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Silicon is  the material  of  choice for visible  light  photodetection and solar cell  fabrication. 

However,  due  to  the  intrinsic  bandgap  properties  of  silicon,  most  infrared  photons  are 

energetically  useless.   Here  we  show  the  first  example  of  a  photodiode  developed  on  a 

micrometre scale sphere made of polycrystalline silicon whose photocurrent shows the Mie 

modes of a classical spherical resonator. The long dwell time of resonating photons enhances 

the photocurrent response, extending it into the infrared region well beyond the absorption 

edge of bulk silicon. It opens the door for developing solar cells and photodetectors that may 

harvest infrared light more efficiently than silicon photovoltaic devices so far developed.
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Introduction.

Single-junction photovoltaic devices suffer from intrinsic obstacles limiting their efficiency to a top 

value dictated by the well-known Shockley–Queisser (SQ) limit1. The most fundamental limitation 

is given by the energy bandgap of the semiconductor, which determines the minimum energy of 

photons that can be converted into electron-hole pairs. The development of photodiode devices on 

micro and nanophotonic structures has opened new possibilities over the standard technology. The 

impinging light is strongly confined inside those photonic structures enhancing the photocarrier 

generation, as it has been observed in nanowire resonators2,3 and in the electrooptical response of 

optical  cavities.4-6 Simultaneously,  photoexcited  carriers  are  generated  close  to  the  collecting 

electrodes,  boosting  the  power  generation  in  photovoltaic  cells7—11.  Furthermore,  thanks  to  an 

increased absorption near the bandgap edge, some recent works report on efficiency values beyond 

the SQ limit.10,11 However,  due to the intrinsic  bulk properties of silicon,  a large percentage of 

infrared  sunlight,  with  energy  value  below the  fundamental  absorption  edge  of  silicon,  is  still 

useless. In order to tackle this obstacle new resonant photodiode devices must be explored. One 

possibility concerns developing photodiodes on high-quality-factor (Q) silicon resonators. Infrared 

photons confined in high-Q resonant devices stay in the cavity for very long times, thus increasing 

their  probability  to be absorbed.  It  may result  in a  photocurrent  response enhancement  even at 

photon energy values  below the  absorption  edge of  silicon where  the  absorption  coefficient  is 

extremely low.  In particular,  spherical  semiconductor  microcavities can be a good platform for 

processing  such  resonant  photodiodes.  Very  recently,  several  groups  have  developed  silicon 

colloids12,13 that, due to their perfect spherical topology, sustain well-defined high-Q Mie resonances 

allowing the development of optical microcavities12, and metamaterials14. 
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The fabrication of rectifying junctions on such silicon micro and nanocavities would open 

new  possibilities  over  those  so  far  developed  on  nanowire-like  devices.  Firstly,  the  spherical 

topology would allow an omnidirectional light harvesting15. Secondly, in addition to an enhanced 

photocurrent response above and near the bandgap edge, as reported for nanowire devices7—11, the 

strong confinement effect appearing in high-Q optical resonances would allow IR light dwelling for 

a time long enough as to be absorbed even beyond the absorption edge of silicon. For instance, the 

light trapped in a Mie mode with Q ~ 6×103, for a typical wavelength of 1100 nm, would stay in the 

microcavity for 3,5×10-12 seconds, the time needed to travel a distance of 300 micrometres in bulk 

silicon (equivalent to the thickness of a standard silicon solar cell). Thirdly, the development of 

electronic  devices  on  spherical  shaped  particles,  together  with  the  implementation  of  the  self-

assembling  methods  like  those  reported  by  Whitesides  to  build  up  three-dimensional16 (3D) 

electrically-connected17 networks, may open new avenues for cost-effective large-area processing of 

complex electronic architectures such as regular size photodiode systems.

Very  recently,  p-n junction  devices  showing  a  rectifying  behaviour  were  developed  on 

nanometre size silicon bi-spheres.18 In this paper we report on the development of a photodiode in a 

micrometre scale polysilicon sphere. The distinctive points of our work are the following. First, the 

impinging light couples to the resonant modes of the microcavity, resulting in a unique photocurrent 

response, mimicking the Mie modes of an optical resonator. Second, both the residual absorption 

tail of polysilicon and the high-Q values of the microcavity resonating modes allow extending the 

device photoresponse into the infrared region far below the absorption edge of silicon. 
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Results.

