
DReAM: Per-Task DRAM Energy Metering

in Multicore Systems

Qixiao Liu1,2, Miquel Moreto1,2, Jaume Abella1,
Francisco J. Cazorla1,2,3, and Mateo Valero1,2

1 Barcelona Supercomputing Center, Barcelona, Spain
2 Universitat Politecnica de Catalunya, Barcelona, Spain

3 Spanish National Research Council (IIIA-CSIC), Barcelona, Spain

Abstract. Interaction across applications in DRAM memory impacts
its energy consumption. This paper makes the case for accurate per-
task DRAM energy metering in multicores, which opens new paths to
energy/performance optimizations, such as per-task energy-aware task
scheduling and energy-aware billing in datacenters. In particular, the
contributions of this paper are (i) an ideal per-task energy metering
model for DRAM memories; (ii) DReAM, an accurate, yet low cost, imple-
mentation of the ideal model (less than 5% accuracy error when 16 tasks
share memory); and (iii) a comparison with standard methods (even dis-
tribution and access-count based) proving that DReAM is more accurate
than these other methods.

1 Introduction

Energy demand and cost of computing systems have grown during the last years,
and the trend is expected to hold in the coming future [1]. Conversely, computing
hardware-related costs (e.g., servers) have remained roughly constant or even de-
creased in datacenters, desktops and laptops. This leads to scenarios where energy
costs are as significant as hardware-related costs. For instance, energy already ac-
counts for 20% of the total cost of ownership in a large-scale computing facility [2].
This cost virtually doubles if we also include the cost of the cooling infrastructure
needed to dissipate the temperature induced by such a high energy consumption.
Similarly, laptops and desktops may use in the order of 50-200Watts depending on
the computingpower andperipherals attached.Assuminga cost of 0.11e/kWhand
3 years of non-stop operation (so 26,280 hours), a computer dissipating 120Watts
sustainedlywouldreachanenergycostof350e.Thiscost is inthesameorderofmag-
nitude as the computer itself and it is expected to grow since energy cost is expected
to grow [1]. Therefore,managing energy consumption is of paramount importance.

As processor design moves towards multi-threaded and many-core processors,
in which an increasing number of different applications run simultaneously in
the same processor, providing per-task energy metering becomes critical. Me-
tering the energy consumed by each task accurately would provide the follow-
ing benefits. First, the amount of hardware resources allocated to a given task
(e.g., cores, memory space) impact both its execution time and energy consump-
tion. If per-task energy can be accurately estimated, one may optimize, not only

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 111–123, 2014.
c© Springer International Publishing Switzerland 2014

112 Q. Liu et al.

Fig. 1. Average memory power of a set
of SPEC CPU 2006 benchmarks running
alone on an Intel Sandy Bridge server,
with 8 cores and a 64GB DDR3 memory
running at 1.6GHz. Memory power is ob-
tained using the Running Average Power
Limit (RAPL) interfaces [6] and total sys-
tem power with a FitPC external multi-
meter. We correlate total power data with
the data collected from the hardware en-
ergy counters using time stamps. Repre-
sentative benchmarks were selected based
on previous characterization studies [7].

each task’s performance, but its energy consumption or a combined energy-delay
metric.Second, per-task energy metering can be used by the operating system
(OS) to schedule tasks better so that energy consumption is minimized while
still completing tasks when needed. And third, traditionally, datacenters charge
users based on the resources they are allocated. The increasing fraction of energy-
related costs in datacenters and the need for more accurate billing pushes for
new billing approaches based on the actual energy consumption of each task
rather than on the nominal resources allocated or on simply distributing energy
evenly among running applications [3].

