epoxy resin and rosin matrixes were formulated, and their antifouling 
efficiency was evaluated. Before its incorporation into the different formulations, the synthesized 
pigment was characterized. Immersion tests in a marine environment were carried out for 12 months 
to evaluate the antifouling efficiency of the developed paints; the results were compared with those 
from a commercial paint. The antifouling efficiency of the new epoxy formulation was found to be 
considerably higher than that of the rosin formulation and very similar to that of the commercial paint. 
Most importantly, the release of copper from the epoxy paint formulated with copper dodecanoate was 
73.5% lower than that of the commercial paint, suggesting prolonged activity of the developed paint.
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1.	 Introduction
All structures immersed in a marine environment are 

subject to the deposition of several organisms such as 
barnacles, mussels, algae and others. Marine fouling is 
the result of the growth of these plants and animals on the 
surface of submerged objects1. The presence of fouling has 
a great impact on the naval industry due to the negative 
influence on the performance, durability and maintenance of 
mobile or stationary submerged structures2-4. Arai5 estimated 
that fuel consumption increases by around 6% per 100 mm 
of average roughness caused by fouling attached to ship 
surfaces. Other relevant factors are the risk of localized 
corrosion due to the metabolic activity of the attached 
organisms and the obstruction of turbines in hydroelectric 
plants6.

Since the beginning of the history of navigation, many 
materials have been used in order to minimize the fouling 
problem. However, the development of antifouling paints 
began only in the mid of 1800s7. Currently, the use of 
antifouling paints is the most economical and satisfactory 
method to protect submerged structures8. Generally, 
antifouling paints contain biocide pigments against the 
fouling organisms in their formulation. However, the release 
mechanism of these pigments can vary with the type of paint 
matrix. There are three types of matrix: insoluble, soluble 
and self-polishing9.

In the past, toxic biocide pigments such as arsenic and 
mercury compounds were incorporated into antifouling 

coatings. In recent decades, the most commonly used 
antifouling agents have contained the tributyltin (TBT) 
moiety, which combined with the new technology of 
self-polishing resins has shown excellent performance 
against fouling4,10,11. However, these pigments have caused 
disastrous effects to the environment, as TBT is considered 
one of the most toxic compounds released into the aquatic 
environment12,13. The first effects of TBT were documented 
in the late 1970s in France. The extreme toxicity of 
TBT affected the growth of oysters and other mollusks 
at concentrations of 20 ng L–1 and less than 10  ng L–1, 
respectively14. At the present time, TBT and other tin-based 
antifouling agents are banned by the International Marine 
Organization (IMO)15.

TBT-free formulations, in which tin is replaced by 
metals like copper5,8,16, zinc17 and titanium18, are in use 
today. Although copper is essential for all forms of life due 
to cellular processes, it is considered toxic when tolerance 
limits are exceeded19. Copper has excellent antifouling 
properties against barnacles and algae, even though 
some species are resistant to this metal20. Together with 
copper, other toxic biocides such as copper thiocyanate, 
zinc pyrithione, Diuron® (3-(3’,4’-dichlorophenyl)-1,1-
dimethylurea) and Irgarol® 1051 (2-(tert-butylamino)-4-
cyclopropylamino)-6-(methylthio)-1,3,5-triazine) are used 
to increase the efficiency of antifouling coatings20.

A fatty acid (FA) is a carboxylic acid with a long 
aliphatic chain (between 10 and 28 carbon atoms), which *e-mail: rafael.s.peres@gmail.com



2014; 17(3) 721Marine-friendly Antifouling Coating Based on the Use of a Fatty Acid Derivative as a Pigment

is either saturated or unsaturated21. The bioactivities of FAs 
from a wide range of biological sources, including algae, 
animals and plants have been reported in the literature. 
According to a recent review by Desbois et al.21, anti-algal, 
antibacterial, anti-fungal, anti-protozoan and other activities 
have been attributed to many FAs. Dodecanoic acid or 
lauric acid is a saturated fatty acid (C12:0) that occurs 
as a major compound in coconut oil, palm kernel oil and 
cinnamon oil22,23. Glycerides rich in lauric acid are used 
in the food and chemical industries for the production of 
flavorings and surfactants, respectively23. Wu et al.24 have 
demonstrated the anti-algal properties of dodecanoic acid, 
while Bergsson  et  al.25,26 have reported antibacterial and 
anti-fungal properties.

