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Abstract Modeling multispecies reactive transport in natural systems with strong heterogeneities and
complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and
inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction net-
works commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk
particle tracking method is presented. This method is capable of efficiently simulating the motion of particles
affected by first-order network reactions in three-dimensional systems, which are represented by spatially vari-
able physical and biochemical coefficients described at high resolution. The approach is based on the devel-
opment of transition probabilities that describe the likelihood that particles belonging to a given species and
location at a given time will be transformed into and moved to another species and location afterward. These
probabilities are derived from the solution matrix of the spatial moments governing equations. The method is
fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems
stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demon-
strate that the motion of particles follows a standard random walk with time-dependent effective retardation
and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of
effective parameters develops as a result of differential retardation effects among species. Moreover, explicit
analytic solutions of the transition probability matrix and related particle motions are provided for serial reac-
tions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-
dimensional random porous media shows that the power-law behavior typically observed in conservative
tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.

1. Introduction

Monitored natural attenuation is a cheap and environmentally respectful cleanup tool for organic and inor-
ganic contaminants in groundwater [MacDonald, 2000]. As advised by the United State Environmental Pro-
tection Agency this approach should always be firstly considered by groundwater managers in his decision-
making process [United States Environmental Protection Agency, 1998]. Yet the inherent complexity of a natu-
ral system typically challenges the assessment of these type of technologies [Soga et al., 2004; Bolster et al.,
2009]. The spatial variability of aquifer properties and the contaminant biochemical conditions complicate
the analysis of a groundwater polluted site. Thus, the hydraulic conductivity can vary several orders of mag-
nitude even in relatively mild heterogeneous aquifers [Gelhar, 1993; Rubin, 2003]. This typically leads to geo-
logical structures with preferential channels [Sanchez-Vila et al., 1996; Gomez-Hernandez and Wen, 1998;
Trinchero et al., 2008] and low permeability areas where contaminants can be trapped and slowly released
in time [Stroo et al., 2012; de Barros et al., 2013]. Moreover, degradation rates of contaminants in aquifers
can vary substantially in space [Allen-King et al., 2006] due to, for instance, changes in the bacteria activity
responsible for biodegradation [e.g., Fennell et al., 2001; Sandrin et al., 2004]. The effect of these different
types of heterogeneities should not be considered independently. The joint effect and correlation of the
processes underlying these different sources of variability can be equally important to assess the fate and
transport of contaminants [Rehfeldt et al., 1992; Cunningham and Fadel, 2007].

In addition, the evolution of many contaminants in natural systems results from network reactions given by
sets of chemical species that react simultaneously to produce different species. For example, hazardous
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waste sites contaminated with chlorinated solvents such as tetrachloroethylene (PCE) and trichloroethylene
(TCE) involve a serial reaction pathway resulting from anaerobic reductive dechlorination [McCarty and Sem-
prini, 1994]. In such a case, PCE will be transformed into TCE, and TCE will be biodegraded into DCE
(dichloroethylene). Subsequently, DCE will react to produce vinyl chloride (VC) [Skeen et al., 1995; Jain and
Criddle, 1995]. The toxicity of each of these species is different and, consequently, the analysis of the risk
posed by these contaminants to human health is a complicated process [Benekos et al., 2006]. In this con-
text, it is clear that an adequate analysis of natural attenuation requires efficient numerical methods capable
of incorporating complex network reactions with spatially varying hydrobiochemical properties.

Even though model predictions can be strongly affected by the spatial variability of both hydraulic and bio-
chemical properties [Rehfeldt et al., 1992; Miralles-Wilhelm and Gelhar, 1996; Miralles-Wilhelm et al., 1997;
Cunningham and Fadel, 2007; Maxwell and Kastenberg, 1999; Maxwell et al., 2007], reactive transport codes
based on Eulerian methods such as finite-difference or finite elements [e.g., Saaltink et al., 2004; Clement,
1997] still undergo computational burden and numerical problems when modeling strong heterogeneities
and complex biochemical systems at high resolution. In this context, Particle Tracking Methods (PTMs) offer
a convenient numerical solution particularly efficient in dealing with heterogeneities [e.g., Wen and G�omez-
Hern�andez, 1996; LaBolle et al., 1996; Salamon et al., 2007; Riva et al., 2008] and a large variety of complex
transport processes such as non-Fickian transport [Delay and Bodin, 2001; Cvetkovic and Haggerty, 2002; Ber-
kowitz et al., 2006; Zhang and Benson, 2008; Dentz and Castro, 2009] and multiple porosity systems [Salamon
et al., 2006b; Benson and Meerschaert, 2009; Tsang and Tsang, 2001; Huang et al., 2003; Willmann et al.,
2013]. Moreover, this methodology, which is always mass conservative, avoids some of the inherent numeri-
cal difficulties associated with Eulerian approaches, i.e., numerical dispersion and oscillations due to trunca-
tion errors [Salamon et al., 2007; Boso et al., 2013].

Several disadvantages have prevented the general use of PTMs in reactive transport problems. One of the
main problems is that the reconstruction of concentrations from a limited number of particles can develop
spurious fluctuations [Kinzelbach, 1987; Bagtzoglou et al., 1992; Salamon et al., 2006a; Boso et al., 2013]. Even
though these problems can be largely minimized by using optimal kernel density estimation methods
[Fern�andez-Garcia and Sanchez-Vila, 2011; Pedretti and Fern�andez-Garcia, 2013b], PTMs are more efficient
when the computation of solute concentrations is not necessary during the course of the simulation. This
implies that the statistical fluctuations associated to the calculation of concentrations at one time step can-
not propagate as the computations are continued. However, this also means that concentration dependent
chemical processes are not easily incorporated into PTMs without a significant trade-off with respect to
computational efficiency and accuracy [e.g., Tompson, 1993; Tompson et al., 1996; Cui et al., 2014].

Some chemical reactions can be efficiently incorporated into PTMs without having to recalculate concentra-
tions at each time step. For instance, first-order degradation reactions of a single species can be included
into PTMs by assigning to every particle a variable mass, which develops in time according to first-order
kinetics [Kinzelbach, 1987; Wen and G�omez-Hern�andez, 1996]. When all species share the same transport
operator, certain reactions in chemical equilibrium can be easily simulated with particle tracking by using
conservative components [Molins et al., 2004; Kr€autle and Knabner, 2005; De Simoni et al., 2005; Fern�andez-
Garcia et al., 2008; Fern�andez-Garcia and Sanchez-Vila, 2011], i.e., a linear combination of the species concen-
trations that can be used to decouple the system of equations into simpler problems. Fast kinetic reactions
have been properly simulated by applying simple proximity relationships between nearby particles [Edery
et al., 2009, 2010]. Rate-limited kinetic chemical reactions in a well-stirred batch system can be simulated by
using the Gillespie algorithm [Gillespie, 1976]. This method can be used to model geochemical reactions in
porous media [Palanichamy et al., 2007]. However, its application to reactive transport suffers from having
to define the scale at which sufficient mixing occurs (the representative volume of a particle). To overcome
this, encounter probability distribution functions have been derived to simulate simple bimolecular kinetic
reactions [Benson and Meerschaert, 2008; Paster et al., 2014]. Modeling transport with other types of nonlin-
ear complex chemical reactions based only on particles is still a challenge nowadays.

