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RIGIDITY OF POISSON LIE GROUP ACTIONS

CHIARA ESPOSITO AND EVA MIRANDA

Abstract. In this paper we prove that close infinitesimal momentum
maps associated to Poisson Lie actions are equivalent under some mild
assumptions. We also obtain rigidity theorems for actual momentum
maps (when the acting Lie group G is endowed with an arbitrary Poisson
structure) combining a rigidity result for canonical Hamiltonian actions
([25]) and a linearization theorem([13]). These results have applications
to quantization of symmetries since these infinitesimal momentum maps
appear as the classical limit of quantum momentum maps ([4]).

1. Introduction

In 1961 Palais proved that close actions of compact Lie groups on com-
pact manifolds can be conjugated by a diffeomorphism [29]. The interest of
this rigidity theorem relies on the approximation of actions by nearby ones.
As application of this rigidity theorem of Palais we can recover normal form
theorems such as the linearization theorem by Bochner [5]. Several gen-
eralizations of this result have been obtained in [12] and [23] for the case
of symplectic structures and in [25] for the case of Hamiltonian actions of
semisimple Lie algebras on Poisson manifolds.

In this paper we generalize a rigidity result from [25] to the context of
Poisson Lie groups and pre-Poisson Hamiltonian actions. The main result
in [25] establishes that two close moment maps µ : (M,Π) −→ g

∗ associ-
ated to standard Hamiltonian actions of Lie groups on a Poisson manifold
are diffeomorphic when g is a compact semisimple Lie algebra and M is a
compact manifold.

In this paper we consider the counterpart for compact Poisson Lie groups
and pre-Poisson Hamiltonian actions. In this case the actions do not neces-
sarily lift to a canonical moment map (the obstruction being a closed 1-form
which is not necessarily exact). The Lie group itself is endowed with a Pois-
son structure and thus the action of the Lie group on the Poisson manifold
(M,Π) does not necessarily preserve the Poisson structure Π on M . When
the Poisson structure on the Lie group is the trivial one, we recover a stan-
dard Poisson action which is Hamiltonian if the above-mentioned closed
1-form is exact.

As explained in [19] it is necessary to consider this generalization of Hamil-
tonian actions on Poisson manifolds, in order to take into account the prop-
erties of the dressing transformations under hidden symmetry group in the
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case of R-matrices. Poisson Lie group actions on Poisson manifolds with
non-trivial Poisson structures appear naturally in the study of R-matrices.
For these, the notion of momentum mapping for Poisson manifolds coincides
with the monodromy matrix of the associated linear system (see [19]). Thus
studying rigidity for Poisson Lie group actions can be useful to understand
stability of the integrable systems associated to R-matrices.

On the other hand, it is worth mentioning here that the momentum map
associated to Poisson Lie group actions represents the semiclassical limit of
a quantum Hamiltonian action, as shown in [4]. Thus the study of rigidity
properties can be useful to comprehend quantum momentum maps.

There are two main novelties in this paper: First to consider Poisson Lie
groups and Poisson Lie group actions instead of standard Poisson actions (for
which the associated moment map is called canonical) and also to consider
infinitesimal momentum maps. Infinitesimal momentum maps are the local
counterpart to momentum maps and topology on the acted manifold is an
obstruction to its integration to global momentum maps. This is also the
case when the Poisson structure on G is not trivial but there are additional
obstructions as shown in [11]. In particular the theorems that we prove in
this article for infinitesimal momentum maps yield as a corollary a stronger
result that the one contained in [25] about rigidity of momentum maps for
Poisson structures.

In section 3 rigidity results are considered in the Poisson Lie group setting
for actual moment maps. In this case the infinitesimal momentum map
actually integrates to a moment map µ : M −→ G∗. When the Lie group
G is semisimple and compact, we can indeed prove that close actions are
equivalent. The proof uses a global linearization theorem due to Ginzburg
and Weinstein [13] and the rigidity result for Hamiltonian actions on Poisson
manifolds obtained by Miranda, Monnier and Zung [25].

In section 4 we consider the more general case in which the infinitesimal
group action does not integrate to a moment map and prove a rigidity result
in case the Lie group is semisimple and compact. The proof uses techniques
native to geometrical analysis and an abstract normal form theorem from
[25]. This abstract normal form encapsules a Newton’s iterative method
used by Moser and Nash to prove the inverse function theorem in infinite
dimensions (see for example [18]). Newton’s method is used to prove normal
forms results by approximating the solution using an iterative process [25].
The solution is then presented as a limit. Due to the loss of differentiability
in this process, one needs to use smoothing operators and a deep knowledge
of geometric analysis.

The abstract normal form for SCI spaces presented in [25] allows to prove
normal forms results (and in particular, linearization and rigidity theorems)
without having to plunge into the details of the iterative method. The
abstract normal form theorem in [25] has had other applications in the
theory of generalized complex manifolds (see [2] and [3]) and a variant of
it to normal forms in a neighbourhood of a symplectic leaf of a Poisson
manifold [28]. In this paper we provide a new application of this normal form
for SCI spaces (the details of all the SCI spaces paraphernalia are included
as an appendix so that the reader who is not interested in these details
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can skip them without losing the essence of the paper). As in [25] we first
prove an infinitesimal rigidity result and then we apply the SCI normal form
theorem to conclude rigidity. The normal form theorem that we prove for
infinitesimal moment maps requires as additional condition that the image of
the homotopy operator of an infinitesimal momentum map –whose existence
is guaranteed by the infinitesimal rigidity theorem– is a closed one form; this
condition is equivalent to the preservation of the Maurer-Cartan equation by
h and it is automatically satisfied in the canonical case. Our theorem can be
seen as another reincarnation of Mather’s principle “infinitesimal stability
implies stability” (see [22] and its sequel).

Acknowledgements. The authors are grateful to Henrique Bursztyn for
interesting remarks that improved this paper.

2. Hamiltonian actions in the Poisson Lie setting

In this section we give a brief summary of the notions of Poisson action
and momentum map, which generalize the concept of Hamiltonian action to
the Poisson Lie context. A Poisson Lie group is defined by a pair (G,πG),
where G is a Lie group and πG is a Poisson structure compatible with the
multiplication on G. The corresponding infinitesimal object is given by a Lie
bialgebra, i.e. the Lie algebra g corresponding to the Lie group G, equipped
with the 1-cocycle,

(1) δ = deπG : g → g ∧ g.

Drinfel′d’s principle [8] establishes a one-to-one correspondence between the
Poisson Lie group (G,πG) and the Lie bialgebra (g, δ) if G is connected
and simply connected (for this reason we assume this hypothesis to hold
throughout this paper). The 1-cocycle δ also makes g

∗ into a Lie algebra,
thus we can define the dual Poisson Lie group G∗ as the Lie group associated
to the Lie algebra g

∗.

Definition 2.1. The action of (G,πG) on (M,π) is called Poisson action

if the map Φ : G×M → M is Poisson, that is

(2) {f ◦ Φ, g ◦ Φ}G×M = {f, g}M ◦ Φ ∀f, g ∈ C∞(M)

where the Poisson structure on G×M is given by πG ⊕ π.

It is important to remark that if G carries the zero Poisson structure
πG = 0, the action is Poisson if and only if it preserves π. Among the class
of Poisson actions, Hamiltonian ones play an important role. In general,
when πG 6= 0, the structure π is not invariant with respect to the action.