The aim of this study was to evaluate the efficiency of the 
use of copper dodecanoate as a low copper content and fatty 
acid derivative antifouling pigment. For this purpose, the 
compound was synthesized and characterized. Subsequently, 
antifouling paints were formulated using a synthetic epoxy 
resin and rosin, a natural resin. The antifouling efficiency 
of the copper dodecanoate-containing paints was compared 
with that of commercially available coatings. Furthermore, 
the influence of the antifouling pigment concentration on 
such efficiency was examined. Finally, the environmental 
advantages of the formulated paints were investigated by 
evaluating the release of copper.

2.	 Experimental Procedure

2.1.	 Materials

The synthesis of copper dodecanoate was carried out 
using dodecanoic acid (Across, USA), CuSO4·5H2O (Vetec, 
Brazil), NaOH (Synth, Brazil) and ethanol (Vetec, Brazil). 
The materials used for the rosin solubility and copper 
release tests were NaCl, NaOH, MgCl2·6H2O, SrCl2·6H2O, 
NaHCO3, H3BO3, NaF (all from Vetec, Brazil), Na2SO4, 
CaCl2, KCl and KBr (all from Synth, Brazil). All solutions 
were prepared with analytical grade reagents.

Coatings were prepared using methyl ethyl ketone 
(MBN chemicals, Brazil) as the solvent, TiO2 and chalk 
(Polimerum, Brazil) as pigments, disperbyk-2070 as 
the dispersing agent, BYK-410 (BYK-Chemie GmbH, 
Germany) as a rheological additive, mono-component epoxy 
resin solution Araldite GZ 488N40 BR-1 (Aralsul, Brazil) 
and WW rosin (RB Sul, Brazil).

The commercial antifouling coating Intermarine 
(Akzo Nobel, USA) was used as a reference to control 
the antifouling activity and the two-component epoxy 
primer Intergard 269 (Akzo Nobel, USA) was used as an 
anticorrosive primer.

2.2.	 Copper dodecanoate pigment preparation 
and characterization

The synthetic procedure reported by Lisboa et al.27 was 
used for the synthesis of copper dodecanoate, with some 
modifications. A quantity of 20 g of dodecanoic acid was 
dissolved in 120 mL of ethanol and then neutralized with 
4 g of NaOH (previously dissolved in 100 mL of ethanol). 
After precipitation, the solid was placed in a funnel with 

filter paper and washed with 100 mL of ethanol. The solid 
was dried and then dissolved in 100 mL of deionized water. 
After total dissolution, 100 mL of a 12.5% (w/v) solution 
of CuSO4·5H2O was slowly added with vigorous stirring. 
After the addition, the reaction was stirred for three hours. 
At the end of the reaction, the solid was filtered in a Büchner 
funnel and dried for 12 hours at 60°C. A light blue pigment 
was obtained.

The synthesized pigment was characterized by FTIR 
spectroscopy, thermal analysis and X-ray diffraction 
(XRD). The FTIR spectrum was recorded using a Perkin 
Elmer Spectrum 1000 spectrometer with KBr pellets. 
Thermal properties were examined by differential scanning 
calorimetry (DSC, TA instruments DSC 2010 Q20) 
and thermogravimetric analysis (TGA, TA Instruments 
TGA 2050). DSC experiments were carried out using 
approximately 5 mg samples heated in flowing nitrogen 
or air (flow rate 50 mL/min) at a heating rate of 10°C/min. 
TGA analyses were performed with approximately 20 mg 
of samples heated at a scan rate of 20°C/min in a nitrogen 
atmosphere. XRD analyses were performed with a Bruker 
D8 Advance diffractometer using Cu Kα radiation. A step 
size of 0.02° was used to create X-ray patterns to identify 
the material at a 2θ angle (2°-30°).

2.3.	 Rosin solubility and copper release tests

In order to evaluate the dissolution rates (µg.cm–2.day–1) 
of the rosin and the copper release rate, a jar test system was 
set up and adapted. Polyvinyl chloride tubes with a diameter 
and delimited area of 6 cm and 157 cm2, respectively, were 
used in the test. The polyvinyl chloride tube surface was 
prepared by grinding with silicon carbide paper (grade 
number 150), followed by immersion in methyl ethyl ketone 
for 15 minutes and drying. After surface preparation, the 
polyvinyl chloride tubes were painted.