In that respect, despite memory power keeps increasing, reaching 30-50W in
high-performance computers [4], there is a lack of understanding of per-task
energy consumption in memory. To elaborate on the need of accurate per-task
memory energy metering, we measured the power dissipation of different SPEC
CPU 2006 benchmarks on an Intel Sandy Bridge server, see Figure 1. In this
experiment memory represents between 25% and 34% of the total system power
and it is comparable to the entire processor socket power. Further, different tasks
incur different power consumption: e.g., 25.7W (482.sphinx3) versus 40.4W
(462.libquantum). However, while per-task energy metering solutions exist for
processors [5], to the best of our knowledge, no mechanism exists to accurately
measure the per-task memory energy consumption in multicore systems.

We propose, for the first time, an ideal method and an efficient implementation
of such method to fairly measure the energy consumed in DRAM memories when
concurrently running several tasks. Our approach relies on tracking both the
activity incurred by running tasks and the memory state they induce.

Overall, the contributions of this work are as follows:
– An ideal per-task energy metering model for DRAM memories, as needed for
performance/energy optimization, task scheduling and billing in multicore
systems. This is the reference model against which per-task energy metering
mechanisms in DRAM memories can be compared to.

– DReAM, an accurate, yet low cost, implementation of the ideal model. DReAM
is within 5% average error with respect to the ideal model at the expense of
less than 0.1% power and area overhead in the processor.

– A comparison of DReAM with other energy metering approaches proving that
DReAM is far more accurate than those other approaches.

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 113

2 Background and Related Work

In recentyears, therehasbeenan increasing interest for energymetering indifferent
environments from datacenters [3] to smartphones [8,9]. Previous proposals, how-
ever, focus on providing accurate energy metering for single-core architectures or
multicore architectures in which a single (multi-threaded) application is executed.
These scenarios are relatively easy tohandle since,whenanapplication is scheduled
on theCPU, it is accounted thewhole energy consumption of the system (e.g., using
a simplemeter). Other proposals [4,10] make use of performance-monitoring coun-
ters (PMCs) or system events, such as OS system calls, to breakdown the energy
consumption of the system across its components (e.g., memory, processor, etc.).
In many cases, the results of the power model are compared against approaches
using circuit-based mechanisms such as current sense resistors. Some Intel servers
model DRAM power per channel, but they are unaware of per-task interactions in
each channel as well as DRAM bank state interactions across requests [11].

Recently, Shen et al. [12] proposed a request-level OS mechanism to attribute
power consumption to each server request based on PMCs [13]. Similarly, Kestor
et al. [14] derive the energy of moving data along the memory hierarchy by
designing a set of micro-benchmarks. However, both approaches cannot take
into account the impact of inter-task interferences unless appropriate solutions
provide accurate per-task energy metering in multicores. Our work in [5] provides
Per-Task Energy Metering (PTEM) for on-chip resources (cores, caches, etc.).
Our proposal in this paper, DReAM, provides such support for DRAM memories.

DRAM memory energy consumption can be split into dynamic, refresh and
background. Dynamic energy corresponds to the energy spent to perform those
useful activities triggered by the programs running. For instance, the energy
spent to retrieve data from memory on a read operation or the termination power
due to terminating signals of other ranks on the same channel. Refresh energy
corresponds to the energy consumed to refresh periodically all memory contents.
Background energy includes the energy consumed due to useless activity not
triggered by the program(s) being run as well as the energy wasted due to
imperfections of the technology used to implement the circuit.

3 Metering Per-Task Energy Consumption

In this section we present an idealized model for per-task energy metering with-
out considering hardware cost. The result of this model is later used as the
reference for DReAM model to meter per-task energy with a low-cost implemen-
tation. We assume a multicore architecture where an on-chip memory controller
serves as the bridge to the off-chip memory. Next we describe the memory model
considered in this paper, how energy is consumed in the different memory blocks,
and our models to split energy among different tasks.