Several algorithms have also been introduced to simulate kinetic sorption of a single species. Some of them
are based on transition probabilities [Kinzelbach, 1987; Andričević and Foufoula-Georgiou, 1991; Michalak and
Kitanidis, 2000] and others on the probability distribution of the particle residence time in the liquid and
solid phase [Valocchi and Quinodoz, 1989; Painter et al., 2008]. In general, the efficiency of these methods
depends on the parameters adopted to simulate transport. Nevertheless, it is worth mentioning that
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Michalak and Kitanidis [2000] found that their semianalytical moment method was as accurate as others but
significantly more computationally efficient for a wide range of parameter values. This method is limited to
kinetically sorbing solutes and locally homogeneous media with constant velocity.

This paper proposes an efficient method to simulate complex network reactions in heterogeneous systems
using a random walk particle tracking approach. The approach is limited to first-order kinetic reactions
which is a common simplification of many reaction networks. Even though it is desirable to model microbial
biotransformation rates through Monod or Michaelis-Menten enzyme kinetics, the concentration of dis-
solved organics in many contaminated sites is less than that of the Michaelis half-saturation constant. In
this situation, it is often convenient to express transformation rates by pseudofirst-order reaction rates [e.g.,
Bouwer et al., 1981; Vogel et al., 1987; Haston and McCarty, 1999; Burnell et al., 2014]. Nuclear waste sites con-
taminated with radioactive species, pesticides, organic phosphates, and nitrogen species transformations
have been also typically modeled through first-order network reactions [e.g., van Genuchten, 1985; Mishra
and Mishra, 1991; Vishwanathan et al., 1998].

Among other results, the paper shows the effect of biochemical network reactions on the motion and
chemical state of particles, which is determined from the solution matrices of the spatial moments govern-
ing equations. The method extends the concept of transition probabilities [e.g., Michalak and Kitanidis,
2000; Salamon et al., 2006a, 2006b] to first-order reaction networks and develops analytical solutions of the
transition matrices associated with serial reactions.

The paper is organized as follows: Firstly, the mathematical framework leading to the calculation of transi-
tion probabilities and related equations of particle motion is developed. This is then incorporated into a ran-
dom walk particle model. At this point, the validation and justification of the new particle tracking
algorithm is presented. Finally, the capabilities of the new method are illustrated by simulating the reduc-
tive dechlorination of PCE in a three-dimensional spatially heterogeneous system.

2. Governing Equations

2.1. Transport Equations of Network Reactions
The transport equations governing the behavior of network reactions may be written for diluted chemical
systems as a set of advective-dispersive equations coupled with first-order reactions [e.g., Clement, 1997,
2001; Sun et al., 1999]

/Ri
@ci

@t
2r � /Drcið Þ1r � qcið Þ5

Xns

j51

yij kj/cj ; 8 i51; . . . ; ns; (1)

where the ith-equation represents the mass balance of the ith species, ns is the number of the species
involved, / is the porosity of the media, q [L T– 1] is the Darcy velocity vector, and D [L2 T– 1] is the disper-
sion tensor. For any given species i, Ri (dimensionless) is the retardation factor, ci [M L– 3] is the concentra-
tion in the liquid phase, ki [T– 1] is the first-order contaminant destruction rate constant, and yij [M M– 1] is
the effective yield coefficient for any reactant or product pair. These coefficients are defined as the ratio of
mass of species i generated to the amount of mass of species j consumed.

Sorption reactions are assumed to be in local equilibrium and to follow a linear sorption isotherm. For math-
ematical convenience, here the notation considers that the yield coefficients yii (j 5 i) are equal to 21, which
represents the biodecay of the ith species. Also, it has been assumed that, without loss of generality, only
aqueous concentrations are subject to chemical reactions, i.e., no biodegradation in the sorbed phase
occurs. Other scenarios can be simulated by properly redefining the degradation rates [van Genuchten,
1985]. Note that all properties are defined as spatially varying coefficients.

2.2. Spatial Moments Differential Equations
In particle tracking methods the evolution of a solute plume is approximated by a discrete number of mov-
ing particles. The spatial position and attributes of each particle are then changed in time according to sim-
ple relationships. In this work these fundamental relationships are derived so as to satisfy (2). For this, we
will consider the approach of Kitanidis [1994] and Salamon et al. [2006b], which assume that each particle
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can be seen as a small plume that moves according to its spatial moments. The governing equations of the
spatial moments of a network reaction system can be derived as follows.

Let us start by expressing the system of transport equations in terms of total densities qi, defined as the
sum of aqueous mass and sorbed mass of a given species i per unit volume, i.e., qi5/Rici . Thus,

@qi

@t
2r � /Dr qi

/Ri

� �
1r � q

qi

/Ri

� �
5
Xns

j51

Kijqj ; 8i51; . . . ; ns; (2)

where Kij5yij kj=Rj . The first three absolute spatial moments of a solute plume are defined as

m0
i ðtÞ5

ð
qiðx; tÞdV ; 8 i51; 2; . . . ; ns; (3)

m1
i ðtÞ5

ð
xqiðx; tÞdV; 8 i51; 2; . . . ; ns; (4)

m2
i ðtÞ5

ð
x � xtqiðx; tÞdV; 8 i51; 2; . . . ; ns: (5)

The zeroth spatial moment m0
i is the total mass of the ith species. Its temporal evolution will help determin-

ing the chemical state (species) assigned to a given particle at a later time. The first and second spatial
moments, m1

i and m2
i , describe the position of the center of mass of species i and its spread about the ori-

gin of coordinates, respectively. They will be used to move particles by advection and dispersion.

Since a particle located at position xt and time t can be seen as an infinitely small plume [Kitanidis, 1994], its
total density and related moments can be represented by

qiðx; tÞ5m0
i dðx2xtÞ; 8 i51; 2; . . . ; ns; (6)

xqiðx; tÞ5m1
i dðx2xtÞ; 8 i51; 2; . . . ; ns; (7)

x � xtqiðx; tÞ5m2
i dðx2xtÞ; 8 i51; 2; . . . ; ns: (8)

where the Dirac function d expresses the strict consideration of the plume system as a particle. Accepting
that mass fluxes far away from the particle plume are negligible and following the procedure described by
Kitanidis [1988], integration by parts of (2) considering (6)–(8) yields

dm0
i

dt
5
Xns

j51

Kij m
0
j ; 8 i51; 2; . . . ; ns; (9)

dm1
i

dt
5

qp

/Ri
m0

i 1
Xns

j51

Kijm1
j ; 8 i51; 2; . . . ; ns; (10)

dm2
i

dt
5ðm1

i Þ �
qt

p

/Ri
1

qp

/Ri
� ðm1

i Þ
t
1

2D
Ri

m0
i 1
Xns

j51

Kij m2
j ; 8 i51; 2; . . . ; ns; (11)

where qp is the modified darcy velocity, defined as qp5q1r � /Dð Þ. The components of this vector are
expressed as qp5ðq0x; q0y ; q0zÞ

t from then on. Moreover, all parameters will be considered at the particle posi-
tion xt . For the sake of notational simplicity this dependence will be shown only when its omission might
create confusion.