Artificial seawater (ASW) was prepared according to 
standard ASTM D1141-9828 in six jar-test (Milan, Brazil) 
glass beakers (1 L each). The painted polyvinyl chloride 
tubes were fitted in the jar-test shaft and immersed in ASW. 
The rotation speed of the shaft was set at 60 rpm29. The glass 
beakers were covered with a sealing film (Parafilm, USA) 
to avoid contamination.

For the calculation of the rosin dissolution rate, 
polyvinyl chloride tubes were removed from the ASW, 
rinsed with deionized water and dried in a vacuum oven 
(60°C) until a constant weight. The rosin dissolution rate 
was calculated by a gravimetric method.

The amount of copper (mg L–1) released in the ASW 
was determined by flame atomic absorption spectrometry 
(FAAS) using an absorption spectrometer (CHAMA 3300, 
Perkin Elmer, USA). All glassware was immersed in 
10% (v/v) nitric acid for 24 h and rinsed three times with 
deionized water before use.

2.4.	 Preparation and composition of the coatings

All paints were prepared using a Dispermat N1 (VMA-
Getzmann GMBH of Reichshof, Germany) disperser with 
a Cowles disk and jacketed reactor. Initially, the resin, 
additives and approximately 70 mL of MEK were added 
into the reactor. The mixture was dispersed for 10 minutes to 
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homogenize before pigment addition. The resulting coating 
was dispersed at 3000 rpm for 1 hour. After dispersion of the 
coating, pigments were milled using a Dispermat SL-12 ball 
mill (VMA- Getzmann GMBH of Reichshof, Germany). The 
solvent was also added during this process. The size of the 
particles in the dispersed paint, evaluated according to the 
fineness of the grind gauge, was between 6 and 7 Hegman 
(25-15 µm). Finally, the solvent was added to reach the 
desired viscosity.

Three coatings (hereafter denoted EP
1
, EP

2
 and RO

1
) 

were formulated with two different binders (epoxy and 
rosin, respectively). The composition of each coating is 
detailed in Table 1. The epoxy resin used for EP

1
 and EP

2
 

was previously employed to formulate other antifouling 
coatings30. This epoxy resin becomes porous in a marine 
environment, improving contact between water and the 
pigment30.

The pigment volume concentration (PVC) of the 
formulated antifouling paint was kept between 38 and 
42 vol.%; this value typically varied between 30 and 
45 vol.%31,32. Thus, the PVC must be high enough to create 
a porous network to increase the antifouling efficiency31. It 
should be noted that, if the PVC is lower than 30 vol.%, the 
polishing rate becomes too slow31,32.

2.5.	 Steel panel preparation

AISI 1010 steel panels (25 cm × 20 cm × 1 mm) were 
previously degreased with acetone, polished with sandpaper 
(grain size #150), rinsed with deionized water and degreased 
again. After surface preparation, the two sides of each 
panel were painted with one layer (thickness: 41 ± 3 µm) 
of anticorrosive primer.

The commercial and formulated antifouling coatings 
were applied on one side of the panel and edges. All panels 
were painted with a brush. The film thickness was measured 
with a Byko-7500 test unit (BYK Gardner, Germany). 
Measurements were repeated eight times in different areas 
of the sample and the mean and standard deviation were 
calculated. The average thickness of the commercial, EP

1
, 

EP
2
 and RO

1
 antifouling coatings are shown in Table 2.

2.6.	 Assays in a natural marine environment

Painted panels were immersed in an open channel of 
the Tramandaí River (29°58’35.37’’5S, 50°07’25.51’’W) 
leading to the Atlantic Ocean (approximately 400 m from the 
ocean) in Brazil. This environment presents great variation 
in the salinity, pH and temperature of the water according to 
the season. Furthermore, salinity also varies daily33 around 
2.5 wt.% NaCl.

Before immersion, painted panels were fixed with 
nylon straps on a polyvinyl chloride support. Blank panels 
(anticorrosive primer only) were used as the control 
and immersed under the same conditions. According to 
standard ASTM D362334 and Bellotti et al.17, the support 
was immersed approximately 60 cm deep. The degree 
of fouling attachment was evaluated every month and 
distances less than 1.3 cm from the edge of samples were not 
considered17,34. The antifouling efficiency of the coating was 
carried out according to the fouling coverage area. A value 
of 100% means complete coverage of the panel by fouling 
and 0% means the absence of fouling on the entire panel35.

