On perfect and quasiperfect domination in graphs *

- J. Cáceres¹, C. Hernando², M. Mora², I. M. Pelayo², and <u>M. L. Puertas</u>¹
- ¹ University of Almería {jcaceres, mpuertas}@ual.es
- ² Polytechnical University of Cataluña {carmen.hernando,merce.mora,ignacio.m.pelayo}@upc.edu

Abstract. Given a graph G, a set $D \subset V(G)$ is a dominating set of G if every vertex not in D is adjacent to at least one vertex of D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G.

If moreover, every vertex not in D is adjacent to exactly one vertex of D, then D is called a perfect dominating set of G. The perfect domination number $\gamma_{11}(G)$ is the minimum cardinality of a perfect dominating set of G. In general, for every integer $k \geq 1$, a dominating set D is called a k-quasiperfect dominating set if every vertex not in D is adjacent to at most k vertices of D. The k-quasiperfect domination number $\gamma_{1k}(G)$ is the minimum cardinality of a k-quasiperfect dominating set of G. These parameters are related in the following general way (Δ the maximum degree of G and by n the number of vertices): $\gamma(G) = \gamma_{1\Delta}(G) \leq \cdots \leq \gamma_{12}(G) \leq \gamma_{11}(G) \leq n$.

In this work we study the perfect domination number, with the help of this decreasing chain of domination parameters, in the following graph families: graphs with extremal maximum degree, that is, graphs with $\Delta \geq n-3$ or $\Delta=3$, and also in cographs, claw-free graphs and trees. We also study the behavior of these parameters under some usual product operations.

Key words: Perfect domination, quasiperfect domination, claw-free graphs, cographs.

1 Introduction

All the graphs considered are finite, undirected, simple, and connected. Given a graph G = (V, E), the open neighborhood of a vertex $v \in V$ is $N(v) = \{u \in V | uv \in E\}$ and the closed neighborhood is $N[v] = N(v) \cup \{v\}$. The degree deg(v) of a vertex $v \in V(G)$ is the number of neighbors of v, i.e., deg(v) = |N(v)|. The maximum degree of G, denoted by $\Delta(G)$, is the largest degree among all vertices of G. For undefined basic concepts we refer the reader to introductory graph theoretical literature, e.g., [3].

^{*} Research supported by projects MTM2012-30951/FEDER, MTM2011-28800-C02-01, ESF EUROCORES programme EUROGIGA-ComPoSe IP04-MICINN, Gen. Cat. DGR 2009SGR1040, Gen. Cat. DGR 2009SGR1387, Junta de Andalucía FQM305.

176

Given a graph G, a set $D \subseteq V(G)$ is a dominating set of G if every vertex v not in D is adjacent to at least one vertex of D, i.e., if $N(v) \cap D \neq \emptyset$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set of cardinality $\gamma(G)$ is called a γ -code [5].

If moreover, every vertex not in D is adjacent to exactly one vertex of D, then D is called a *perfect dominating set* of G [1,7]. The *perfect domination number* $\gamma_{11}(G)$ is the minimum cardinality of a perfect dominating set of G. A dominating set of cardinality $\gamma_{11}(G)$ is called a γ_{11} -code. This definition can be generalized in the following way.

Definition 1 ([4]). For $k \geq 1$, we define a dominating subset $S \subseteq V$ in a graph G = (V, E) to be a k-quasiperfect dominating set if every vertex not in D is adjacent to at most k vertices of D.

Definition 2 ([4]). For $k \geq 1$, The k-quasiperfect domination number $\gamma_{1k}(G)$ is the minimum cardinality of a k-quasiperfect dominating set of G. A dominating set of cardinality $\gamma_{1k}(G)$ is called a γ_{1k} -code.

Certainly, 1-quasiperfect dominating sets and Δ -quasiperfect dominating sets are precisely the perfect dominating sets and dominating sets, respectively. There is an obvious relationship among these domination parameters. If G is a graph of order n and maximum degree Δ , then

$$\gamma(G) = \gamma_{1\Delta}(G) \leq \dots \gamma_{12}(G) \leq \gamma_{11}(G) \leq n$$

In this work we study this decreasing chain of domination parameters. We present our main contributions when restricting ourselves to the following graph families:

- Graphs with maximum degree $\Delta \geq n-3$ or $\Delta=3$.
- Cographs.
- Claw-free graphs.
- Trees.

We also study the behavior of these parameters under product operations.

2 Results

Theorem 1 ([4]). If G is a graph of order n that satisfies some of the following conditions, then $\gamma(G) = \gamma_{12}(G)$:

- $\bullet \quad \Delta(G) \ge n 3.$
- $\Delta(G) \leq 2$.
- G is a P_4 -free graph (cograph).
- G is a $K_{1,3}$ -free graph (claw-free graph).
- Every vertex of G is either a support vertex or has degree at most 2.