Equations (9)–(11) constitute a linear system of ordinary differential equations (ODE) that can be solved
sequentially. The first equation (9) describes the mass transformation due to biochemical reactions. The
other two equations, (10) and (11), describe the advective-dispersive motion of a particle. The first terms on
the left hand-side of these equations is the standard random walk motion of a particle [Kinzelbach, 1987;
Tompson and Gelhar, 1990; Salamon et al., 2006a]. Interestingly, the last term is an additional quantity that
takes into consideration the fact that the motion of a particle is also affected by biochemical reactions. The
importance of this term will be explored in section 6.1.

In order to solve this ODE system it is convenient to analyze each component of the vector m1
i and the

matrix m2
i independently. Let us consider for instance the component x of m1

i and the component xy of m2
i

and define the following vectors
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l5ðm0
1; . . . ;m0

ns
Þt;

vx5ðm1
1;x ; . . . ;m1

ns;xÞ
t;

wxy5ðm2
1;xy ; . . . ;m2

ns ;xyÞ
t:

The system of equations can then be rewritten as

dl

dt
5Kl; (12)

dvx

dt
5

q0x
/

R21l1Kvx ; (13)

dwxy

dt
5

q0y
/

R21vx1
q0x
/

R21vy12Dxy R21l1Kwxy ; (14)

where R is a diagonal matrix composed of retardation factors, i.e., R5diagfR1; :::; Rnsg. The theory of linear
differential equations assures that ns linearly independent solutions for systems (12), (13) and (14) always
exist, which may be labeled as

lð1ÞðtÞ; . . . ; lðnsÞðtÞ;

v
ð1Þ
x ðtÞ; . . . ; v

ðnsÞ
x ðtÞ;

wð1Þxy ðtÞ; . . . ;wðnsÞ
xy ðtÞ:

Since any solution can be written as a linear combination of these independent solutions, it is often conven-
ient to lump the individual solution vectors together to a so-called solution matrix. We define thereby the
solution matrix M, Xx and Wxy as

M5ðlð1Þ; . . . ; lðnsÞÞ;

Xx5ðvð1Þx ; . . . ; v
ðnsÞ
x Þ;

Wxy5ðwð1Þxy ; . . . ;wðnsÞ
xy Þ;

The solution matrix obeys also the following differential system of equations

dM
dt

5KM; (15)

dXx

dt
5

q0x
/

R21M1KXx ; (16)

dWxy

dt
5

q0y
/

R21Xx1
q0x
/

R21Xy12Dxy R21M1KWxy : (17)

This differential system of equations is coupled but can be solved sequentially provided that an initial con-
dition is given. Based on this, the next sections show that the change in the chemical state (species) of a
particle and its corresponding motion are dictated by the set of solutions associated to a solute plume of
initial mass equal to one, and first and second absolute spatial moments equal to zero. This is mathemati-
cally written as

Mðt50Þ5Id;

Xxðt50Þ50;

Wxyðt50Þ50:

The solution matrices associated with other directions will be simply obtained by substituting the subscripts
x and y by other coordinate directions {x, y, z}.

3. Species State Transition Probabilities

Let us consider the zeroth absolute moment. The solution for MðtÞ under the initial condition Mðt50Þ5Id is
the species state transition probability matrix PðtÞ. The components PijðtÞ of this matrix express the
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probability that a given species j at time t 5 0 will be transformed into another species i at a later time t due
to biochemical reactions. This is demonstrated by noticing that the system of equations given by (15) can
be seen as the forward equations of a continuous-time markov chain process in which the state space is the
ns possible species available in the network reaction system [Lawler, 2006]. This approach has been used in
chemical physics to model chemical reactions [Tamir, 1998; Kurtz, 2003].

This can also be explained by physical principles. Consider, for instance, a system that evolves from an initial
condition given by lðt50Þ5ð1; 0; . . . ; 0Þt . When all particles have the same mass, the probability Pi1ðtÞ that
a particle initially being species 1 is transformed into any species i at a later time t can be estimated by the
mass fraction of the species lðtÞ. Repeating this for any given initial species j51; :::; ns leads to the transi-
tion probability matrix PðtÞ.

Under heterogeneous biochemical conditions, the solution of (15) is expressed by the Peano-Baker
series

PðtÞ5Id1

ðt

0
Kðxs1Þds11

ðt

0
Kðxs1Þ

ðs1

0
Kðxs2Þds2ds11 . . . : (18)

Nevertheless, when a small enough time step is considered, as typically used in particle tracking methods,
an approximation of (18) can be given by

PðtÞ5exp ðKðxtÞtÞ: (19)

The only complexity in (19) consists in solving the exponential of a matrix. Different techniques exist to eval-
uate such a matrix [Moler and van Loan, 2003; Salamon et al., 2006a, 2006b]. Among them, it is observed
that, for particle tracking purposes, a very convenient approach is the diagonalization of a matrix. Since the
biochemical properties typically vary among the different species, the matrix K has distinct eigenvalues and
can be therefore decomposed as K5SK0S21, where K0 is a diagonal matrix formed from the eigenvalues of
K, and the columns of S are the corresponding eigenvectors of K. Based on this, the solution matrix (19) can
be written for small time steps as

PðtÞ5SðxtÞexp K0ðxtÞtð ÞS21ðxtÞ: (20)

The eigensystem of a matrix can be determined by several numerical methods [Smith et al., 1976]. Never-
theless, as shown in section 6.1, simple analytical solutions can be obtained for important particular cases,
e.g., serial reactions.

4. First and Second Spatial Moments

Having solved the mass evolution of a particle, we can now determine the first and second spatial
moments. It is important here to focus on the normalized first spatial moment Aij and the normalized sec-
ond central spatial moment Bij defined as

AijðtÞ5
1

PijðtÞ
Xx;ijðtÞ; Xy;ijðtÞ; Xz;ijðtÞ
� �t

; (21)

BijðtÞ5B0ijðtÞ2AijðtÞAt
ijðtÞ; (22)

where

B0ijðtÞ5
1

PijðtÞ

Wxx;ijðtÞ Wxy;ijðtÞ Wxz;ijðtÞ

Wyx;ijðtÞ Wyy;ijðtÞ Wyz;ijðtÞ

Wzx;ijðtÞ Wzy;ijðtÞ Wzz;ijðtÞ

0
BB@

1
CCA: (23)

Suppose that the particle plume initially associated with species j is transformed into species i in a given
time interval t, the matrix AijðtÞ and BijðtÞ describe, respectively, the position of the center of mass of the
particle plume and the spread about its center. An outline of the derivation of the spatial moments is pro-
vided in Appendices A and B. The solution can be written in terms of effective parameters as

AijðtÞ5
qpt

/Re
ijðtÞ

; (24)
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BijðtÞ5
2De

ijðtÞ
Re

ijðtÞ
t; (25)

where Re
ij is the effective retardation factor and De

ij is the effective dispersion coefficient given by

Re
ijðtÞ5PijðtÞ

Xns

p;q;r51

SipS21
pq R21

qq Sqr S21
rj FprðtÞ

 !21

; (26)

De
ij5D1

Re
ijðtÞ

GijðtÞ
2

1
2Re

ijðtÞ

 !
qpqt

p

/2 t; (27)

where

GijðtÞ5PijðtÞ
Xns

a;b;p;q;r51

SiaS21
ab SbpS21

pq Sqr S21
rj

RbbRqq
HaprðtÞ

 !21

: (28)