Given an action Φ, its infinitesimal generator is a map which associates
a vector field X̂ on M to any element X ∈ g.

Definition 2.2 (Lu, [20], [21]). A momentum map for the Poisson action
Φ : G×M → M is a map J : M → G∗ such that

(3) X̂ = π♯(J∗(θX))

where θX is the left invariant 1-form on G∗ defined by the element X ∈ g =
(TeG

∗)∗ and J∗ is the cotangent lift T ∗G∗ → T ∗M .
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In other words, the momentum map generates X̂ by means of the following
construction

g
θ // Ω1(G∗)

α // Ω1(M)
π♯

// TM

where, for X ∈ g, αX = J∗(θX). Notice that the maps θ and π♯ are Lie
algebra homomorphisms. It is useful to recall that given a Poisson structure
π, the anchor map π♯ defined as π♯(α) := π(α, ·) , defines a skew-symmetric
operation [·, ·]π : Ω1(M) × Ω1(M) → Ω1(M). The following proposition
states the main properties of this operation

Proposition 1. Let (M,π) be a Poisson manifold. Then there exists a
unique bilinear, skew-symmetric operation [·, ·]π : Ω1(M)×Ω1(M) → Ω1(M)
such that

[df, dg]π = d{f, g}, f, g ∈ C∞(M)(4)

[α, fβ]π = f [α, β]π + (ιπ♯(α)f)β f ∈ C∞(M), α, β ∈ Ω1(M).(5)

This operation is given by the general formula

[α, β]π = Lπ♯(α)β − Lπ♯(β)α− d(π(α, β)) = Lπ♯(α)β − ιπ♯(β)dα.

Furthermore, it provides Ω1(M) with a Lie algebra structure such that π♯ :
T ∗M → TM is a Lie algebra homomorphism.

In general, J∗ : T ∗G∗ → T ∗M is not a Lie algebra homomorphism; for
this reason we introduce the concept of equivariance of momentum map and
we recall that a momentum map is said equivariant if and only if it is a
Poisson map, i.e.

J∗π = πG∗ .

Finally, we can say that a Poisson Hamiltonian action in this context is
a Poisson action induced by an equivariant momentum map. This definition
generalizes Hamiltonian actions in the canonical setting. Indeed, we notice
that, if the Poisson structure on G is trivial, the dual G∗ corresponds to the
dual of the Lie algebra g

∗, the one-form θX is the constant one-form X on
g

∗ and

J∗(θX) = d(HX)

where HX(m) = 〈J(m),X〉. Thus, it recovers the usual definition of mo-
mentum map for Hamiltonian action in the canonical setting J : M → g

∗

X̂ = π♯(d(HX)) = {HX , ·}

Proposition 2. [10] Given a Poisson Hamiltonian action Φ : G×M → M
with momentum map J : M → G∗, the forms αX = J∗(θX) satisfy the
following identities

α[X,Y ] = [αX , αY ]π(6)

dαX + α ∧ α ◦ δ(X) = 0(7)

The second condition is classically known as Maurer-Cartan equation.
This observation allows us to introduce a weaker definition of momentum
map, in terms of forms. In order to give this new definition we need to recall
the notion of Gerstenhaber algebras:
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Definition 2.3. A Gerstenhaber algebra is a differential graded com-
mutative algebra endowed with a Lie bracket which satisfies the following
identities

• |[a, b]| = |a| + |b| − 1 (The Lie bracket has degree -1)
• [a, bc] = [a, b]c + (−1)(|a|−1)|b| (graded Leibniz identity)

where |a| is the degree of an element a.

Example 2.1. The Poisson structure on G gives its Lie algebra a structure
of a Lie bialgebra (g, [·, ·], δ) and hence a structure of Gerstenhaber algebra
on ∧•

g.

Example 2.2. The Poisson bracket on M induces a structure of Lie algebra
on Ω•(M) with bracket [·, ·]π ; this makes Ω•(M) into a Gerstenhaber algebra.

Thus, we can introduce a weaker definition of momentum map, motivated
by Proposition 2:

Definition 2.4. Let (M,π) be a Poisson manifold and (G,πG) a Poisson Lie
group. An infinitesimal momentum map is a morphism of Gerstenhaber
algebras

(8) α : (∧•
g, δ, [ , ]) −→ (Ω•(M), dDR, [ , ]π).

It is worthwhile to mention that, in the Heisenberg case, a concrete study
of the conditions under which we can lift the infinitesimal momentum map
to the global one gives us the following

Theorem 2.1 (Esposito, Nest [11]). Let G be a Poisson Lie group acting
on a Poisson manifold M with an infinitesimal momentum map α and such
that G∗ is the Heisenberg group. Let ξ, η, ζ denote the basis of g dual to the
standard basis x, y, z of g∗, with z central and [x, y] = z. Then

(9) π(αξ, αη) = c

where c is a constant on M . The form α lifts to a momentum map J : M →
G∗ if and only if c = 0. When c = 0 the set of momentum maps with given
α is one dimensional with free transitive action of R.

This induces a new definition, that we call pre-Hamiltonian Poisson action
as it is somehow weaker than the Poisson Hamiltonian definition given above.

Definition 2.5. A pre-Hamiltonian Poisson action is a Poisson ac-
tion of (G,πG) on (M,π) induced by an infinitesimal momentum map α :
(g, δ, [ , ]) → (Ω1(M), dDR, [ , ]π).

Clearly this notion is weaker than the Hamiltonian one, as it does not
reduce to the canonical one when the Poisson structure on G is trivial. In
fact, if πG = 0 we have δ = 0 and the Maurer-Cartan equation implies that
αX is a closed form, but in general this form is not exact. If, for example, M
is simply connected, αX is also exact and we can recover the usual definition
of momentum map and Hamiltonian system. If M is not simply connected
we can get examples in the symplectic realm like rotations on a torus or
more sophisticated ones for general Poisson structures.
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Example 2.3. Consider the torus T2, with Poisson structure π = sin θ1
∂

∂θ1
∧

∂
∂θ2

where the coordinates on the torus are θ1, θ2 ∈ [0, 2π] . This Poisson

structure is symplectic away from the set Z = {θ1 ∈ {0, π}} and the Poisson
structures satisfies a transversality condition at the vanishing set. This Pois-
son structure pertains to a class called b-Poisson structures (or b-symplectic
structures) studied in [16]. The circle action of rotation on the θ2 coordinate
defines a pre-Hamiltonian Poisson action on T

2. Indeed it is possible to as-
sociate a b-symplectic form to this Poisson structure (see [16]) and work with
b-symplectic actions. In this case 1

sin θ1
dθ1 ∧ dθ2. The circle action of rota-

tion on the θ2 coordinate is pre-Hamiltonian and the associated one-form is
1

sin θ1
dθ1 (see [17] for properties of these actions on b-Poisson manifolds).

In general (when the Poisson structure on the Lie group is not trivial)
the problem is harder. The study of the conditions in which an infinitesimal
momentum map determines a momentum map in the usual sense can be
found in [11]. A concrete example of infinitesimal momentum map has been
computed in [4].