3.	 Results and Discussion

3.1.	 Pigment characterization

The FTIR spectra of dodecanoic acid and the prepared 
copper dodecanoate pigment are shown in Figure 1. For 
dodecanoic acid (Figure 1a), absorption bands at 2918 and 
2853 cm–1 were attributed to C–H stretching vibrations 
while the bands at 1702 and 940 cm–1 were assigned to 
the C=O stretching and OH-deformation of the carboxyl 
moiety, respectively36,37. The CH2 bending deformation at 
721 cm–1, which is characteristic of the saturated chain in 
fatty acids27, appears in the two spectra. Figure 1b shows 
two new absorption bands at 1445 and 1586 cm–1 (symmetric 
and asymmetric COO–, respectively), which reflect the 
interaction between copper ions and carboxylate groups36.

The X-ray diffractogram of copper dodecanoate is 
displayed in Figure 2. The region between a 2θ angle of 2° 
and 15° shows reflections of the (001) plane (i.e. up to fourth-
order), indicating the existence of a lamellar structure36. 
The XRD diffraction pattern is fully consistent with those 
reported for metal dodecanoates27,36.

Figures 3a and 3b show the thermogravimetric curves 
of dodecanoic acid and copper dodecanoate, respectively. 
Dodecanoic acid presented one decomposition decay, which 
begins at around 150°C. After the weight loss process, 
the residual material detected at 600°C was practically 
non-existent. The thermogravimetric curve of copper 
dodecanoate indicates that the weight loss process started 
at approximately 210°C. The DTGA curves indicate that 
the decomposition involved two peaks whose maximum 
rates occurred at 287°C and 326°C. At 400°C, metallic 

Table 1. Coating compositions.

Coating Components Vol.% PVC (%)

EP
1

Epoxy resin 35.20

42
Copper dodecanoate 29.48

Additivesa 5.82

MEKb 29.40

EP
2

Epoxy resin 36.80

38

Copper dodecanoate 6.10

TiO2 + chalk 19.40

Additivesa 6.00

MEKb 30.60

RO
1

Rosin 28.80

41Copper dodecanoate 20.30

MEKb 50.80
a10% BYK 410 and 90% Disperbyk 2070 (w/w). bInitial amount of solvent 
used in the dispersion and grinding of pigments.

Table 2. Paints used on steel panels and dry film thickness.

Coating Thickness (µm)

Anticorrosive primer (blank) 41 ± 3
Commercial 229 ± 13

EP
1

268 ± 15

EP
2

248 ± 17

RO
1

258 ± 18
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copper was the main residue of the char. At 800°C, the 
residual material, which corresponds to metallic copper, 
was approximately 19% of the initial weigh, corroborating 
the formation of the pigment.

Figure  1. FTIR spectra of (a) dodecanoic acid and (b) copper 
dodecanoate.

Figure 2. XRD pattern of copper dodecanoate.

Figure 3. Thermogravimetric curves of (a) dodecanoic acid and (b) copper dodecanoate.

Figure 4. Heating and cooling DSC thermograms of (a) dodecanoic acid and (b) copper dodecanoate.

The DSC curves of dodecanoic acid and the copper 
dodecanoate pigment are displayed in Figure  4a and 
Figure 4b, respectively. The melting point of dodecanoic 
acid (∼45°C) increased upon complexation with copper to 
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Figure 5. Rosin dissolution rates in artificial seawater against the 
immersion time. Error bars refer to the standard deviation (SD) 
derived from three independent measurements.

Figure 6. Photographs of steel panels before immersion tests: (a) blank; (b) commercial antifouling coating; (c) EP
1
; (d) EP

2
; and (e) RO

1
. 

Dimensions of each steel panel: 25 cm × 20 cm × 1 mm.

form the copper dodecanoate pigment (110°C), which is in 
agreement with the literature27,38.

3.2.	 Rosin dissolution rate

Colophony or rosin is a natural resin extracted from the 
gum of the pine tree. Generally, rosin is composed of about 
85-90% acidic material and 15-10% neutral substances. 
Carboxyl groups react with the potassium and sodium ions 
in sea water, forming soluble salts (rosinates)39.

Figure 7. Photographs of steel panels immersed in a natural water environment for four months: (a) blank; (b) commercial antifouling 
coating; (c) EP

1
; and (d) RO

1
. Dimensions of each steel panel: 25 cm × 20 cm × 1 mm.