Device  processing  and  band  structure.  Silicon  microspheres  have  been  obtained  by 

chemical vapour deposition techniques12. Figure 1 shows a scanning electron microscopy (SEM) 

image  of  several  polycrystalline  silicon  microspheres.  The  inset  of  the  figure  shows  a  high-

magnification image of a single particle, with spherical shape (diameter, d=3.57 μm), where the 

small silicon nanocrystallites can be appreciated thanks to grain contrast effects. In order to develop 

rectifying junctions in the particles, silicon colloids were synthesized directly onto  n-type silicon 

substrates with an n+ layer implanted on top. The samples were annealed at temperatures between 

850 ºC and 1100 ºC, allowing a recrystallisation of the silicon microspheres, an improvement of the 

substrate-particle electrical contact, and a diffusion of n-type impurities from the substrate into the 

bottom side of the particles.  After that,  a very thin (10 nm) indium tin oxide (ITO) conductive 

transparent layer was sputtered onto the system. The process leaves an ITO-free gap region between 

the  particles  and  the  substrate  (see  the  schematic  in  Figure  2).  At  this  stage  thousands  of 

ITO/sphere/n-Si spherical devices, back-connected through the substrate, are obtained. Finally, in 

order to test a single device, an all-metallic platinum AFM (Atomic Force Microscope) tip is used to 

contact on a single sphere. This procedure is appropriate to study the photoresponse of a single 

sphere, offering a painless and fast way for selecting and contacting the desired device.

During the annealing n-type impurities diffuse from the n+ substrate  into the core of the 

particle. Considering Fick's law (and for crystalline silicon), one wouldn't expect a diffusion length 

longer  than  300  nm  for  the  annealing  temperatures  and  times  used.  However,  since  spheres 

recrystallize at the same time, we cannot discard the possibility that impurities could diffuse much 

deeper inside the sphere. Therefore we have two device scenarios. In the first one the impurities 
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diffuse completely into the whole volume of the silicon sphere. In the second one the impurities are 

localised within the sphere near the n+ silicon substrate interface. It is agreed that sputtered ITO 

tends to produce a rectifying structure when deposited over n-type silicon19 but an ohmic contact 

when deposited over p-type silicon20. Therefore, we can assume that the ITO layer behaves as p-

type  electrode.  Consequently,  in  the  first  scenario  case,  where  n-type  impurities  fill  the  whole 

silicon particle and reach the top surface of the microresonator, the rectifying effect would come 

from the ITO-nSi Schottky junction. However, in the second scenario, where only the bottom part 

of  the  sphere  is  doped,  the  structure  would  resemble  a  PIN  diode.  In  both  cases  the  charge 

separation would be very similar. In figure 2 we show the tentative band diagram in this second 

scenario, that we reckon is the most probable.

Electrical  characterization  and  spectral  response. Single  spherical  devices,  contacted 

through a conductive AFM tip, where characterized electrically using a precision source measure 

unit. In order to record the spectral response of the devices, a tunable monochromatic source was 

focused on a sphere while measuring the photogenerated short circuit current. The set-up is shown 

schematically in Figure 3(c) and a detailed description is given in the Methods section. Figure 3(b) 

shows the I-V characteristic of a typical spherical diode (d=2.9 ± 0.1  µm) under both dark and 

illumination conditions (see also the Supplementary Figure 6). In darkness there are three orders of 

magnitude difference between forward and reverse bias current; a reasonable rectifying behaviour. 