3. Rigidity for Hamiltonian actions

The goal of this section is to prove that two close actions of Poisson
Lie group G with arbitrary Poisson structures on G with moment maps
µ0 : M −→ G∗ and µ1 : M −→ G∗ are equivalent. That is, there exists
a diffeomorphims φ : M −→ M such that φ∗(µ1) = µ0. We can prove
this when the Poisson-Lie group is semisimple and compact by combining
well-known results of Ginzburg and Weinstein [13] concerning linearization
of Poisson-Lie groups with a ridigity theorem for canonical moment maps
contained in [25].

Let us start by clarifying we clarify what we mean in this paper by “close”
actions.

An action ρ : G × M −→ M of a Lie group G on a smooth manifold
M is a morphism from G to the group of diffeomorphisms Diff(M). As a
consequence, we can view this action as an element in Map(G×M,M) and
use the Ck-topology there to refer to close elements 1.

In this paper we can define the topology by using the associated mo-
mentum maps, either infinitesimal or not. In the case the infinitesimal
moment maps integrate to actual moment maps, we consider the standard
Ck-topology in the space of smooth mappings Ck(M,G∗). If the action is
given by an infinitesimal momentum map we can also use the Ck-norm of
the infinitesimal momentum map α : g −→ Ω1(M) and work with αX , for
X ∈ g as mappings αX : M −→ TM).

In order to prove the main result in this section we need to recall the
rigidity theorem for Hamiltonian actions on Poisson manifolds contained in
[25]:

Theorem 3.1 (Miranda, Monnier, Zung [25]). Consider a compact Poisson
manifold (M, { , }) and a Hamiltonian action on M given by the momentum
map λ : M −→ g

∗ where g is a semisimple Lie algebra of compact type.

1 Observe that two momentum maps µ1 : M −→ g
∗ and µ2 : M −→ g

∗ are close then
the two Hamiltonian actions are close.
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There exist a positive integer l and two positive real numbers α and β
(with β < 1 < α) such that, if µ is another momentum map on M with
respect to the same Poisson structure and Lie algebra, satisfying

(10) ‖λ− µ‖2l−1 ≤ α and ‖λ− µ‖l ≤ β

then, there exists a diffeomorphism ψ of class Ck, for all k ≥ l, on M such
that µ ◦ ψ = λ.

Observe that since a Poisson structure on a Poisson Lie group (with Pois-
son structure π) must vanish at e ∈ G, its linearization at e is well-defined
(recall that deπG : g −→ g ∧ g).

The following theorem says that if G is compact and semisimple, the Pois-
son structure πG is linearizable, thus equivalent to deπG by diffeomorphisms.

Theorem 3.2 (Ginzburg, Weinstein). Let G be a compact semisimple Pois-
son Lie group then the dual Poisson Lie group G∗ is globally diffeomorphic
to g

∗ with the linear Poisson structure defined as {f, g}η =< η, [dfη , dgη ] >.

Thus when the Pre-Hamiltonian Poisson action is indeed Hamiltonian the
infinitesimal momentum map lifts to a mapping µ : M −→ G∗ then we can
apply theorem 3.2 and combine it with theorem 3.1 to obtain rigidity for
the action.

More concretely,

Theorem 3.3. Consider a compact Poisson manifold (M, { , }) and a Pois-
son Lie Hamiltonian action on M of a compact semisimple Poisson Lie
group G given by the momentum map µ0 : M −→ G∗.

There exist a positive integer l and two positive real numbers α and β
(with β < 1 < α) such that, if µ1 is another momentum map on M with
respect to the same Poisson structure and Poisson Lie group, satisfying

(11) ‖µ0 − µ1‖2l−1 ≤ α and ‖µ0 − µ1‖l ≤ β

then, there exists a diffeomorphism ψ of class Ck, for all k ≥ l, on M such
that µ1 ◦ ψ = µ0.

Proof. Denote by Φ the linearizing Poisson diffeomorphism2 Φ : G∗ −→ g
∗

given by theorem 3.2 and consider the compositions µ̃0 = Φ ◦ µ0 and µ̃1 =
Φ ◦ µ1. The mappings µ̃0 : M −→ g

∗ and µ̃1 : M −→ g
∗ are canonical

moment maps and we may consider the infinitesimal Hamiltonian actions of
g (β0 and β1). These actions integrate to infinitesimal standard Lie group
actions of the Lie group G which preserve the Poisson structure on M .
We may now apply theorem 3.1 to obtain a diffeomorphism ψ̃ such that
µ̃1 ◦ ψ̃ = µ̃0 and therefore µ1 ◦ ψ = µ0.

�

3.1. The case of coboundary Poisson Lie groups. We start with the
definition of coboundary Lie bialgebra and coboundary Poisson Lie group.

Definition 3.1. A Lie bialgebra g is called a coboundary Lie bialgebra

if δ is the coboundary of some element r ∈ g ∧ g (that is, δ(ξ) = adξ(r)).

2The differentiability class can be assumed to be k by the construction in the proof of
theorem 3.2
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A coboundary Poisson Lie group is a Poisson Lie group with corresponding
coboundary Lie bialgebra under Drinfeld’s correspondence. The category of
coboundary Poisson Lie groups includes the case of quasitriangular Poisson
Lie groups.

The formal linearization of quasitriangular Poisson Lie groups was studied
by Enriquez, Etingof and Marshall [9]. Recently Alekseev and Meinrenken
have generalized this further proving that coboundary Poisson Lie groups
are indeed linearizable [1] as the following theorem shows,

Theorem 3.4 (Alekseev, Meinrenken [1]). For any coboundary Poisson Lie
group G, the dual G∗ is linearizable at e.

As we did in the proof of Theorem 3.3, we could try to combine this
result with some rigidity for canonical moment maps but such a rigidity
result is not proved in the canonical context for non-semisimple Lie groups.
We believe that it is possible to adapt the Moser’s tecniques developed in
[1] to give a direct proof of rigidity of moment maps for coboundary Poisson
Lie groups but we are not addressing this problem here.

4. Rigidity for infinitesimal momentum maps

In this section we prove that close infinitesimal momentum maps of Pre-
Hamiltonian Poisson actions of Poisson Lie groups are equivalent. In order
to do that we first revise the ideas of the proof of rigidity contained in [25].

The main idea in [25] is to approximate a given moment map by an
iteration of moment maps.

As explained in [15], a first approach to proving the equivalence of Lie
group actions on manifolds would follow the steps below:

In general a Lie group action gives an element in M = Hom(G,Diff(M))
and we can consider the additional action,

β : Diff(M) × M 7−→ M
(φ, α) 7→ φ ◦ α ◦ φ−1

Two actions α0 and α1 are conjugated if they are on the same orbit under
β so, in particular, if β has open orbits the action is rigid.

Observe that

• The tangent space to the orbit of β coincides with 1-coboundaries
of the group cohomology with coefficients in V = V ect(M) and the
tangent space to M are the 1-cocycles.

• The generalized Whitehead lemma implies that for compact G the
cohomology group H1(G;V ect(M)) vanishes. This phenomenon is
known as infinitesimal rigidity. In this case the tangent space to the
orbit equals the tangent space to M.

• If M is a manifold (or tame Fréchet) we can apply the inverse func-
tion theorem Nash-Moser to go from the tangent space to the man-
ifol. We can use this fact to prove that β has open manifolds and
thus the action is rigid.