The matrix function FðtÞ and HðtÞ are defined in the Appendices A and B, respectively. The temporal behav-
ior of the effective retardation factor and the effective dispersion coefficient will be explored in section 6 for
a serial reaction system. Nevertheless, while these expressions are fairly complex, several limiting solutions
are worth mentioning. For small times, these matrix functions can be approximated by

FprðtÞ5exp
Kpp

2
t

� �
exp

Krr

2
t

� �
; (29)

HaprðtÞ5
1
2

exp
Kaa

3
t

� �
exp

Kpp

3
t

� �
exp

Krr

3
t

� �
: (30)

Based on this, the effective retardation factor of a particle initially associated with species j and transformed
into species i at a later time t can be seen as a simple weighted average of the retardation factors involved
in the network reaction system. The weights are given by the transition probability matrix evaluated at the
midpoint,

Re
ijðtÞ5PijðtÞ

Xns

k51

Pikðt=2ÞR21
kk Pkjðt=2Þ

 !21

: (31)

Likewise, the matrix function GðtÞ can be approximated by

GijðtÞ52PijðtÞ
Xns

b;q51

Pibðt=3ÞR21
bb Pbqðt=3ÞR21

qq Pqjðt=3Þ
 !21

: (32)

Interestingly, when all retardation factors have similar values (R5R115:::5Rnsns ), these expressions reduce
to

Re
ijðtÞ5R; (33)

De
ij5D; (34)

where, in this case, GijðtÞ52R2 is used. Essentially, this result reflects that even in homogeneous porous
media the time dependence of the effective retardation factor and dispersion coefficient can develop as a
result of differential retardation factors among species. In a real field setting, this effect will be masked by
other phenomena such as the impact of heterogeneity [e.g., Rajaram and Gelhar, 1993; Rajaram, 1997;
Fern�andez-Garcia et al., 2005b; Dentz and Castro, 2009] or incomplete mixing [e.g., Sanchez-Vila et al., 2010;
Dentz et al., 2011].

5. The Particle Tracking Algorithm

In order to simulate a multispecies reactive transport problem with particle tracking, the distribution of
mass of each species were represented by a different cloud of particles. The challenge here is then to
define, from initial conditions, the species and position that a given particle will be associated with after a
given time t. To do so, each particle is defined by its position xt and species state st at time t. Knowing the
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particle conditions at a given time [xt ; st], we aim then to define the condition in a later time [xt1dt; st1dt].
The change in chemical state is determined from the species state transition probability matrix PðtÞ, while
the corresponding particle motion is given by the first and second spatial moments. More specifically, the
random walk algorithm is as follows.

For each time step dt a random number r is generated from an uniform distribution in a unit interval and
the new species state st1dt is to be that integer l for which

Xl21

i51

PijðdtÞ < r �
Xl

i51

PijðdtÞ: (35)

Knowing its species at time t and t 1 dt, a particle will move according to its corresponding spatial moments
given by (24) and (25) with j5st and i5st1dt . Based on this, the particle will move as

xt1dt5xt1AijðdtÞ1B1=2
ij ðdtÞ � nðdtÞ; (36)

fB1=2
ij gfB1=2

ij g
t
5Bij; (37)

where n(t) is a normally distributed random variable with zero mean and unit variance, and xt is the position
of the particle at time t. In the limit, when the number of particles tends to infinity, the particle mass density
that evolves from the repeated application of (35) and (36) will satisfy the reactive transport equation (2).
Since a discrete number of particles is always used, the method is prone to encounter problems originating
from subsampling. Smoothing techniques must be then used to improve the performance of the method
and further reduce the number of particles [Fern�andez-Garcia and Sanchez-Vila, 2011]. Once the total density
field qiðx; tÞ is estimated, concentrations can be calculated as ciðx; tÞ5qiðx; tÞ=ð/ðxÞRiðxÞÞ. The drift and dis-
persive terms in (36) were obtained neglecting boundary effects. Specific formulations should be derived to
include the effect of boundaries on particles. Alternatively, one can switch the motion of a particle at the
boundary so as to follow the standard random walk algorithm with a retardation factor determined by its
initial state. This will require a more restrictive criterion in dt at that location (see section 6.3).

It is worth mentioning that the method can still be used when not all products in the reaction network are
accounted for (e.g., the release of chlorides during reductive dechlorination) or when the reaction chain is
truncated for simplification purposes (e.g., only PCE and TCE are considered in the simulation). In those
cases, the total mass of the species considered will decrease with time and the columns in the state transi-
tion probability matrix will not sum to one, i.e.,

Pns
i51 Pij < 1. This loss of mass in the chemical system due to

the transformation of species into unspecified products can easily be considered in the algorithm by remov-
ing from the simulation those particles that satisfy that

r >
Xns

i51

PijðtÞ: (38)

The method has advantages and limitations. The major limitation is that only contaminated sites with
concentrations below the Michaelis half-saturation constant (in the pseudolinear regime) can be prop-
erly simulated. Monod or Michaelis-Menten enzyme kinetics should be used otherwise. The main
advantage is that, under this condition, the transport problem is still linear and, consequently, the
motion of a particle is independent from the type and density of particles nearby. This has several
implications. Chief among them is that the particle tracking simulation can be executed one particle at
a time (or in parallel) with a constant displacement (CD) scheme [Wen and G�omez-Hern�andez, 1996].
The CD scheme used here locally adapts the time step dt to satisfy a fixed courant number (Cu) at
any given time and position,

kqk
kDsk

dt
/Re

ij
5Cu < 1; (39)

where Ds5ðdx; dy; dzÞ is the size of the grid cell. This maintains accuracy and efficiency in heterogeneous
porous media. Otherwise, areas with small velocities can slow down the simulation [Wen and G�omez-
Hern�andez, 1996].
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6. Application to Parent-Daughter Serial Reactions

6.1. Analytical Solution
The particle tracking algorithm is here applied to simulate a serial reaction system. For instance, the sequen-
tial reductive dechlorination of the perchloroethylene (PCE! TCE! DCE! VC! 0). The nonzero compo-
nents of the matrix K defining this chemical system can be written as

Kij52
ki

Ri
; i5j and Kij5

yi kj

Rj
; j5i21; j < i (40)

Figure 1. Transition probabilities as a function of the limiting Damk€ohler number for a particle initially belonging to species (a) PCE, (b)
TCE, (c) DCE, and (d) VC. The parameters adopted to generate these probabilities are presented in Table 1.