In order to evaluate the performance of rosin when 
used in antifouling paints, a dissolution test was carried 
out. Figure 5 shows the rosin dissolution rates in µg.cm–2.
day–1, along with the standard deviation (SD) from three 
independent measurements. As can be seen, the dissolution 
rate of rosin was about 180 µg.cm–2.day–1 after one day of 
immersion, reaching a value of approximately 50 µg.cm–2.
day–1 in four days. This reduction in the dissolution 
rate, which is consistent with that reported in previous 
studies1,39,40, can be attributed to oxidation of the surface 
and the formation of insoluble rosinate salts39. According 
to Yebra et al.39, the solvent trapped in the rosin film was 
found to contribute to the high dissolution rate observed 
after one day of immersion.

3.3.	 Natural marine environment tests

In order to examine the influence of the matrix on 
antifouling efficiency, the RO

1
 and EP

1
 coatings were 

tested by immersing painted steel panels in a natural marine 
environment.

Figure  6 shows the photographs of painted panels 
before immersion test. The photographs displayed in 
Figure  7 indicate that, after four months of immersion, 
the antifouling efficiency was higher for EP

1
 than for 

RO
1
. In the latter, 30% of the total area was covered by 

fouling organisms (Figure  7d); this amount increased 
to 60% on the blank panel (Figure  7a). In contrast, no 
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trace of attached fouling organisms was detected with 
the commercial and EP

1
 coatings (Figures  7b and 7c, 

respectively). The rosin coating RO
1
 showed cracks on the 

surface, and barnacles were essentially attached at these 
places. This feature suggests that the adherence of rosin-
based coatings should be improved using, for example, 
co-binders and plasticizers, which should be selected 
considering the chemical nature of the pigments and the 
required dissolution rates39,40.

The influence of the concentration of copper dodecanoate 
in the formulations was also examined. Thus, the content of 
copper dodecanoate was significantly lower in EP

2
 than in 

EP
1
. Photographs comparing the antifouling efficiency of 

EP
2
, EP

1
 and the commercial coating with the blank after 

12 months of immersion are displayed in Figure 8.
The panel coated with EP

2
 showed 75% of the total 

area covered by fouling organisms (Figure 8c), while this 
parameter was 95% for the blank panel (Figure 8a). Panels 
painted with EP

1
 (Figure 8d) and the commercial antifouling 

coating (Figure 8b) presented lower amounts of adhered 
fouling organisms (i.e. 7% and 4%, respectively). These 
results clearly indicate that the antifouling activity of the 
formulated epoxy coatings increases with the concentration 
of copper dodecanoate (Table 1).

In order to evaluate the amount of copper released by 
the more efficient antifouling coatings, release tests were 
performed for both the commercial and EP

1 coatings. After 
20 days, the total copper concentration leached from the EP

1
 

coating was only 0.053 mg L–1; this was considerably higher 
at 0.213 mg L–1 for the commercial coating. Accordingly, 
the amount of eliminated copper was ∼75% less in the epoxy 
formulation developed in this work than in the commercial 
coating, which represents a very significant reduction in 
marine contamination.

4.	 Conclusions
The FTIR, XRD and thermal analyses demonstrated 

the synthesis of a copper dodecanoate pigment. The 
performance of the epoxy- and rosin-based coatings, 
which incorporated copper dodecanoate as an antifouling 
pigment, was tested. The antifouling efficiency was found 
to be higher for the epoxy than for the rosin coating. On the 
other hand, the antifouling efficiency of the epoxy coating 
increased with the concentration of copper dodecanoate. 
After 12 months of immersion in natural sea water, panels 
painted with the copper dodecanoate-containing epoxy 
coating accumulated as little fouling as those painted with 
the commercial coating. Moreover, the antifouling paint 
developed in this work by combining the epoxy resin with 
copper dodecanoate showed a drastic reduction in copper 
release (73.5%) with respect to the commercial paint. This 
is a very striking result since it allows us to conclude that 
application of this pigment produces similar, or even better, 
antifouling efficiency as those used in commercial coatings, 
but with a significantly decreased negative impact of these 
chemicals on the marine environment, especially in harbors.
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Figure 8. Photographs of steel panels immersed in a natural water environment for 12 months: (a) blank; (b) commercial antifouling 
coating; (c) EP

2
; and (d) EP

1
. Dimensions of each steel panel: 25 cm × 20 cm × 1 mm.
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