3.1 Memory Model

We focus on DDRx SDRAM as it is one of the most common memory technolo-
gies. A DDRx SDRAM memory system is composed by a memory controller and

114 Q. Liu et al.

Table 1. Memory commands, timing, power states and background power breakdown
for a read operation in close-page mode

Command
T0 − ACT READ PRE −
T1 −

Timing T0 − tXP tRCD tRTP tRP −

State

Bank0

PD S

A

S PD
Bank1

SBank2

Bank3

Rank PPD PS PA PS PPD

Power T0
PPD

2 PS − PPD
2 PA − PPD

2 PS − PPD
2

PPD
2

T1
PPD

2

one or more DRAM devices. The memory controller controls the off-chip memory
system acting as the interface between the processor and DRAM devices.

A memory rank consists of multiple devices, which in turn consist of multi-
ple banks that can be accessed independently. Each bank comprises rows and
columns of DRAM cells (organized in arrays) and a row-buffer to cache the most
recently accessed rows in the bank. Rows are loaded into the row-buffer using a
row activate command (ACT). Such command opens the row, by moving the data
from the DRAM cells to the row-buffer sense amplifiers. Once a bank is open,
any read/write operation (R/W) can be issued. Finally, a precharge command
(PRE) closes the row-buffer, storing the data back into the row. The memory
controller can use two different policies to manage the row-buffer: close-page that
precharges the rows immediately after every access, and open-page that leaves
the rows in the row-buffer open for potential future accesses to the same rows.

Different models can be adopted to access memory. Those models determine
which ranks, devices, banks and arrays are accessed on each operation. We adopt
the same model as DRAMsim2, which in turn models Micron DDR2/3 memo-
ries [15]. In this model, all devices in a rank are accessed upon every access. In
each device, only one bank is accessed, in which all arrays are accessed. Each
array provides the specified row to the sense amplifier on every access, where
a number of contiguous columns are accessed over successive cycles to serve an
incoming access. In our model, we use a single rank, 8 devices per rank, 8 banks
per device and 8 arrays per bank configuration. In one cycle, one bank per de-
vice is accessed, thus providing 64 bits in total for the rank. A burst of 8 cycles
provides 64 bytes on every access to memory, therefore matching the cache line
size for the last level cache (LLC) in the processor.

Under this configuration, all devices are always in the same power state, which
is equivalent to consider the power state at rank level. In each device, banks can
be in different states. Note, however, that our approach can be easily adapted
to other models. This is not detailed in this paper due to lack of space.

3.2 Memory Energy Consumption

The energy model for the main memory is based on the current profiles pro-
vided by Micron [16] and it splits energy consumption into dynamic, refresh and

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 115

background energy. This is analogous to the methodology used in [17], where the
same data from Micron is used as input. Micron energy model determines the
background electric current level, and so the background power dissipation of
each rank. Devices can be in three different states: Power Down (PD), Standby
(S), and Active (A). In each state, power dissipation is PPD, PS and PA respec-
tively. PD state is the one with the lowest power dissipation.

Table 1 shows the effect on memory of a read command. We observe that the
device is in PD state when the memory controller is not processing any request.
Note that in our configuration all devices in the rank are in the same state and
therefore, rank and device states match. When the memory controller receives a
memory access request from task 0 (T0), it sends a clock enable (CKE) signal to
transition the rank from PD to S state. The device stays in S state as long as all
banks are powered up and idle. This includes the time the device is waiting for the
memory controller to send those commands corresponding to the requests in the
memory controller’s queues. During the S state, background power is higher than
in PD state (PS > PPD). S state lasts tXP , as depicted in Table 1. Eventually,
some banks are activated so that the device as well as some banks transition to A
state. The device and the accessed banks (Bank0 in the example) are in A state
during part of the activation period (tRCD) and while the read/write command
is served (tRTP in the example for a read command). While in A state, the
device incurs the highest power dissipation, PA, with PA > PS . Once the only
command being processed is the PRE command, the device and accessed banks
transition to S state. When no command is executed and no memory access
request exists in the memory controller buffer, the memory controller sends the
clock disable signal returning the device to PD state.

As stated before, modern memory controllers may implement either open-page
or close-page policies. The close-page policy is the focus in this paper, although
we have observed similar trends for open-page policy.