Table 1. Chemical and Physical Parameters Used to Compare the New Particle Tracking Method With the Well-Known Finite Difference
Transport Code RT3D

Value

Parameter pce tce dce vc

First-order decay, ki (days) 0.05 0.03 0.02 0.015
Yield coefficient, yi=j ðmol21Þ 3 0.79 0.74 0.64
Retardation factor, Ri 7.1 2.9 2.8a, 2.0b 1.4

Number of cells 500
Cell dimension, (m) 1.0
Longitudinal dispersivity (m) 0.5
Darcy velocity ðmd21Þ 0.3
Porosity 0.3

aUsed for the comparison with RT3D in section 6.1 (Figures 1 and 2) and the 3-D simulations (Figures 11 and 12).
bUsed to illustrate the normalized moments (Figures 3 and 4) and the effective parameters (Figures 5 and 6).
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where yi is the amount of species i produced from its immediate parent species i21. Considering strictly a
forward serial reaction, we are dealing here with a triangular matrix K, a mathematically convenient matrix
form that allows us deriving an analytical expression of the eigensystem. Indeed, the eigenvalues of a trian-
gular matrix are its diagonal elements, i.e., the diagonal matrix K0 is expressed as K 0ii52ki=Ri . The columns
vectors of the matrix S are the corresponding eigenvectors. The derivation shows a pattern that can be writ-
ten for a generic number of species as

Sij5S21
ij 50; j > i;

Sij5S21
ij 51; j5i;

Sij5Ri R
i2j21
j

Yi21

m5j

kmym11

Rj km112Rm11kj

� �
;

S21
ij 5Ri2j

i

Yi21

m5j

2kmym11

Rmki2Rikm

� �
:

Substituting these analytical expressions into (20)–(25) will provide transition probabilities and correspond-
ing spatial moments with highest computational efficiency. Note that the analytical solution is theoretically
applicable to any number of species involved in a serial reaction system.

Based on these results, Figure 1 displays the transition probabilities associated to a particle that initially
belongs to species PCE (a), TCE (b), DCE (c) or VC (d). The parameters used resemble those typically obtained
in the field and are summarized in Table 1. The time variable in the following figures is presented in

Figure 2. First normalized spatial moment as a function of the limiting Damk€ohler number for a particle initially belonging to species (a) PCE,
(b) TCE, (c) DCE, and (d) VC.
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dimensionless form based on the limiting Damk€ohler number Da in the reaction chain. Given a particle ini-
tially belonging to species j, it is defined as

Da5min fkjt=Rj; :::; kns t=Rnsg: (41)

Let us focus on Figure 1a. Interestingly, intermediate species such as TCE show two clear regimes. While at
early times the probability of being TCE increases due to the biodegradation of its immediate parent species
PCE, later on, this probability reaches a maximum and afterward vanishes due to its transformation into
DCE. Similar behavior is also observed in other cases. Figures 3 and 4 show the corresponding center of
mass and spread given by (24) and (25). Remarkably, since daughter species have smaller retardation factors
(RPCE > RTCE > RDCE > RVC), particles that are transformed into daughter species reflect larger effective
velocities. Thus, the effective velocity associated with the transformation of PCE into TCE is smaller than
that of the transformation of PCE into DCE or VC.

The developed particle tracking algorithm was incorporated into the numerical random walk particle track-
ing code RW3D [Fern�andez-Garcia et al., 2005a]. Figure 2 shows the simulation of the reductive dechlorina-
tion of PCE in a homogeneous one-dimensional system. The input parameters used are shown in Table 1. A
total of 100,000 particles were used to simulate a punctual and instantaneous injection. Results are con-
trasted against those generated by the well-known finite difference code RT3D [Clement, 1997]. An excellent
match is obtained.

6.2. Behavior of Effective Parameters
As previously shown in section 4, the expressions of the first and second spatial moments developed for a
network reaction system (24) and (25) are similar to the classical random walk particle motion, provided
that an effective retardation factor and an effective dispersion coefficient are properly introduced. Figure 5

Figure 3. Second normalized spatial moment as a function of the limiting Damk€ohler number for a particle initially belonging to species
(a) PCE, (b) TCE, (c) DCE, and (d) VC.
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shows the temporal behavior of the
effective retardation factor Re

ij for a serial
reaction system (dechlorination of PCE).
Suppose that a particle initially belong-
ing to species j is transformed into spe-
cies i. Results show that at small times
the effective retardation factor is similar
to the harmonic mean of the individual
retardation factors of the species lying
between j and i. This value is repre-
sented by R̂

e
ij . On the other hand, at

large times, the effective retardation
tends to the retardation factor of the
species having the highest expected life
span, i.e., ratio of the retardation factor
to the decay rate. This result can be
physically interpreted by noticing that
as time increases the less degradable
species should persist and therefore
govern the solution. Figure 5a shows
the behavior of the effective retardation

factor associated with a particle being initially PCE. Since PCE is the less degradable species in the reaction
system (smallest kPCE=RPCE value), results demonstrate that the effective retardation factor comes close to
RPCE at large times for all species. On the other hand, for the same reason, when the initial species is TCE in
Figure 5b (PCE does not exist), the effective retardation factor is similar to RDCE at large times.

The temporal evolution of the effective dispersion coefficient is shown in Figure 6 for a serial reaction sys-
tem. For the PCE-PCE transformation (no change in the particle species state), the spread of a particle
reflects a normal diffusion-dispersive process, i.e., constant dispersion coefficient. However, for intermediate
transformations such as PCE-TCE or PCE-DCE an interesting behavior is developed with different time
regimes. Let us focus on PCE-DCE, as DCE is produced from the transformation of PCE into TCE and TCE into
DCE, the effective dispersion coefficient rapidly increases with time approaching a maximum that exhibits a
value larger than the dispersion coefficient. As time goes by, the natural attenuation of DCE destroys the
effective dispersion coefficient and follows a rapid decay with time.

6.3. Performance Assessment
In this section the performance of four different implementations of our particle tracking solution are com-
pared. These different strategies are then contrasted against a known reactive transport code, RT3D. The
state transition probability matrix PðtÞ is always used to determine the change in chemical state but a differ-
ent approximation of the first and second spatial moments is used in each numerical strategy. This will help
studying the benefits of using higher-order spatial moments in terms of computational efficiency. The fol-
lowing algorithms were analyzed:

• Model A: The motion of particles follows the standard random walk algorithm with a retardation factor
determined by its initial state,

AijðdtÞ �
qpdt

/Ri
; (42)

BijðdtÞ � 2D dt
Ri

: (43)

• Model B: The motion of particles only incorporates an effective retardation factor in the drift term of the
standard random walk algorithm,

AijðdtÞ5
qpdt

/Re
ijðdtÞ ; (44)

Figure 4. Comparison of the proposed particle tracking method with the RT3D
code. Mass distribution as a function of distance obtained at t 5 200 days result-
ing from a punctual and instantaneous injection of PCE in a homogeneous one-
dimensional model.
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BijðdtÞ � 2Ddt
Ri

: (45)

• Model C: The motion of particles incorporates both an effective retardation factor and an effective disper-
sion coefficient according to (24) and (25).

• Model D: The motion of particles follows the standard random walk algorithm with an effective retarda-
tion factor determined by the harmonic mean value R̂

e
ij ,

AijðdtÞ �
qpdt

/R̂
e
ij

; (46)

BijðdtÞ � 2D dt

R̂
e
ij

; (47)

where

Re
ijðdtÞ � R̂

e
ij5ði2j11Þ

Xi

k5j

Rk
21

 !21

: (48)

Consider a 200 meters long one-dimensional homogeneous problem with a groundwater velocity of 0.6 m/
d and a longitudinal dispersivity of 0.5 m. The degradation of PCE into its daughter species
(PCE ! TCE ! DCE ! VC) is simulated. The parameters adopted are shown in Table 1. A substantial
amount of PCE particles (200,000) was initially injected to reduce the effects of subsampling. The perform-
ance of the method is analyzed by estimating the normalized root mean square deviation (NRMSD) of the

Figure 5. Effective retardation factor as a function of the limiting Damk€ohler number for a particle initially belonging to species (a) PCE, (b)
TCE, (c) DCE, and (d) VC. The dashed lines represent the harmonic mean value.
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number of particles of TCE observed after 200 days in different block areas of the domain. The NRMSD is
estimated by

NRMSDðdtÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nb

Xnb

i51

npsim;iðdtÞ2npref ;i

npref ;i

� �2
vuut ; (49)

where npsim;i is the number of TCE particles observed in the ith block, npref is the reference number of TCE
particles obtained using the random walk method with a very small time step, and nb is the total number
of blocks used to discretized the domain (nb 5 200). Figure 7 shows the normalized root mean square devi-
ation as a function of the time step dt used in the random walk. The time step is written in terms of the
Damk€ohler number, i.e., Da5kPCE dt=RPCE .