In general it is hard to verify the “tame Fréchet” condition but we can
apply the method used in the proof of Nash-Moser’s theorem (Newton’s
iterative method). This methods allows to proof several results of type
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infinitesimal rigidity implies rigidity. For Hamiltonian actions on Poisson
manifold [25] we consider the Chevalley-Eilenberg complex associated to the
representation given by the moment map following the next steps:

(1) Assume that the close moment maps are µ0 : M −→ g
∗ and µ1 :

M −→ g
∗. The difference φ = µ0 − µ1 defines a 1-cochain of the

complex which is a near 1-cocycle.
(2) We define Φ as the time-1-map of the Hamiltonian vector fieldXSt(h(φ))

with h the homotopy operator and St is a smoothing operator.
(3) The Newton iteration is given by,

φd = φ1
XSt(h(ηd))

with ηd = (µ1 − µ0) ◦ φd−1. This converges to a Poisson diffeomor-
phism that conjugates both actions.

Convergence is a hard part of the proof. This is why in [25] a strong
use of geometric analysis tools is performed in order to check this using the
paraphernalia of SCI spaces (see the appendix). In particular the theorem
needed to prove convergence is the abstract normal form presented in the
first subsection of this section.

In the Poisson Lie group case, we will follow a similar scheme, the differ-
ence is that we need to replace a Chevalley-Eilenberg complex which con-
siders the set of smooth functions as a g-module by a Chevalley-Eilenberg
complex which considers the set of smooth forms as g-module. We devote a
subsection to defining this complex. The diffeomorphisms considered in each
step of the iteration will not be Hamiltonian but Poisson diffeomorphisms
of type,

φd = φ1
XSt(h(ηd))

with η the difference of two one-forms. In order for this proof to work,
we will require that the homotopy operator sends forms αX satisfying the
Maurer-Cartan equation to closed one-forms. We will call actions satisfying
this condition admissible. Before presenting the proof of the main theorem
of this section which holds for Pre-Hamiltonian Poisson actions, we will
present a sketch of the proof for Pre-Hamiltonian actions that integrate for
Hamiltonian ones (this gives a different proof of Theorem 3.3 given in Section
3) and is included here for sheer pedagogical purposes.

4.1. Preliminaries: An abstract normal form for SCI-spaces. SCI-
spaces (where SCI stands for scaled C∞-type) are a generalization of scaled
spaces and tame Fréchet spaces. This analytical apparatus is needed to
prove normal form theorems in the most possible general setting which
includes neighbourhood of a point, a compact invariant submanifold or a
compact manifold. We refer to the appendix for the basic defintions of SCI-
spaces, SCI-groups and SCI-actions. It is good to keep in mind the following
archetypical example: an example of SCI-spaces is the set of Poisson struc-
tures, an example of SCI-group is the group of diffeomorphism (which can
be germified, semilocal or global), and in this case an example of SCI-action
is the pushforward of a Poisson structure via a diffeomorphism.

The scheme of proof of a normal form theorem in this abstract setting is
the following:
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(1) G (for instance diffeomorphisms) which acts on a set S (of struc-
tures).

(2) We consider the subset of structures in normal forms N inside S.
(3) The equivalence of an element in S to a normal form is understood

in the following way:
For each element f ∈ S there is an element φ ∈ G such that

φ.f ∈ N .

For practical purposes it is convenient to assume that a S (in the example
above, the set of Poisson structures) is a subset of a linear space T (in the
example above T would be the set of bivector fields).

The SCI-group G acts on T , and the set of normal forms N = F ∩ S
where F is a linear subspace of T .

The following theorem contained in [25] is an abstract normal form theo-
rem for SCI in order to apply it to particular situations, we need to identify
the sets S, F , T and the SCI-group G in each case.

We also need to identify G0 a closed subgroup of G which is not necessarily
an SCI-subgroup (for instance, the set of Poisson diffeomorphisms inside the
set of diffeomorphisms).

As a consequence the equivalence to the normal form is given by the
existence of ψ ∈ G (or in a closed subgroup) G0 for each f ∈ S such that
ψ · f ∈ N .

Theorem 4.1 (Miranda, Monnier, Zung [25]). Let T be a SCI-space, F a
SCI-subspace of T , and S a subset of T . Denote N = F ∩ S. Assume that
there is a projection π : T −→ F (compatible with restriction and inclusion
maps) such that for every f in Tk,ρ, the element ζ(f) = f − π(f) satisfies

(12) ‖ζ(f)‖k,ρ ≤ ‖f‖k,ρPoly(‖f‖[(k+1)/2],ρ)

for all k ∈ N (or at least for all k sufficiently large), where [ ] is the integer
part.

Let G be an SCI-group acting on T by a linear left SCI-action and let G0

be a closed subgroup of G formed by elements preserving S.
Let H be a SCI-space and assume that there exist maps H : S −→ H and

Φ : H −→ G0 and an integer s ∈ N such that for every 0 < ρ ≤ 1, every f
in S and g in H, and for all k in N (or at least for all k sufficiently large)
we have the three properties:

‖H(f)‖k,ρ ≤ ‖ζ(f)‖k+s,ρPoly(‖f‖[(k+1)/2]+s,ρ)(13)

+‖f‖k+s,ρ‖ζ(f)‖[(k+1)/2]+s,ρPoly(‖f‖[(k+1)/2]+s,ρ) ,

(14) ‖Φ(g) − Id‖k,ρ′ ≤ ‖g‖k+s,ρPoly(‖g‖[(k+1)/2]+s,ρ)

and

‖Φ(g1) .f − Φ(g2) .f‖k,ρ′ ≤ ‖g1 − g2‖k+s,ρ‖f‖k+s,ρPoly(‖g1‖k+s,ρ, ‖g2‖k+s,ρ)

+‖f‖k+s,ρPoly(2)(‖g1‖k+s,ρ, ‖g2‖k+s,ρ)(15)

if ρ′ ≤ ρ(1−c‖g‖2,ρ) in (14) and ρ′ ≤ ρ(1−c‖g1‖2,ρ) and ρ′ ≤ ρ(1−c‖g2‖2,ρ)
in (15).
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Finally, for every f in S denote φf = Id+χf = Φ
(
H(f)

)
∈ G0 and assume

that there is a positive real number δ such that we have the inequality

(16)

‖ζ(φf . f)‖k,ρ′ ≤ ‖ζ(f)‖1+δ
k+s,ρQ(‖f‖k+s,ρ, ‖χf ‖k+s,ρ, ‖ζ(f)‖k+s,ρ, ‖f‖k,ρ)

(if ρ′ ≤ ρ(1−c‖χf ‖1,ρ)) where Q is a polynomial of four variables and whose
degree in the first variable does not depend on k and with positive coefficients.

Then there exist l ∈ N and two positive constants α and β with the
following property: for all p ∈ N ∪ {∞}, p ≥ l, and for all f ∈ S2p−1,R

with ‖f‖2l−1,R < α and ‖ζ(f)‖l,R < β, there exists ψ ∈ G0
p,R/2 such that

ψ · f ∈ Np,R/2.

Remarks on notation:

• Poly(‖f‖k,r) stands for a polynomial term in ‖f‖k,r where the poly-
nomial has positive coefficients and does not depend on f (though
it may depend on k and on r continuously).