3.3 Per-Task Energy Metering for Close-Page Policy

Our idealized model relies on the fact that background power dissipation of a
device depends solely on its current state, which can be induced by different,
concurrent accesses. Therefore, our model attributes background energy to each
task based on the state it imposes on memory. Memory occupancy is discarded
as input for the model since background energy does not depend on it.

1) During PD only background power is consumed, which cannot be at-
tributed to any task since during PD no task has any memory activity. Hence,
we divide background power evenly across all tasks running in the processor. 2)
Whenever a device transitions from PD to S state, the extra background power
incurred due to S state, i.e. PS − PPD is distributed uniformly across all tasks
with inflight commands that force the memory devices to stay in S state. 3)
When a device is in A state (active), the extra power incurred (i.e. PA − PS) is
distributed evenly across all tasks enforcing A state. For instance, Table 1 shows
the case where one task, T0, issues a read command (first row) and the other
task T1 issues no command. Assuming that those are the only tasks using the

116 Q. Liu et al.

Table 2. Memory commands, timing, power states and background power breakdown
for several operations in close-page mode.

Command
T0 − ACT READ PRE −
T1 − ACT READ PRE −

Timing
T0 − tXP tRCD tRTP tRP −
T1 − tRRD tRCD tRTP tRP . . .

State

Bank0

PD S

A S

S PD
Bank1

S

A

Bank2 S
Bank3

Rank PPD PS PA PS PPD

Power T0
PPD

2
PS − PPD

2
PA− PS

2
PA
2

PS
2

PPD
2

T1
PPD

2
PS
2

PA
2

PA− PS
2

PS
2

PS− PPD
2

PPD
2

memory system, during the whole period T1 is responsible only for half of the
PPD power (last row). T0 is responsible for half of the PPD and all PS and PA

extra power (penultimate row).
When multiple commands are processed in parallel, we follow the same prin-

ciple of attributing power to those tasks that impose the memory to be on a
given state. In the example in Table 2, we show a particular case where both
T0 and T1 issue commands in parallel. First, the device is in PD state. Even-
tually, T0 makes the device transition to S, so T0 is responsible for the extra
background power. Then, devices transition to A state and T1 starts its activate
command. Both tasks are equally responsible for PPD and PS power, but only
T0 is responsible for PA power. Later, T1 also enforces memory to be in A state
so that the total power must be uniformly distributed across both tasks. Finally,
as commands finish, tasks T0 and T1 stop enforcing high-power states and power
dissipation is attributed only to those tasks imposing each particular state.

3.4 Ideal Per-Task Energy Metering Model

We generalize the memory energy consumed by each task as follows.
1) The background (bg) energy attributed to a task can be generalized as

follows for both open- and close-page policies:

Emem
bg, total(Tki) = PPD ×ExecT ime(Tki)/#Tk +

ExecTime(Tki)∑

j=0

(

(PS − PPD)× δSi,j
#TkS,j

)

+
ExecTime(Tki)∑

j=0

(

(PA − PS)× δAi,j
#TkA,j

)

(1)

In the first addend each running task is metered an even part of PPD, where
ExecT ime(Tki) stands for the execution time of task i in cycles and #Tk for
the number of tasks running in the processor – not necessarily the maximum
number of tasks allowed in the processor–. The second and third addends meter
PS − PPD and PA − PS for tasks enforcing those states. #TkS,j and #TkA,j

correspond to the number of tasks imposing S and A states respectively in cycle
j; and δSi,j and δAi,j indicate if the task i makes memory be in S and A state

respectively, in cycle j. In other words, δAi,j is 1 if task i is executing a read, write

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 117

or activate (last tRCD cycles) command in cycle j, and 0 otherwise; and δSi,j is
1 if task i is executing a precharge or activate (first tXP cycles) command or if
it has pending commands in the memory controller while all banks are idle in
cycle j, and 0 otherwise. Note that, as stated before, memory occupancy is not
considered for metering energy to tasks since the memory regions not used by
the task under consideration cannot be turned off when idle. Hence, background
power remains the same regardless of the memory space used.