A small open circuit voltage can be observed, which we attribute to scattered light from the red laser 

used  for  the  tip  control.  Under  illumination  both  photocurrent  and  power  are  generated, 

demonstrating the capability of the device to work as both detector and micro-power source. The 

sphere was illuminated with IR monochromatic light at a wavelength of 990 nm, in the absorption 

edge  of  silicon,  with  around  1  sun  (1 kW/m2)  of  equivalent  intensity,  this  resonating  with  a 
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whispering gallery mode (WGM) of the microcavity. In spite of the small optical absorption of 

silicon in the infrared, the photodiode exhibits 1 ± 0.1 nA short-circuit current, 0.15 ± 0.02 V open 

circuit voltage, and a maximum output power of 42 ± 8 pW with a fill factor of 30 %. It corresponds 

to  a  non-negligible  efficiency value  around (0.6 ± 0.15) %,  and an external  quantum efficiency 

(EQE) of (18±5) %. Measurement uncertainties are discussed with more detail in the Methods.

The left panel of figure 4 shows the spectral response of the photocurrent in the NIR region 

for  different  microcavities  whose  diameter  are  3.9,  3.3,  3.2  and  2.9 µm  from  top  to  down 

respectively. In order to minimize the influence of both the substrate and the AFM tip on the WGM, 

the impinging laser light was focused on the spheres at an incidence angle of 32º with respect to the 

substrate  plane  (see  inset  in  Fig. 4).  There  are  several  astonishing features  in  the  photocurrent 

response completely different from those of either a planar photodiode or nanowire solar cells so far 

developed. First, the obtained photoresponse shows very rich spectra with plenty of high-Q resonant 

peaks. Over the photocurrent background line, which is at least 10 times larger than the dark current 

level, clusters of narrow resonance peaks appear in a similar manner as the scattering spectra of 

high order WGMs in spherical microcavities21. Roughly speaking, the photocurrent response at the 

resonances is boosted about five times over the base line. We will later discuss this point at the light 

of theory. Also, when the peak position is scaled to the size parameter value α, defined as α = πd/λ, 

the features appear scaled at about equivalent size parameter values this being independent of the 

sphere diameter,  d, as expected from the Mie theory (see right panel of figure 4). However, the 

photocurrent features show small shifts for different sphere diameter values that we ascribe mainly 

to the refractive index dispersion appearing in the large spectral zone scanned and the uncertainties 

in  the  particles'  size.  This  is  an  experimental  test  of  the  Mie  like  origin  of  the  photocurrent 

resonances.  There are also small  differences between the peaks structure coming from different 

6 of 21



diodes  that  we  ascribe  to  either  the  tiny  deformation  of  the  spherical  shape  or  to  the  defects 

appearing inside the spheres (see the Supplementary Figure 1). Second, as a consequence of the 

enhanced resonant absorption, the photocurrent response extends far below the bandgap of silicon 

(around 1150 nm). In fact, these peaks extend beyond the measurement range of the equipment 

(1700 nm). Silicon particles are not crystalline but polycrystalline indeed; therefore, the residual 

defect-connected absorption22 should be strongly enhanced by the long photon dwell time at the Mie 

resonances, extending the photocurrent response well beyond the absorption edge of bulk silicon. 

The extended photoresponse in the IR region may open the possibility for developing silicon-based 

photodiodes in the third telecom window (around 1500 nm of wavelength).

Due to the strong light  localization at  the high-Q Mie resonances,  two-photon absorption 

process might also come into play.  In order to verify this, we have measured the dependence of the 

short-circuit  photocurrent with the light intensity. We introduced a beam splitter  in between the 

monochromator and the focusing objective and monitored simultaneously the photocurrent and the 

incident intensity with a power meter. Figure 5 shows the dependence of the photocurrent with the 

light intensity at two different wavelength values located on resonance (blue line) and off resonance 

(green line). In both cases the dependence is linear, suggesting that the photocurrent enhancement is 

actually due to the increased dwelling time of photons at the resonances.

Discussion

In  the  previous  sections  we  have  provided  experimental  evidence  of  the  resonance 

enhancement  of  IR  absorption  in  the  spherical  cavities.  A realistic  calculation  of  either  the 

absorption efficiency or the photocurrent response of the devices is beyond the goal of this paper 
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and  it  would  require  a  precise  knowledge  of  the  different  parameters  involved.  The  devices' 

response  is  very  sensitive  to  many  unknown parameters,  making it  very  difficult  to  obtain  an 

accurate  fit  to  the  measured  spectra.  For  instance,  the  absorption  tail  below  the  gap  strongly 

depends on the polycrystalline character of the optical cavity, an unknown parameter in the present 

state of the art, which would determine the Q values of the photocurrent peaks. More importantly, 

the Mie resonances and their clustered structure strongly depend on the precise device topology. 