• The notation Poly(p)(‖f‖k,r), where p is a strictly positive integer,
denotes a polynomial term in ‖f‖k,r where the polynomial has posi-
tive coefficients and does not depend on f (though it may depend on
k and on r continuously) and which contains terms of degree greater
or equal to p.

Remark 4.2. It would be possible to relax the SCI-hypotheses in order to
prove rigidity for Poisson Lie group actions on compact manifolds. However,
thanks to the SCI-scheme we can obtain the local and semilocal statements
directly from the rigidity statement for compact manifolds.

4.2. A Chevalley-Eilenberg complex associated to a infinitesimal

momentum map. As in [25], the first step is the infinitesimal rigidity: we
construct the Chevalley-Eilenberg cohomology associated to an infinitesimal
momentum map. The first cohomology group of the complex, H1, can be
interpreted as infinitesimal deformations and so, when H1 = 0 under the
hypotheses of the Whitehead lemma for Fréchet spaces ( see [12]) we obtain
infinitesimal rigidity.

In this section we aim to introduce the Chevalley-Eilenberg cohomology
associated to an infinitesimal momentum map, as defined above. We show
that it is related to the Chevalley-Eilenberg cohomology associated to a
Hamiltonian action in the canonical setting.

Let α : g → Ω1(M) : X 7→ αX be the infinitesimal momentum map of
a Hamiltonian action of (G,πG) on (M,π). The Lie algebra g defines a
representation ρ of g on Ω1(M) defined, for any X ∈ g, as

(17) ρX(β) := [αX , β]π

where [·, ·]π denotes the Lie bracket on Ω1(M) defined in Theorem 1. More
precisely, we get

(18) ρXρY (β) − ρY ρX(β) = ρ[X,Y ](β).
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This is a direct consequence of properties of the bracket [·, ·]π and of α since
we have:

(19) [αX , [αY , β]π]π − [αY , [αX , β]π]π = [[αX , αY ]π, β]π = [α[X,Y ], β]π.

This proves that ρ defines a Lie algebra representation.
Notice that

(20) [αX , β]π = Lπ♯(αX)β − ιπ♯(β)dαX = Lπ♯(αX )β − ιπ♯(β)α ∧ α ◦ δ(X).

Thus, we can define the space of cochains as follows: For q ∈ N, Cq(g,Ω1(M)) =
Hom(

∧q
g,Ω1(M)) is the space of alternating q-linear maps from g to Ω1(M),

with the convention C0(g,Ω1(M)) = Ω1(M). The associated differential is
denoted by di. Explicitely, we have

Ω1(M)
∂0 // C1(g,Ω1(M))

∂1 // C2(g,Ω1(M))

where

∂0(β)(X) = ρX(β), β ∈ Ω1(M)(21)

∂1(γ)(X ∧ Y ) = ρX(γ(Y )) − ρY (γ(X)) − γ([X,Y ]), γ ∈ C1(g,Ω1(M))

(22)

with X,Y ∈ g. It is well-known that these differentials satisfy ∂i ◦ ∂i−1 = 0
and we can define the quotients

H i(g,Ω1(M)) = ker(∂i)/Im(∂i−1) ∀i ∈ N.

Finally, we can see that there exists homotopy operator hi satisfying

∂i ◦ hi + hi+1 ◦ ∂i+1 = idCi+1(g,Ω1(M))

for i = 0, 1.

Ω1(M)
∂0 // C1(g,Ω1(M))

∂1 //

h0

oo C2(g,Ω1(M))
h1

oo .

For the Chevalley-Eilenberg complexes used in [25] and [6], certain in-
equalities are proved for the homotopy operators. These are necessary to
control the loss of differentiability in the iterative process. This is some-
what hidden in the abstract normal form theorem in [25] by requiring that
the data are SCI spaces. We will need the following lemma (which extends
lemma 5.7 in [25]) in order to guarantee that our spaces comply with the
SCI requirement.

The trick used in [25] and [6] in order to prove the lemma below is to first
use Sobolev metrics and then Sobolev inequalities and then take the real
part in order to obtain the desired inequalities. For the Chevalley-Eilenberg
complex that we consider in this paper we need those inequalities applied
to mappings α :

∧k
g −→ Ω(1)(M) and work with αX , for X ∈

∧k
g as

mappings αX : M −→ TM . Since M is compact, Sobolev inequalities holds
too. A different way to do this is to consider Sobolev norms in the space of
one-forms 3and Ck-topology for the space of one-forms (see for instance [7])
or [14] and adapt the same steps.

3For one-forms on oriented manifolds, we may consider sophistications of the following
norm: < α, β >=

∫
X

α ∧ ∗βwhere ∗β stands for the Hodge dual of β.
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Lemma 4.1. In the Chevalley-Eilenberg complex associated to ρ:

Ω1(M)
∂0 // C1(g,Ω1(M))

∂1 // C2(g,Ω1(M))

there exists a chain of homotopy operators

Ω1(M)
∂0 // C1(g,Ω1(M))

∂1 //

h0

oo C2(g,Ω1(M))
h1

oo .

such that

∂0 ◦ h0 + h1 ◦ ∂1 = idC1(g,Ω1(M)))

and

∂1 ◦ h1 + h2 ◦ ∂2 = idC1(g,Ω1(M))) .

Moreover, for each k, there exists a real constant Ck > 0 such that

(23) ‖hj(S)‖k,r ≤ Ck‖S‖k+s,r, j = 0, 1, 2

for all S ∈ Cj+1(g,Ω1(M))

Proof. We apply the same strategy of the proof of lemma 5.7 for compact
manifolds in [25] replacing the Sobolev inequalities for smooth function by
the analogous for differential forms. A key point in [6] and [25] is that those
Sobolev norms are invariant by the action of the Lie group which is linear.
The linearity of the action is needed to decompose the Hilbert space into
spaces which are invariant.

In our case we can assume that this action is also linear using an appro-
priate G-equivariant embedding by virtue of Mostow-Palais theorem ([27],
[29])4.

As it was done in [25], we can check the regularity properties of the
homotopy operators with respect to these Sobolev norms and then deduce,
as a consequence, regularity properties of the initial norms by looking at the
real part. The proof holds step by step by replacing the standard Sobolev
inequalities by the ones for differential one-forms.

�

Remark 4.3. Using the definition of infinitesimal momentum map in terms
of Gerstenhaber morphism α : (∧•

g, δ, [ , ]) −→ (Ω•(M), dDR, [ , ]π) we
can immediately generalize the above discussion. In this case α defines the
Chevalley-Eilenberg complex Cq(∧•

g,Ω•(M)).

Remark 4.4. Let us consider the particular case in which the Poisson struc-
ture πG on the Lie group G is trivial. As discussed above, the infinitesimal
momentum map associates a closed one-form to each X ∈ g. From eq. (20)
follows that the Lie algebra representation reduces to

(24) ∂0(β)(X) = [αX , β]π = Lπ♯(αX )β

4Using an orthonormal basis in the vector space E for this action we can define the
corresponding Sobolev norms in the ambient spaces provided by the Mostow-Palais em-
bedding theorem. This norm is invariant by the action of G (we can even assume G is a
subgroup of the orthogonal group).
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Remark 4.5. If we rectrict only to exact forms, it follows immediately from
Theorem 1 that

(25) ∂0(β)(X) = [αX , β]π = [dHX , df ]π = d{HX , f}.