As expected, we note a clear improvement of the solution with decreasing time step and usage of higher
spatial moments. For a given time step, Model C is more accurate than Models A and B. Interestingly, the
differences between Model A and Model B (addition of first moments) are substantially larger than those
observed between Model B and C (addition of second central moments). This suggests that the spatial
moments of order higher than two are somehow redundant in practice. Moreover, the application of the
harmonic mean in Model D reflects very accurate results with less computational effort compare to Model B
and C.

Results also show that when the time step leads to a limiting Damk€ohler number Da smaller than 0.05 the use
of only transition probabilities in Model A is sufficient to obtain accurate results. From a computational per-
spective, if higher spatial moments are considered (Model B and C), the time step in the random walk method
can be larger than usual, drastically increasing its computational efficiency. Thus, in comparison to Model A,

Figure 6. Normalized effective dispersion coefficient as a function of the limiting Damk€ohler number for a particle initially belonging to
species (a) PCE, (b) TCE, (c) DCE, and (d) VC.
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Model B and C can use larger Da val-
ues without additional computational
effort. Interestingly, a simple approxi-
mation of the effective retardation fac-
tor by the harmonic mean (Model D)
provides more accurate results than
Model B. In this case, the limiting
Damk€ohler number should be smaller
than about 0.5.

The performance of our particle track-
ing method was then compared to a
highly discretized finite-difference
model. To do this, we chose to use the
RT3D code, which has been widely
employed in field applications for
modeling bioremediation reactions.
However, we note that RT3D simulates
chemical reactions through an
Operator-Split numerical strategy.
Therefore, results shown here cannot
be directly extrapolated to other

numerical strategies. The setup of the simulations is the same as before with a P�eclet number of 240 (advec-
tive-dominated). Among the several advection solvers available in RT3D, the ULTIMATE-TVD scheme was
employed, which preserves monotonicity and avoids spurious oscillations in sharp fronts. The grey line shown
in Figure 7 displays the NRMSD generated by the RT3D-TVD scheme. Here solute concentrations obtained
from RT3D were converted into particles to be able to apply (49) in a similar fashion. Results demonstrate
that, in this flow regime, the authors’ particle approach produces always more accurate results than the RT3D-
TVD scheme. This effect drastically increases with the time step employed. A close look at the results is pro-
vided in Figure 8, which shows the corresponding concentration profiles of PCE and TCE for different time
step sizes. Remarkably, in this figure, one can clearly see that even though the RT3D-TVD scheme is capable of
properly predicting conservative species (Figure 8a), the corresponding PCE and TCE concentrations (Figures
8b and 8c) exhibit numerical dispersion artifacts that increase with the time step size. This illustrates the high
sensitivity of the operator-splitting finite difference method to generate numerical artifacts in reactive trans-
port modeling. Effect that seems not to vanish even for small Da close to 0.01. On the contrary, our particle
tracking approach is demonstrated to be numerically robust over a wide range of conditions.

7. Reductive Dechlorination of PCE in a 3-D Highly
Heterogeneous System: An Example

The proposed method can efficiently model complex network reactions without restrictions in the spatial
variability of the parameters. To illustrate this, a three-dimensional synthetic example of the effect of hetero-
geneity on the dechlorination of organic solvents is provided at a high resolution. Thus, the biotransforma-
tion of PCE into its daughter products TCE, DCE and VC are considered.

For this purpose, one realization of a sequential Gaussian simulation was chosen to describe the spatial vari-
ability of the hydraulic conductivity in an aquifer. The natural log of the hydraulic conductivity is repre-
sented by a zero mean random function associated with an isotropic spherical variogram characterized
with a range a of 17 m and a variance of 2. For simplicity, all other parameters were assumed to be con-
stant. The domain extends over an area of Lx 5 300 m, Ly 5 180 m, and Lz 5 120 m, which is discretized into
cells of size Dx5Dy5Dz51:0 m. This represents a 6.48 Million cells simulation. Figure 9 shows a sketch of
the simulation setup. A confined aquifer driven by a mean uniform hydraulic gradient of 0.3 oriented along
the x direction is considered. The flow problem is solved by means of the well known finite difference code,
MODFLOW [Harbaugh et al., 2000]. This velocity field is then introduced into the particle tracking code,
RW3D. A CD scheme [Wen and G�omez-Hern�andez, 1996] with Cu 5 0.1 is employed to decrease

Figure 7. Normalized root mean square deviation (NRMSD) as a function of the
time step used in the random walk simulation for the different model implementa-
tions: (a) Model A–zeroth moment; (b) Model B - 0th and 1st moments; (c) Model
C–zeroth, first, and second moments; and (d) Model D–approximation of the effec-
tive retardation coefficient by the harmonic mean. The gray line gives the NRMSD
for the finite difference code RT3D with the third-order TVD scheme to solve
advection.
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computational effort. All simulations
were executed by the combination
MODFLOW/RW3D, which takes
advantage of the proposed
algorithm.

Solute transport was simulated by
releasing 100, 000 PCE particles ran-
domly distributed in a vertical plane
rectangular area of 34 m width and
17 m height located at x 5 80 m (an
injection that extends 2 3 1 ranges).
The total mass injected was one unit.
Three control planes situated at 2, 5
and 10 ranges from the injection loca-
tion (corresponding to x 5 114 m, 165
m and 250 m) were used to measure
the mass flux breakthrough curves
(BTCs) of all species. Subsampling
effects were mitigated by reconstruct-
ing each BTC from the particle travel
time distribution using an adaptive
kernel density estimator method
[Pedretti and Fern�andez-Garcia, 2013b].
Input chemical and physical parame-
ters are summarized in Tables 1 and 2.
A purely conservative tracer was also
simulated with the same number of
particles for comparison purposes.

7.1. Computational Efficiency
The computational efficiency of our particle tracking method is demonstrated through an estimation of
CPU times and numerical accuracy. Figure 10 shows the CPU time required in the particle tracking simula-
tion as a function of the number of particles injected for the four different model implementations used.

Figure 8. (a) Tracer, (b) PCE, and (c) TCE concentrations profile using the random
walk method and the finite difference solution RT3D with different Damk€ohler
number.