The effect of the substrate and tip, the void-defects and inhomogeneities randomly appearing in the 

interior of the spheres (see Supplementary Figure 1), and even the slightest warping of the spheres, 

all have a profound impact on the spectral response. In the supplementary information (sections A

—D and Figures 2—5) we show the strong influence of these parameters at the light of different 

theoretical models. 

Although fitting the experimental data is difficult, we can easily estimate the potentiality of 

the device by analysing the relationship between the  Q value of the photocurrent peaks and the 

maximum absorption  efficiency  expected  for  the  device  in  the  infrared  region.  The  absorption 

efficiency  in  a  typical  high-Q resonance,  i.e.  at  the  peak  wavelength  of  a  Mie  resonance,  is 

proportional to the  Q value of the mode. The higher the  Q value,  the longer the dwell  time of 

photons within the cavity, this leading to a larger absorption probability. An upper bound for the 

resonant absorption enhancement, A, of a free standing sphere can be defined as the ratio between 

the time spent by a photon in the cavity over the time needed to travel a distance equivalent to the  

diameter of the sphere, 
A=

Qλ
2πnd , where n is the refractive index of silicon, d is the diameter of 

the sphere, and λ is the wavelength of light. However, an extra ½ factor must be added to account  

for the effect of the substrate (half of the modes are damped by the substrate). The enhancement A/2 
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takes a value around Q/100 over the wavelength range of measurements and for an average particle 

size of 3 µm. As the top Q values measured lay around 103, a maximum photocurrent enhancement 

of  about  ten  over  the  bottom  line  is  expected,  which  is  of  the  same  order  of  magnitude  of 

experimental  results.  Overall,  at  the high-Q resonant  peaks,  well  below the absorption edge of 

silicon, we have observed External Quantum Efficiency  (EQE) values exceeding (1 ±0.25) % at 

wavelengths up to 1500nm, a remarkable value for such tiny particle in a spectral region where bulk 

silicon shows a negligible absorption. Devices with larger  Q factor resonances, or simply devices 

with tuned particle size, would harvest light more efficiently in the infrared region. Furthermore, the 

combined absorption of multiple nearby particles, featuring multiple scattering effects, could lead to 

even higher efficiencies and broader and smoother spectral responses.

In conclusion, we have developed a rectifying device in a polysilicon spherical Mie resonator. 

The photocurrent spectra show strong resonances mimicking the resonant absorption process of a 

Mie resonator at wavelength values much below the typical absorption edge of silicon. This may 

open the door for developing all silicon spherical photodiodes and photovoltaic cells with a useful 

spectral response in the near infrared region.

Methods

Sample fabrication. The following is a detailed description of the technological steps used to 

fabricate the devices. The starting material was 4-inch, single-side-polished, <100> oriented, n-type 

crystalline Si wafers with a resistivity of 1 Ωcm. On both sides of the wafers we diffused an  n+ 

layer following a standard process and, then, cut them into sample stripes of 1.5x5 cm2. A single 

sample stripe was used for each single synthesis process. Before every CVD synthesis reaction, the 

remaining silicon from the previous process is removed from the reactor inner walls with a hot 
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TMAH (25%) solution followed by a standard RCA two-steps cleaning process.  The reactor is 

thoroughly rinsed with deionized water after  every cleaning step and let  it  dry. We remove the 

native oxide from the sample with a short dip (10 s.) in HF (5%) just before introducing it into the  

reactor. When the reactor vacuum reaches a level below 10-6 mbar, we fill it with a low pressure, 

namely about 20 kPa, of disilane (Si2H6) gas and close it. The reactor is then introduced in an oven 

at a temperature between 400 and 600 ºC for 30 min., decomposing the disilane gas and producing 