This means that the infinitesimal momentum map in this case defines a
Chevalley-Eilenberg complex Cq(g,Ω1

ex(M)), where Ω1
ex(M) denotes the space

of exact one-forms on M . Furthermore, the coboundary operator ∂0 coin-
cides with the differential of the standard representation δ0 of g on C∞(M)
discussed in [25]. Similarly, we can see that the homotopy operator h0 coin-
cides with the differential of the homotopy operator h0 of Cq(g, C∞(M)). In
other words, the diagram

(26) C∞(M)

d
��

δ0 // C1(g, C∞(M))

d
��

δ1 //

h0

oo C2(g, C∞(M))

d
��

h1

oo

Ω1
ex(M)

∂0 // C1(g,Ω1
ex(M))

∂1 //

h0

oo C2(g,Ω1
ex(M))

h1

oo

commutes.

In general, αX satisfies the Maurer-Cartan equation (7); this implies that
our complex reduces to

Ω1
cl(M)

∂0 // C1(g,Ω1(M))
∂1 //

h0

oo C2(g,Ω1(M))
h1

oo .

where Ω1
cl(M) denotes the space of closed one-forms on M . Notice that we

are assuming that dh0(α) = h0(dα), thus dh0(α) = 0.

4.3. Rigidity of Hamiltonian actions in the Poisson Lie setting. In
this section we state the main theorem of this paper, which prove the rigidity
of pre-Hamiltonian Poisson actions. The above discussion shows that the
rigidity of Hamiltonian action can be seen as a particular case of the rigidity
of pre-Hamiltonian Poisson actions. For this reason we first rewrite Theorem
3.3 in terms of infinitesimal momentum map.

Let Φ : G×M → M a pre-Hamiltonian Poisson action with infinitesimal
momentum map α : g → Ω1(M). Assume that πG = 0 and H1(M) = 0
(which guarantees that closed forms are also exact), thus αX = dHX for
any X ∈ g and it induces the infinitesimal generator of the action by means
of the construction

(27) g

''

α
❋

❋

❋

❋

##❋
❋

❋

❋

Ω1
ex(M) // Ham(M)

where we denoted by Ham(M) the set of Hamiltonian vector fields on M .
In this particular case, it has been proved (see [11]) that the infinitesimal
momentum map is generated by a momentum map J : M → G∗; since
G∗ = g

∗ it coincides with the canonical momentum map. It is important to
recall that, in the canonical setting, giving a equivariant momentum map
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J : M → g
∗ is equivalent to specify a Lie algebra homomorphism H : g →

C∞(M) (called Hamiltonian) making the diagram

(28) g

((

H
●

●

●

●

##●
●

●

●

C∞(M) // Ham(M)

commute. Since specifying α does not determine the Hamiltonian function
in a unique way, we say that the construction (28) is almost equivalent to
(27). Indeed, given αX we can reconstruct HX by solving a cohomological
equation, i.e.

(29) αX = dHX ;

in other words, αX determines HX up to a constant.
In the following we prove the rigidity of the infinitesimal momentum map

in the cases in which is equivalent to the canonical momentum map J : M →
g

∗.

Theorem 4.6. Consider a pre-Hamiltonian Poisson action of a trivial Pois-
son Lie group (G, 0) on a compact Poisson manifold (M,π) with H1(M) = 0,
given by the construction (27), where g is a semisimple Lie algebra of com-
pact type.

There exist a positive integer l and two positive real numbers a and b (with
b < 1 < a) such that, if α̃ is another infinitesimal momentum map on M
with respect to the same Poisson structure and Lie algebra, satisfying

(30) ‖α − α̃‖2l−1 ≤ a and ‖α− α̃‖l ≤ b

then, there exists a Poisson diffeomorphism φ : (M,π) −→ (M,π) of class
Ck, for all k ≥ l, on M such that φ∗(α̃X) = αX .

Proof. This theorem can be also proved applying the affine version of the
general norm form theorem 4.1. Let us define the SCI-space T by the spaces
Tk of Ck-differentiable maps from g to Ω1

ex(M), equipped with the maximal
norm. The subset S is given by the infinitesimal momentum maps (i.e. Lie
algebra homomorphisms). The origin of the affine space (see Theorem 4.1)
is given by α and F = N = 0, so that the estimate (12) is obvious.

The SCI-group G consists of the Ck-differentiable maps from Ω1
ex(M) to

itself, where the action is ψ · α = ψ ◦ α, with ψ ∈ G and α ∈ T . The closed
subgroup G0 of G is given by the Lie algebra homomorphisms on Ω1

ex(M).
The elements of G0 preserve S.

We define the SCI-space H as the spaces of exact one-forms Ω1
ex(M), i.e.

by the spaces Hk of differential of Ck-differentiable functions on M . Using
the results of Section 4.2, an infinitesimal momentum map α is obviously
a 1-cochain in the Chevalley-Eilenberg complex Cq(g,Ω1

ex(M)), so we can
define the application H in theorem 4.1 as

(31) H : S −→ H : α 7−→ h0(α− α̃).

Notice that, as the diagram (26) commutes, we have

(32) H(αX) = h0(dHX) = dh0(HX)
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so the map H is simply given by the differential of Hamiltonian function de-
fined by the canonical momentum map. The homotopy operator h0 satisfies
the inequality (23), so the relation (13) is obvious.

Finally, for every α ∈ H, we denote by X̂ the Hamiltonian vector field
associated to αX by

(33) X̂ = π(αX , ·) = {HX , ·}

Let ψt be the flow of the Hamiltonian vector field X̂ and define Φ(α) :=
dψt. Since the flow ψt preserves π, the differential dψt is a Lie algebra
homomorphism, thus it is evident that Φ preserves the set of momentum
maps S.

The estimates (14)-(15)-(16) are direct consequences of the Lemmas in
Section 5.

Let us now generalize this construction to the case of a generic pre-
Hamiltonian Poisson action with corresponding diagram.

(34) g

''

α
❊

❊

❊

❊

""❊
❊

❊

❊

Ω1(M) // PHam(M)

The map α : g → Ω1(M) is a Lie algebra homomorphism and it associates
to each element X in g a generic one-form αX on M , which satisfies the
Maurer-Cartan equation (7).

We will assume that our pre-Hamiltonian Poisson action is admissible

that is to say, we assume that the homotopy operator sends a Maurer-Cartan
form αX to a closed form.

In this case, using the Chevalley-Eilenberg complex discussed in the pre-
vious section, Theorem 4.6 becomes:

Theorem 4.7. Consider a (connected and simply connected) Poisson Lie
group (G,πG), a compact Poisson manifold (M,π) and an admissible pre-
Hamiltonian Poisson action of (G,πG) on (M,π) where g is a semisimple
Lie algebra of compact type.

There exist a positive integer l and two positive real numbers a and b (with
b < 1 < a) such that, if α̃ is another infinitesimal momentum map on M
with respect to the same Poisson structure and Lie algebra, satisfying

(35) ‖α − α̃‖2l−1 ≤ a and ‖α− α̃‖l ≤ b

then, there exists a Poisson diffeomorphism φ : (M,π) −→ (M,π) of
class Ck, for all k ≥ l, on M such that φ∗(α̃X) = αX . This Poisson
diffeomorphism on M induces a Lie algebra homomorphism ψ : g −→ Ω1(M)
of class Ck, for all k ≥ l, on M such that ψ ◦ α = α̃.