As a result of Theorem above, in graphs that satisfy some of its conditions the chain of quasiperfect domination parameters is shorter that in the general case: $\gamma(G) = \gamma_{12}(G) \leq \gamma_{11}(G) \leq n$, and it is interesting to consider what happen with the parameter γ_{11} . We have obtained the following results.

2.1 Graphs with maximum degree $\Delta(G) \ge n-3$

In this case we have obtained realization results for the parameter γ_{11} , that show that it can achieve all values in the interval between 2 and n, with a small number of exceptions.

Theorem 2. Let k, n be integers such that $n \geq 4$, $2 \leq k \leq n$ and $(n, k) \not\in \{(5,5), (5,4), (4,4), (4,3)\}$. Then, there exists a graph G = (V, E) of order n such that $\Delta(G) = n - 2$ and $\gamma_{11}(G) = k$.

Theorem 3. Let k, n be positive integers such that $n \geq 8$ and $2 \leq k \leq n$. Then, there exists a graph G of order n such that $\Delta(G) = n - 3$ that satisfies $\gamma_{11}(G) = k$.

2.2 Graphs with small maximum degree

The family of connected graphs with maximum degree $\Delta=2$ contains just paths and cycles, and in both cases parameter γ_{11} is completely determined: $\gamma_{11}(P_n) = \lceil \frac{n}{3} \rceil$ and $\gamma_{11}(C_n) = \lceil \frac{2n}{3} \rceil - \lfloor \frac{n}{3} \rfloor$. So we focus on graphs with maximum degree $\Delta=3$ and we have obtained the following result that provide an upper bound for γ_{11} .

Theorem 4. If $\Delta(G) = 3$ and G is other than the bull graph, then $\gamma_{11}(G) \leq n-3$. Note also that the bull graph H has 5 vertices and $\gamma_{11}(H) = 3 = n-2$

2.3 Cographs

In the family of P_4 -free graphs, we have calculated the exact values of γ_{11} , depending on the value of de domination parameter γ .

Theorem 5. Let G be a cograph of order n. Then:

- If $\gamma(G) = 2$, then $\gamma_{11}(G) \in \{2, n\}$.
- Cographs such that $\gamma(G) = \gamma_{11}(G) = 2$ are completely characterized.
- If $\gamma(G) \geq 3$, then $\gamma_{11}(G) = n$.

2.4 Claw-free graphs

In this family of graphs, we have also studied the values of γ_{11} in relationship with the values of γ . But in contrast with the case above, the family of cographs, in this occasion a wider range of values can be achieved.

Theorem 6. Let h, k, n be integers such that $2 \le h \le k < n$ and $h + k \le n$. Then, there exists a claw-free graph G of order n such that $\gamma(G) = h$ and $\gamma_{11}(G) = k$.

Proposition 1. Let n be an integer such that $n \geq 6$. Then,

- there exists a claw-free graph G of order n and such that $\gamma(G) = 2$ and $\gamma_{11}(G) = n 1$,
- there exists a claw-free graph G of order n and such that $\gamma(G) = 2$ and $\gamma_{11}(G) = n$.

Proposition 2. Let h, n be integers such that $n \geq 7$, $2 \leq h \leq \lfloor \frac{n-1}{3} \rfloor$. Then, there exists a claw-free graph G of order n such that $\gamma(G) = h$ and $\gamma_{11}(G) = n$.

3 Trees

The following result about trees is known.

Theorem 7([2]).

Let T be a tree of order $n \geq 3$ with k leaves. Then,

- Every [1, 1]-set contains all its strong support vertices.
- $\bullet \quad \gamma_{11}(T) \leq \frac{n}{2}.$
- $\gamma_{11}(T) = \frac{n}{2}$ if and only if $T = T' \odot K_1$, for some tree T'.
- $\gamma_{11}(T) \leq n k$.
- $\gamma_{11}(T) = n k$ if and only if T contains a [1,1]-code D such that $V \setminus D$ induces a coclique.

So we focus our attention on the relationship between γ and γ_{11} . We have obtained a complete result in the particular case of caterpillars and a general inequality between both parameters that is satisfied for any tree.

Proposition 3. Let T be a caterpillar. Then

$$\gamma(T) = \gamma_{12}(T) \leq \gamma_{11}(T) < 2\gamma(T)$$

Proposition 4. Let $\{h, k, n\}$ be integers with $1 \le h \le k \le \frac{n}{2}$ and h < 2k. Then there exists a caterpillar T of order n such that $\gamma_{12}(T) = h$, $\gamma_{11}(T) = k$.