the silicon particles, which fall over the sample as a kind of soot. Finally, the exhaust gases are 

pumped out the reactor before retrieving the sample. These conditions of temperature and pressure 

produce a monolayer of isolated amorphous spheres, with an average size of 3 micrometres. Also, a 

thin epitaxial layer of silicon grows in a conformal manner on the substrate and around the spheres, 

thus covering the sphere bottom in close contact to the silicon substrate. It results in the formation 

of  a  neck  between  the  substrate  and  the  silicon  particle,  facilitating  the  electrical  connection 

between them (see Figure 1 and the Supplementary Figure 1).

Once the silicon particles were synthesized, we annealed them in a horizontal tube furnace for 

one hour at temperatures between 850 and 1100 ºC in pure N2 atmosphere at ambient pressure. In 

this way, amorphous silicon spheres are converted into polycrystalline ones, improving the sphere-

substrate contact, and allowing n-type impurities to diffuse into the sphere. Prior to the annealing 

process, the samples were cleaved in halves (0.7 x 5 cm stripes), so that the number of samples was 

doubled, rinsed in deionized water and dipped in HF (5%) to remove the native oxide. After all the 

different annealing processes were performed, all samples were dipped in HF once more to remove 

any trace of silicon dioxide and introduced all them in the sputtering chamber. Ten nanometres of 

Indium Tin Oxide (ITO) was sputtered over all of them at once, ensuring the same ITO layer for all 

silicon microcavities. A bare polished silicon witness was used to control the ITO layer thickness. 
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Finally, a small portion of the samples (1 cm) is cleaved and glued to a standard AFM metallic disc 

using silver conductive adhesive so that the samples can be handled and contacted through the disk. 

Notice that the process preserves the surface of the samples, thus avoiding any contact with both the 

substrate and the particles. We have fabricated nearly one hundred samples, most of them devoted 

to tune the sphere synthesis process and to increase the sphere's quality. For the present work, we 

have processed 16 different samples covering different parameters namely the doping level of the 

substrate (with/without n+ diffused layer) and the annealing temperature (from 850 ºC to 1200 ºC in 

steps of 50 ºC).

Experimental set-up. Figure 3(c) shows a schematic of the system developed for measuring 

the spectral response of a single spherical device. It is composed basically by two subsystems: a 

tunable monochromatic  source used for excitation;  and a  home-made conductive Atomic Force 

Microscope (c-AFM) used to measure both, the I-V characteristic and the photocurrent response of 

a  single  particle.  The  tunable  monochromatic  source  is  accomplished  by  a  Fianium  SC400 

supercontinuum fiber laser source (400—2400 nm) coupled to a Horiba Triax 190 monochromator 

equipped with a 900 l/mm grating. With this combination we achieve a spectral resolution of 0.5 nm 

in the wavelength range 900—1700 nm.   The laser beam is focused on a sphere, through a 20× 

objective, at an incidence angle of 32º with respect to the substrate plane. The objective is slightly  

out of focus so that it easily allows us to illuminate the region where the device is located. The 

home-made c-AFM was designed with the goal of being accessible for the optical elements around, 

specially  the  optical  objectives.  We  used  M Plan  Apo  NIR objectives  from Mitutoyo  as  they 

provided optimum performance in the wavelength range of interest and the long working distance 

needed for  the set-up.  The samples are  attached to  a  long-range  x,y,z nanopositioner  while  the 

conductive probe is held fixed, it's depletion being constantly monitored by the signal of a reflected 
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laser  detected  by  a  four-quadrant  detector.  Solid  metallic  (Pt)  conductive  probes  from  Rocky 

Mountain, with a spring constant of 18 N/m, provided optimum contact and the right endurance 

thorough  the  spectral  response  experiments.  An  additional  optical  objective  (not  shown in  the 

schematic)  permits  top-view  inspection  of  the  tip  and  the  sample.  Finally  current/voltage 

measurements are acquired using a Keithley 6430 source meter with a remote preamplifier that 

allows both voltage and current sourcing/measuring with high sensitivity. During a standard I(V) 

curve acquisition, voltage is sourced while current is measured. During spectral measurements, the 

photogenerated short-circuit current (V=0) is measured while we scan the spectral region of interest 

with the monochromatic source.