Proof. This theorem can be proved by applying the same technique as
used for Theorem 4.6. In this case, the identification is done as follows:

• The SCI-space T is defined to be the space Tk of Ck-differentiable
maps from g to Ω1(M).

• The subset S is given by the infinitesimal momentum maps (i.e. Lie
algebra homomorphisms and Maurer-Cartan forms).
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• The origin of the affine space is given by α and F = N = 0 so that
the estimate (12) is obvious.

• The SCI-group G consists of the Ck-differentiable maps from Ω1(M)
to itself, where the action is ψ · α = ψ ◦ α, with ψ ∈ G and α ∈ T .

• The closed subgroup G0 of G is given by the Lie algebra homomor-
phisms which preserve the Maurer-Cartan equation on Ω1(M). The
elements of G0 preserve S.

• The SCI-space H by the space of generic one-forms on M .

A momentum map can be obviously viewed as a 1-cochain in the Chevalley-
Eilenberg complex Cq(g,Ω1(M)), thus the image of α by H is just h0(α− α̃).
In this case, αX is not an exact form so we can not use the commutative
diagram (26). Nevertheless, as h0 is the homotopy operator of the Chevalley-
Eilenberg complex Cq(g,Ω1(M)), the relation (13) is obvious.

Finally, consider the vector field associated to a generic one-form α

X̂ = π(h(αX ), ·).

Since we have assumed that h(αX) is a closed one-form, its flow ψt preserves
π and sends an infinitesimal momentum map to an infinitesimal momen-
tum map thus leaving the set of infinitesimal momentum maps S invariant;
Therefore e can define the application Φ : H → G0 by Φ := ψ∗

t .
The estimates (14)-(15)-(16) are direct consequences of the Lemmas in

Sect.5.

Remark 4.8. Theorem 4.7 can be easily generalized to the infinitesimal mo-
mentum map defined in terms of Gerstenhaber morphism α : (∧•

g, δ, [ , ]) −→
(Ω•(M), dDR, [ , ]π). In this case the infinitesimal momentum map generates
the action by means of the construction

(36) (∧•
g, δ, [ , ])

++

α
❙

❙

❙

❙

❙

❙

))❙
❙

❙

❙

❙

❙

(Ω•(M), dDR, [ , ]π) // (∧•TM, 0, [ , ]S)

where the multivector fields ∧•TM on M form a Gerstenhaber algebra using
the Schouten-Nijenhuis bracket [ , ]S.

As mentioned in Section 4.2, α defines the Chevalley-Eilenberg complex
Cq(∧•

g,Ω•(M)) and we can prove the rigidity of α using the technique dis-
cussed above.

Remark 4.9. When the infinitesimal momentum map α : g → Ω1(M) can
be integrated to an actual moment map µ : M → G∗, then a different proof
of theorem 3.3 can be obtained following the steps of this proof. This can
be done doing a hands-on manipulation of the integral formulae that give
the homotopy operators. Explicit formulae can be obtained dealing with the
group cohomology Cp(G,C∞(M)) (instead of Lie algebra cohomology). In
particular, we can use the following integral formula provided by V. Ginzburg
[12] for semisimple compact groups,

h(c)(g1, . . . , gn−1) =

∫

G
ρx(g−1)c(g, g1, . . . gn−1)dg.
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Remark 4.10. This result also holds for symplectic manifolds but in this
case, the proof can be made easier without any need of hard geometric anal-
ysis tools. This is because as proved in [24] and [25] when the Lie group G
has the trivial Poisson structure, the adaptation of equivariant Moser path
method entails rigidity for symplectic (not necessarily) Hamiltonian actions.

When the Poisson structure on G is not trivial we can still adapt this strat-
egy as we did in the proof of the theorem by post-composing the symplectic
diffeomorphism to obtain equivalence of infinitesimal momentum maps.

Observe, in particular, that the technical requirements on two infinitesimal
momentum maps being close is relaxed in the symplectic case.

As a corollary of this theorem we obtain a rigidity theorem for Pre-
Hamiltonian actions on Poisson manifold (which is more general that the
one included in [25] since it applies to Poisson actions that do not integrate
to global momentum maps as it is shown in example 2.3).

Corollary 4.11. Consider a connected and simply connected Lie group G
with trivial Poisson structure, a compact Poisson manifold (M,π) and a
pre-Hamiltonian Poisson action of G on (M,π) given by the construction
(34), where g is a semisimple Lie algebra of compact type. There exist a
positive integer l and two positive real numbers a and b (with b < 1 < a)
such that, if α̃ is another infinitesimal momentum map on M with respect
to the same Poisson structure and Lie algebra, satisfying

(37) ‖α − α̃‖2l−1 ≤ a and ‖α− α̃‖l ≤ b

then, there exists a Poisson diffeomorphism φ : (M,π) −→ (M,π) of class
Ck, for all k ≥ l, on M such that φ∗(α̃X) = αX .

Remark 4.12. This corollary can be useful for the study of normal forms
and rigidity problems on b-symplectic manifolds extending thus the results
of normal forms for toric actions contained in [17] to the non-toric context.

Remark 4.13. Since we have used the apparatus of SCI-spaces the ana-
logues of Theorems 4.7 and 4.7 and Corollary 4.11 also hold in the local
and semilocal case (neighbourhood of an invariant compact submanifold).
Thus, in the same spirit of [25] we also obtain rigidity for pre-Hamiltonian
Poisson Lie group actions for actions in a neighbourhood of an invariant
compact submanifold (which can be reduced to a single point in the case of
fixed points for the action).

5. Technical results

In this section we prove that the identifications given in the proof of
theorem 4.7 satisfies the hypothesis of the SCI-setting (refer to the appendix
for definitions in the SCI-setting).

5.1. Momentum maps. Consider an infinitesimal momentum map α :
g → Ω1(M) with respect to the Poisson structure π. We saw in section 4.2
that we can associate to α a Chevalley-Eilenberg complex C•(g,Ω1(M)),
with differential ∂, and homotopy operator h. If α̃ is another momentum
map with respect to the same Poisson structure then we can see the differ-
ence α− α̃ as an 1-cochain in the complex. We then define ψt = Id+χt the
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flow of the vector field X̂h(α−α̃) with respect to the Poisson structure and

ψ = ψ1 the time-1 flow.

Lemma 5.1. Let r > 0 and 0 < η < 1 be two positive numbers. With the
notations above, we have the two following properties:

a) For any positive integer k we have

(38) ‖∂(α− α̃)‖k,r ≤ C‖α− α̃‖2
k+1,r ,

where C is a positive constant independent of α and α̃.
b) There exists a constant a > 0 such that if ‖α − α̃‖s+2,r(1+η) < aη,

then we have, for any positive integer k:

(39) ‖ψ∗ ◦ α− α̃‖k,r ≤ ‖α− α̃‖2
k+s+2,r(1+η)P (‖α − α̃‖k+s+1,r(1+η))

where P is a polynomial with positive coefficients, independent of α
and α̃.