Theorem 8. For every tree T, $\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1$. Moreover, both bounds are tight.

4 Product graphs

Finally we present some results on the behavior of the quasiperfect domination parameters with standard product operations.

We begin with the cartesian product [6] of two connected graphs G and H, denoted by $G \square H$, which is the graph with the vertex set $V(G) \times V(H)$ in which vertices (g,h) and (g',h') are adjacent whenever $gg' \in E(G)$ and $h = h' \in E(H)$ or $g = g' \in E(G)$ and $hh' \in E(H)$. The following result is

Proposition 5 ([4]). For every grid graph $G = P_h \square P_k$, $\gamma_{13}(G) = \gamma(G)$.

We have obtained a general upper bound for this product-type operation.

Theorem 9. Let G and H be two graphs and let r be an integer. Then, $\gamma_{1r}(G\Box H) \leq \min\{\gamma_{1r}(G)|V(H)|,|V(G)|\gamma_{1r}(H)\}.$ Moreover, this bound is tight.

On the other hand, the strong product [6] of graphs two connected G and H, denoted by $G \boxtimes H$, is the graph such that $V(G \boxtimes H) = (V(G) \times V(H))$ and $E(G \boxtimes H) = E(G \times H) \cup E(G \square H)$. In this case, the following result is proved.

Proposition 6. Let G be a graph and let k be an integer such that $\gamma_{1k}(G) =$ |V(G)|. Then, $\gamma_{1k}(G \boxtimes H) = |V(G \boxtimes H)|$, for any graph H.

Finally we have calculated exact values of parameters γ_{11} and γ_{12} for strong product of paths, cycles and complete graphs.

Proposition 7. $\gamma_{11}(P_r \boxtimes P_s) = \gamma(P_r \boxtimes P_s) = \gamma(P_r) \cdot \gamma(P_s)$

Proposition 8.

- $\begin{array}{ll} \bullet & \gamma_{12}(C_r \boxtimes C_s) = \gamma(C_r \boxtimes C_s) = \gamma(C_r)\gamma(C_s) = \lceil \frac{r}{3} \rceil \lceil \frac{s}{3} \rceil. \\ \bullet & \gamma_{11}(C_r \boxtimes C_s) = \gamma(C_r \boxtimes C_s), \ if \ r = 3a \ and \ s = 3b. \\ \bullet & \gamma_{11}(C_r \boxtimes C_s) = rs = n, \ if \ r \neq 3a \ or \ s \neq 3b. \end{array}$

Proposition 9. $\gamma_{11}(K_r \boxtimes P_s) = \gamma(K_r \boxtimes P_s) = \lceil \frac{s}{3} \rceil$

Proposition 10.

- $\begin{array}{ll} \bullet & \gamma_{12}(K_r \boxtimes C_s) = \gamma(K_r \boxtimes C_s) = \gamma(C_s) = \left\lceil \frac{s}{3} \right\rceil. \\ \bullet & \gamma_{11}(K_r \boxtimes C_s) = \gamma(K_r \boxtimes C_s), \ if \ s = 3a. \end{array}$
- $\gamma_{11}(K_r \boxtimes C_s) = rs = n$, if $s \neq 3a$.

Proposition 11.

- $\begin{array}{ll} \bullet & \gamma_{12}(C_r\boxtimes P_s) = \gamma(C_r\boxtimes P_s) = \gamma(C_r)\gamma(P_s) = \lceil\frac{r}{3}\rceil\lceil\frac{s}{3}\rceil.\\ \bullet & \gamma_{11}(C_r\boxtimes P_s) = \gamma(C_r\boxtimes P_s), \ if \ r=3a.\\ \bullet & \gamma_{11}(C_r\boxtimes P_s) = rs = n, \ if \ r\neq 3a. \end{array}$

References

- [1] N. Biggs, Perfect codes in graphs, J. Comb. Theory (B), 15:289-296, 1973.
- [2] Y. Caro, A. Hansberg, M. Henning, Fair domination in graphs, *Discrete Mathematics*, 312(19):2905–2914, 2012.
- [3] G. Chartrand, L. Lesniak, P. Zhang, *Graphs and Digraphs*, (5th edition). CRC Press, Boca Raton, Florida, 2011.
- [4] M. Chellali, T.W. Haynes, S.T. Hedetniemi, A. McRae, [1, 2]-sets in graphs, Discrete Applied Mathematics, 161(18):2885–2893, 2013.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs. Marcel Dekker, New York, 1998.
- [6] W. Imrich, S. Klavzar, *Product graphs. Structure and recognition.* John Wiley & Sons, Inc., New York, 2000.
- [7] M. Livingston, Q.F. Stouty, Perfect dominating sets, *Congressus Numerantium*, 79:187-203, 1990.