Reproducibility  and  treatment  of  uncertainties.  In  total,  we  prepared  16  samples 

specifically for this work but many more were prepared to optimize the particle synthesis and also 

for developing the device. Repeatability of results are excellent in the sense that no matter what 

sample or particle we measure, we obtain a spectrum with resonance peaks extending in the IR as 

long as the sphere has not been ripped off the surface. The particular spectrum depends, obviously, 

on the size and quality of the selected sphere, but subsequent measurements of the same particle 

yield the same spectrum. Even different particles from the same sample give spectra that scales well 

with the size parameter, as shown in the figure 4. Furthermore, new samples fabricated afterwards 

following the same process provided similar spectra.

Electrical voltages/currents are sourced/measured with excellent accuracy and are well above 

the resolution of the instrument. For instance, the instrument is capable of measuring currents below 

a femto-ampere, but we normally measure currents in the range 10 pA – 1 nA. Measured current, 

however, is sensitive to the tip-sphere contact. Slight proportional changes in the spectra  can be 
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appreciated when changing the AFM tip or when changing the tip pressure. Notice that this does not 

change the spectra shape but scales them. We use stiff solid-platinum AFM tips applying a high 

pressure, which provides a robust contact but, nevertheless, it is safe to consider a 10% uncertainty 

in the photocurrent absolute values due to the tip contact changes.

The larger uncertainties in the estimation of the EQE or the efficiency, concerns the difficulty 

in  determining  the  illumination  intensity  impinging  on  the  particles.  Although  the  total  light 

intensity exiting the objective can be precisely measured with a power meter, we are not able to 

precisely determine the area shined. In order to estimate it, we try to view the illuminated area with  

the aid of a rough surface, and used this value to estimate de EQE and efficiency values reported on 

the main text. With this method, we estimated the diameter of the illuminated spot to be within 150

—200 µm, resulting in a device efficiency error of ±30% at the wavelength values of the Mie 

resonances.
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Figure 1. SEM image of polydisperse silicon colloids on a silicon substrate from a bird's 

eye point of view. The inset shows a detail view of a single sphere, where the polycrystalline nature 

can be seen on its surface thanks to grain contrast effects. The scale bars are 20 µm in the general  

view and 500nm in the inset.
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Figure 2. Schematic of the device structure and band diagram. (a) Basic structure of the device. 

(b) Band diagram proposal of the device. The direction of carrier separation has been indicated for 

convenience.

18 of 21



Figure 3. Schematic of the measurement set-up. (a) Spherical device schematic. Back contact is 

done  through  the  substrate  while  front  contact  is  achieved  by  using  a  platinum AFM tip.  (b) 

Measured current-voltage,  I-V,  characteristic of a  typical  sphere (d=2.9  µm) in dark (dots)  and 

under illumination (crosses) using monochromatic laser light of 990 nm in wavelength. The solid 

lines  correspond to  a  standard  two-diode  model  fit.  (c)  Schematic  of  the  set-up  developed for 

measuring the spectral response of the spherical devices. The current is measured using a home-

made conductive Atomic Force Microscope system (see the Supplementary Information for more 

details).  A  monochromatic  tunable  source,  composed  by  a  supercontinuum  laser  and  a 

monochromator, is focused on a single sphere at 32º with respect to the sample plane.
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Figure 4. Photocurrent spectral response of several devices. Left, spectral response (short-circuit 

photocurrent) of microcavities with different diameter values of, from top to down, 3.9, 3.3, 3.2 and 

2.9 µm. Right, the same spectra of the left side but plotted as a function of the size parameter. The 

measured curves are vertically shifted for the sake of clarity in both cases.
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Figure 5. Short-circuit current vs. the light intensity for two different wavelength values. The 

blue  curve  (λ=1245)  was  measured  in  a  resonance  peak,  while  the  green  curve  (λ=1300)  was 

measured off resonance.
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