Proof.

a) Let us consider a basis {X1, . . . ,Xn} of the Lie algebra g and the
real numbers cp

ij defined by [Xi , Xj ] =
∑n

p=1 c
p
ijXp. In this proof,

we adopt for instance the notation αi, for αXi
. In order to simplify,

we denote by β = α− α̃. By definition of the differential ∂, we have:

∂β(ξi ∧ ξj) = [αi , βj ]π − [αj , βi]π − β([ξi , ξj]) .(40)

It allows us to write the following equality :

(41) [βi , βj ]π = [αi , αj]π − [αi , α̃j]π − [α̃i , αj ]π + [α̃i , α̃j ]π

Now, since α and α̃ are infinitesimal momentum maps, we have

(42) [αi , αj ]π =
n∑

p=1

cp
ijαp

and also [α̃i , α̃j]π =
∑n

p=1 c
p
ijα̃p.

Therefore, we obtain :

(43) ∂βd(ξi ∧ ξj) = [βi , βj ]π .

Finally, we just write the following estimates :

(44) ‖∂β‖k,r ≤ n(n− 1)‖π‖k,r‖β‖2
k+1,r ,

where π is the Poisson structure considered.
b) Let us consider

(45) ψ∗(αi) − α̃i = ψ∗(α)i − ψ∗(α̃i) + ψ∗(α̃i) − α̃i .

Now, we have for each i ∈ {1, . . . , n} :

ψ∗(α̃i) − α̃i =

∫ 1

0
ψ∗

t Lπ♯(h(α̃−α))αi dt(46)

=

∫ 1

0
ψ∗

t [h(α̃− α), αi]π dt +

∫ 1

0
ψ∗

t ιπ♯(αi)dh(α̃ − α) dt

=

∫ 1

0
ψ∗

t ∂(h(α̃− α))i dt+

∫ 1

0
ψ∗

t ιπ♯(αi)dh(α̃− α) dt.

We can conclude that, if the one-form h(α̃−α) is closed, following the
same steps of [25], the claim is proved. It is worth to mention that
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in this construction the Maurer-Cartan identity plays a fundamental
role; without this compatibility between the structures of the Lie
bialgebra and the de Rham complex, the rigidity could not have
been proved.

6. Appendix: Basic definitions of SCI spaces

In this appendix we give the basic definitions of SCI-spaces. This appen-
dix closely follows [25] and [26].

Definition 6.1 (SCI-spaces). An SCI-space H is a collection of Banach
spaces (Hk,ρ, ‖ ‖k,ρ) with 0 < ρ ≤ 1 and k ∈ Z+ = {0, 1, 2, . . . } (ρ is called
the radius parameter, k is called the smoothness parameter; we say that
f ∈ H if f ∈ Hk,ρ for some k and ρ, and in that case we say that f is
k-smooth and defined in radius ρ) which satisfies the following properties:

• If k < k′, then for any 0 < ρ ≤ 1, Hk′,ρ is a linear subspace of Hk,ρ:
Hk′,ρ ⊂ Hk,ρ.

• If 0 < ρ′ < ρ ≤ 1, then for each k ∈ Z+, there is a given linear map,
called the projection map, or radius restriction map,

πρ,ρ′ : Hk,ρ → Hk,ρ′ .

These projections don’t depend on k and satisfy the natural commu-
tativity condition πρ,ρ′′ = πρ,ρ′ ◦ πρ′,ρ′′ . If f ∈ Hk,ρ and ρ′ < ρ, then
by abuse of language we will still denote by f its projection to Hk,ρ′

(when this notation does not lead to confusions).
• For any f in H we have

(47) ‖f‖k,ρ ≥ ‖f‖k′,ρ′ ∀ k ≥ k′, ρ ≥ ρ′.

In the above inequality, if f is not in Hk,ρ then we put ‖f‖k,ρ = +∞,
and if f is in Hk,ρ then the right hand side means the norm of the
projection of f to Hk′,ρ′, of course.

• There is a smoothing operator for each ρ, which depends continuously
on ρ. More precisely, for each 0 < ρ ≤ 1 and each t > 1 there is a
linear map, called the smoothing operator,

(48) Sρ(t) : H0,ρ −→ H∞,ρ =
∞⋂

k=0

Hk,ρ

which satisfies the following inequalities: for any p, q ∈ Z+, p ≥ q
we have

‖Sρ(t)f‖p,ρ ≤ Cρ,p,qt
p−q‖f‖q,ρ(49)

‖f − Sρ(t)f‖q,ρ ≤ Cρ,p,qt
q−p‖f‖p,ρ(50)

where Cρ,p,q is a positive constant (which does not depend on f nor
on t) and which is continuous with respect to ρ.

As explained in [25] the properties (49) and (50) of the smoothing oper-
ator imply the interpolation inequality:

For any positive integers p, q and r with p ≥ q ≥ r we have

(51) (‖f‖q,ρ)p−r ≤ Cp,q,r(‖f‖r,ρ)p−q(‖f‖p,ρ)q−r ,
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where Cp,q,r is a positive constant which is continuous with respect to ρ and
does not depend on f .

Definition 6.2. An SCI-subspace of an SCI-space H is a collection V of
subspaces Vk,ρ of Hk,ρ, which themselves form an SCI-space (under the in-
duced norms, induced smoothing operators, induced inclusion and radius re-
striction operators from H - it is understood that these structural operators
preserve V).

A subset of an SCI-space H, is a collection F of subsets Fk,ρ of Hk,ρ,
invariant under the inclusion and radius restriction maps of H.

Definition 6.3. We will say that there is a linear left SCI-action of an
SCI-group G on an SCI-space H if there is a positive integer γ (and a pos-
itive constant c) such that, for each φ = Id + χ ∈ Gk,ρ and f ∈ Hk,ρ′ with
ρ′ = (1 − c‖χ‖1,ρ)ρ, the element φ.f (the image of the action of φ on f)
is well-defined in Hk,ρ′, the usual axioms of a left group action modulo ap-
propriate restrictions of radii (so we have scaled action laws) are satisfied,
and the following inequalities expressing some continuity conditions are also
satisfied:

i) For each k there are polynomials Q and R (which depend on k) such
that

‖(Id + χ) · f‖2k−1,ρ′ ≤ ‖f‖2k−1,ρ

(
1 + ‖χ‖k+γ,ρQ(‖χ‖k+γ,ρ)

)
(52)

+‖χ‖2k−1+γ,ρ‖f‖k,ρR(‖χ‖k+γ,ρ)

ii) There is a polynomial function T of 2 variables such that

(53) ‖(φ+ χ) · f − φ · f‖k,ρ′ ≤ ‖χ‖k+γ,ρ‖f‖k+γ,ρT (‖φ− Id‖k+γ,ρ, ‖χ‖k+γ,ρ)

In the above inequalities, ρ′ is related to ρ by a formula of the type ρ′ =
(1 − c(‖χ‖1,ρ + ‖φ− Id‖1,ρ)) ρ. (φ = Id in the first two inequalities).

Note that a consequence of the property i) is the following inequality,
where P is a polynomial function depending on k :

(54) ‖(Id + χ) · f‖k,ρ′ ≤ ‖f‖k,ρ

(
1 + ‖χ‖k+γ,ρP (‖χ‖k+γ,ρ)

)
.
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