Figure 9. Aerial view of the randomly distributed hydraulic conductivity field with the location of the injection and control planes.
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CPU times were obtained with a typical
desktop computer (Intel(R) Xeon(R) CPU
with 2.67 GHz and 3GB of RAM memory).
These results are contrasted against the
mean relative mass discharge error
(RME) of the species breakthrough
curves determined by,

RMEðxÞ5 1
nsnt

Xnt

j51

Xns

i51

E2
i ðtj; xÞ

 !1=2

;

(50)

where

Eiðt; xÞ5 Qsim;iðt; xÞ2Qref ;iðt; xÞ
Qref ;iðt; xÞ : (51)

Here Qsim;iðt; xÞ is the cumulative break-
through curve of the ith species

obtained at the x 5 250 control plane, Qref ;iðt; xÞ is the corresponding reference cumulative breakthrough
curve obtained by injecting a large number of particles (105) in model C, Eiðt; xÞ is the relative error associ-
ated with the cumulative breakthrough curve of the ith species obtained at x 5 250 and time t, and nt is the
number of discrete times in the cumulative breakthrough curve. Figure 10 shows that the proposed method
is capable to solve a finely discretized heterogeneous multicomponent reactive transport model in a rela-
tively small range of CPU times (less than 15 min for 105 particles). CPU time increases linearly with the
number of particles. The choice of the number of particles will determine the accuracy of the solution.
Results also illustrate the gain in computational efficiency given by an approximate solution of the effective
retardation and dispersion parameters (Model A and D). The small benefit in numerical accuracy granted by
the use of higher moments in this case is consistent with our previously analysis (see Figure 7). In this case,
the CD scheme, which adapts the time step to local velocities based on the grid courant number Cu, led to
sufficiently small Damk€ohler numbers (Da< 0.01).

7.2. Importance of Heterogeneity
The effect of heterogeneity is demonstrated by comparing the heterogeneous solution with an equivalent
homogeneous one obtained with apparent transport parameters. These apparent parameters were esti-
mated from the first two temporal moments of the heterogeneous tracer breakthrough curves (parameters
given in Table 3). The resulting BTCs are shown in Figure 11. The figures on the left display the heterogene-
ous solutions obtained at three control planes while the figures on the right illustrate the corresponding
homogeneous solutions. The simulated tracer BTCs in the heterogenous system are highly asymmetric (pos-

itively skewed) and characterized by
a marked peak and a power-law
behavior at late times similar to
c � t21:4. This effect is clearly devel-
oped in the second control plane (5
ranges from the injection location)
and seems to vanish from then on.
Field and laboratory evidence of
power-law behavior resulting from
the effect of heterogeneity is signifi-
cant [Hoehn et al., 1998; Haggerty
et al., 2000; Fern�andez-Garcia et al.,
2004; Gouze et al., 2008]. In the field,
the power-law exponent typically
falls anywhere between one and
three [Haggerty et al., 2000]. The
results of this study are consistent

Table 2. Physical Parameters Adopted for Simulating Serial Reaction Trans-
port in a 3-D Heterogeneous Porous Medium

Parameter Value

Flow Problem
Average hydraulic gradient 0.3
Longitudinal dispersivity, aL (m) 0.04
Transversal dispersivity in the horizontal plane, aTH (m) 0.004
Transversal dispersivity in the vertical plane, aTV (m) 0.001
Porosity, / 0.3
Heterogeneous Field
Variogram type spherical
Geometric mean of K ðm2=dÞ 1.0
Variance of ln K 2.0
Range, a (m) 17.0
Domain Discretization
Number of cells in x direction, nx 300
Number of cells in y direction, ny 180
Number of cells in z direction, nz 120
Cell dimension, Dx3Dy3Dz ðm3m3mÞ 1.0 3 1.0 3 1.0

Figure 10. CPU time and mean relative mass discharge error (RME) as a function of
the number of particles used in the random walk simulations for the four different
model implementations.
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with field observations and demonstrate that power law distributions appear naturally in heterogeneous
porous media, provided that a full three-dimensional model is used. Similar results on the formation of
BTCs tailing during convergent flow tracer tests have been recently reported by Pedretti et al. [2013a].

The BTCs of the reactive species show an interesting different behavior of the late-time distribution. In fact,
biodegradation seems to hinder the formation of power law tailing. BTCs are still highly asymmetric but
there is not a clear regime in which a power law distribution is manifested. This can be attributed to the fol-
lowing processes: (1) Since particles can partially react and produce new species, the slow particles that oth-
erwise may develop tailing can now be transformed into other species; (2) the production and destruction
of the different species is not instantaneous but evolve with time in a complex manner, and (3) First-order
kinetics results in exponentially decaying concentrations that obscures the sole effect of heterogeneity lead-
ing to late-time power law behavior.

At short distances (few travel ranges), important nonnegligible differences can be observed between the
homogeneous and heterogeneous solution. Results show that the equivalent homogeneous model leads to
erroneous predictions of the reactive species BTCs, which led to earlier arrival times and substantial

Table 3. Apparent Parameters Used to Simulate Equivalent Homogeneous Solutions at the Three Different Control Planes

Parameter

Value at

plane 2a plane 5a plane 10a

Velocity, v (m/d) 0.736 0.942 0.935
Longitudinal dispersivity, aL (m) 9.457 8.245 8.355
Transversal dispersivity in the horizontal plane, aTH (m) 0.181 0.158 0.247
Transversal dispersivity in the vertical plane, aTV (m) 0.098 0.207 0.133
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Figure 11. Breakthrough curves of PCE, TCE, DCE, and VC obtained at 2, 5, and 10 ranges (distance from injection) in (left) a 3-D heterogeneous porous medium and (right) an equivalent
homogeneous porous medium.
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differences in the peak of concentrations, i.e., smaller PCE and TCE peak concentrations but significantly
larger DCE and VC peak concentrations. This is further illustrated in Figure 12, which shows the BTCs
obtained at x55a in a linear scale. Taking into account that VC is highly toxic compared to the other daugh-
ter species, the approximated consideration of the aquifer as effectively homogeneous can sorely mistake
the estimation of risk, an assumption that is typically preferred by decision makers.

8. Conclusion

The authors have developed a new particle tracking method to efficiently simulate, without restrictions in the
spatial variability of biochemical and physical parameters, the behavior of a multispecies contaminant plume
affected by reaction networks. The approach is limited to pseudofirst-order kinetics. This is important for assess-
ing the risk posed by a large variety of chlorinated organic compounds that otherwise suffer from numerical
problems in dealing with heterogeneities. The new algorithm can be easily integrated into any standard random
walk code and is obtained from the solution matrix of the spatial moments governing equations.

Results have illustrated the interplay between biochemical reactions and the advective-dispersive particle
motion. In particular, the motion of a particle has been shown to follow a standard random walk with effec-
tive parameters. These effective parameters depend on the initial and final chemical state of a particle and
evolve with time as a result of differential retardation effects among species.

Explicit analytic solutions of the transition probability matrix and related particle motions have been pro-
vided for serial reactions. In this case, the behavior of the effective retardation factor at short travel
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Figure 12. Comparison of the breakthrough curves simulated with the heterogeneous and homogeneous model at a distance of 5 ranges
from the injection.
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distances has been determined to be efficiently approximated by the harmonic mean of the species lying
between the initial and final chemical state. This approximation can substantially speed up the transport
simulation that should guarantee that the limiting Damk€ohler number is smaller than 0.5 to maintain accu-
racy. At large times, the effective retardation factor has been shown to approach the retardation factor of
the less degradable species. The effective dispersion coefficient has a production and a destruction term
determined by the degradation of parent and daughter species, respectively.

A three-dimensional example of the effect of heterogeneity on the dechlorination of organic solvents is pro-
vided at a high resolution to illustrate the capabilities of the method. The example has demonstrated that
the method presented constitutes a valuable tool for the evaluation of linear network reactions in complex
systems, being capable of solving a finely discretized heterogeneous multicomponent reactive transport
model efficiently with a regular desktop computer using relatively small CPU times. Interestingly, simula-
tions have also shown that the power-law behavior typically observed in non-reactive tracer breakthrough
curves can be largely compromised by the effect of biochemical reactions. In contrast to the clear power
law behavior observed for nonreactive tracers in the same field, the corresponding breakthrough curves
associated with reactive species exhibited highly asymmetric shapes without a clear regime in which a
power law distribution is manifested.

Appendix A : Derivation of First Spatial Moments

From equation (16), the solution matrix of the absolute first spatial moment (x direction) satisfies the follow-
ing system of ordinary differential equations

dXx

dt
5

q0x
/

R21PðtÞ1KXx ; (A1)

subject to the initial condition

Xxðt50Þ50 (A2)

where the matrix Xx is the ns3ns absolute first spatial moment matrix. The matrix R21 is a diagonal matrix
composed by the inverse of the retardation factors, and K is the reaction matrix. The parameter q0x and /
represent the particle Darcy velocity in the x direction and the porosity of the medium, respectively. PðtÞ is
the species state transition probability matrix. Defining the matrix YxðtÞ by

YxðtÞ5
q0x
/

R21PðtÞ; (A3)

leads to the following system of equations

dXx

dt
5YxðtÞ1KXx ; (A4)

whose solution is

XxðtÞ5
ðt

0
exp ðKðt2sÞÞYxðsÞds: (A5)

After the diagonalization of K by K5SK0S21, the solution can be written as

XxðtÞ5
ðt

0
S exp ðK0ðt2sÞÞS21YxðsÞds; (A6)

where S is the transformation matrix composed by the eigenvalues of the reaction matrix K, and K0 is the diag-
onal matrix whose components are the eigenvalues of K. The component Xx;ij of this matrix (A6) is expressed as

Xx;ijðtÞ5
Xns

p;q51

SipS21
pq

ðt

0
exp ðK 0ppðt2sÞÞYx;qjðsÞds; (A7)

where
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Yx;qjðsÞ5
q0x

/Rqq
PqjðsÞ: (A8)

From (20), the species state transition probability matrix can also be expressed in terms of the eigenvalues
and eigenvectors of K by

PqjðsÞ5
X

r

Sqr exp ðK 0rr sÞS21
rj : (A9)

The first absolute moment of a particle plume that moves from species j to species i after a time interval t
can be obtained by respectively introducing (A9) and (A8) into (A8) and (A7),

Xx;ijðtÞ5
q0x t
/

Xns

p;q;r51

SipS21
pq Sqr S21

rj

Rqq
FprðtÞ; (A10)

where

FprðtÞ5
1
t

ðt

0
exp ðK 0ppðt2sÞÞ exp ðK 0rr sÞds: (A11)

The solution of this integral is

FprðtÞ5
exp ðK 0pptÞ2exp ðK 0rr tÞ

tðK 0pp2K 0rrÞ
; if p 6¼ r

exp ðK 0rr tÞ; if p5r

8><
>: (A12)

Based on this, the normalized first absolute spatial moments can be written as

Aij;xðtÞ5
Xx;ij

Pij
5

q0x t
/Re

ijðtÞ
; (A13)

where Re
ijðtÞ is an effective retardation coefficient defined by

1
Re

ijðtÞ
5

1
PijðtÞ

Xns

p;q;r51

SipS21
pq Sqr S21

rj

Rqq
FprðtÞ: (A14)

Appendix B : Derivation of Second Spatial Moments

From equation (17), the solution matrix of the absolute second spatial moment (xy component) satisfies the
following system of ordinary differential equations

dWxy

dt
5

q0y
/

R21Xx1
q0x
/

R21Xy12Dxy R21P1KWxy ; (B1)

subject to the initial condition

Wxyðt50Þ50 (B2)

where the component Wxy;ij represents the temporal evolution of the absolute second moment of a particle
plume originally belonging to species j and turning into species i in the time interval t. Defining

YxyðtÞ5
q0y
/

R21Xx1
q0x
/

R21Xy12Dxy R21P; (B3)

we obtain the following inhomogeneous first-order linear differential equation system

@Wxy

@t
5YxyðtÞ1KWxyðtÞ: (B4)

The solution of (B4) is

Water Resources Research 10.1002/2013WR014956

HENRI AND FERN�ANDEZ-GARCIA VC 2014. American Geophysical Union. All Rights Reserved. 7226



WxyðtÞ5
ðt

0
exp ðKðt2sÞÞYxyðsÞds: (B5)

After the diagonalization of K by K5SK0S21, this solution can be written as

WxyðtÞ5
ðt

0
S exp ðK0ðt2sÞÞS21YxyðsÞds; (B6)

where S is the transformation matrix composed by the eigenvalues of the reaction matrix K, and K0 is the
diagonal matrix whose components are the eigenvalues of K. The component Wxy;ij of this matrix (B6) can
be expressed as

Wxy;ijðtÞ5
Xns

a;b51

SiaS21
ab

ðt

0
exp ðK 0aaðt2sÞÞYxy;bjðsÞds: (B7)

From (B3), the component Yxy;bj is

Yxy;bjðsÞ5
q0y

/Rbb
Xx;bjðsÞ1

q0x
/Rbb

Xy;bjðsÞ1
2Dxy

Rbb
PbjðsÞ: (B8)

Substituting (A9) and (A10) into (B8) and (B7) we obtain

Wxy;ijðtÞ52Dxy t
Xns

a;b;u51

SiaS21
ab SbuS21

uj

Rbb
FauðtÞ1

2q0x q0y t2

/2

Xns

a;b;p;q;r51

SiaS21
ab SbpS21

pq Sqr S21
rj

RbbRqq
HaprðtÞ; (B9)

where FauðtÞ is defined in (A12) and HaprðtÞ is

HaprðtÞ5
1
t2

ðt

0
exp ðK 0aaðt2sÞÞsFprðsÞds: (B10)

The solution of this integral can be written as

HaprðtÞ5

FapðtÞ2FarðtÞ
t K 0pp2K 0rr

� � ; if p 6¼ r

WarðtÞ; if p5r

8>><
>>: (B11)

where

WarðtÞ5
exp ðK 0rr tÞ ðK 0rr2K 0aaÞt21

	 

1exp ðK 0aatÞ

t2 K 0aa2K 0rr

� �2 ; if a 6¼ r

exp ðK 0aatÞ=2; if a5r

8>><
>>: (B12)

Based on this, the normalized second absolute spatial moment can be written as

B0xy;ijðtÞ5
2Dxy

Re
ijðtÞ

t1
2q0x q0y

/2GijðtÞ
t2; (B13)

where

GijðtÞ5PijðtÞ
Xns

a;b;p;q;r51

SiaS21
ab SbpS21

pq Sqr S21
rj

RbbRqq
HaprðtÞ

 !21

: (B14)

Knowing (22) and (A13), the second central spatial moment is

Bxy;ijðtÞ5
2Dxy

Re
ijðtÞ

t1
2q0x q0y

/2Re
ijðtÞ

Re
ijðtÞ

GijðtÞ
2

1
2Re

ijðtÞ

 !
t2: (B15)
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