2) Dynamic energy for a task depends on the number of operations it performs,
as shown in the following equations:

Emem
dyn, total(Tki) = Emem

read ×#RD(Tki) + Emem
write ×#WR(Tki)

+ Emem
ACT ×#ACT (Tki) + Emem

PRE ×#PRE(Tki)
(2)

where Emem
read , E

mem
write, E

mem
ACT and Emem

PRE stand for the energy of each command,
and #RD(Tki), #WR(Tki), #ACT (Tki) and #PRE(Tki) stand for the num-
ber of memory internal commands executed by task i.

3) Refresh operations may have some side effects such as delaying some com-
mands issued by running tasks. However, this fact does not alter the energy
model. Also, refresh commands consume some energy to access the correspond-
ing rows. Since refresh operations are distributed evenly over time at a fixed rate
and they are not originated by any particular task, their energy is split evenly
across all running tasks. Thus, refresh energy per task is as follows:

Emem
refr, total(Tki) = Emem

refr ×#Ref × ExecT ime(Tki)/#Tk (3)

Emem
refr corresponds to the dynamic energy of a refresh command. #Ref cor-

responds to the average number of refresh operations performed per cycle.

4 DReAM, A Practical Approach to Per-Task Energy
Metering

Implementing the exact computation of the idealized energy model is expensive
— if at all feasible — due to the large number of events to be tracked, the
frequency at which they must be tracked, and the lack of information that the
processor has about the memory state. On the other end, metering memory
energy evenly among running tasks or proportionally to the number of accesses
that they perform requires minor changes to current architectures. However,
these approaches exhibit low estimation accuracy as shown later in Section 5.2.
Therefore, we propose DReAM, our per-task energy metering approach that trades
off energy metering accuracy and implementation complexity.

In DReAM memory model, dynamic and refresh energy can be easily tracked as
in the idealized model. This requires the memory vendor to provide the dynamic
energy per access type, namely Emem

read , E
mem
write, E

mem
ACT and Emem

PRE for tracking
dynamic energy and Emem

refr for tracking refresh energy, as well as the average
number of refresh operations per cycle (#Ref). These parameters are already
provided by chip vendors like Micron for DDR2/3 memories [16], so our model
imposes no change to current DDR2/3 memories. In the memory controller,

118 Q. Liu et al.

Table 3. DReAM hardware requirements

Block Memory Vendor Extra Logic

Memory Emem
read , Emem

write, #RD, #WR, #ACT , #PRE, #RD(Tki),
Emem

ACT , Emem
PRE , #WR(Tki), #ACT (Tki), #PRE(Tki),

Emem
PD , Emem

refr , #Ref IntMem cycle counter

we only require per-task activity counters, namely #RD(Tki), #WR(Tki),
#ACT (Tki) and #PRE(Tki). Total background energy, Emem

bg,total can be ob-
tained by metering memory energy consumption [10] and subtracting dynamic
and refresh energy. The PD background power is constant and hence easy to
track. Meanwhile, the remaining background energy, Emem

rem , is due to active and
standby periods (i.e. Emem

bg,total = Emem
PD + Emem

rem).
Our model distributes Emem

PD uniformly across all tasks, while Emem
rem is dis-

tributed based on access frequencies per task. To that end, we divide the execu-
tion into intervals of IntMem processor cycles and track the number of memory
accesses sent to the memory controller (in a per-task basis) in the current inter-
val. Thus, background energy is obtained as follows:

Emem
bg, total(Tki) =

Pmem
PD ×ExecT ime(Tki)

#Tk
+

ExecTime(Tki)
IntMem∑

j=0

#accessesTki
j × Emem

rem (j)

#TOTaccessesj

(4)

where Pmem
PD is the PD background power, #accessesTki

j tracks the number of
memory accesses of task i during interval j, and #TOTaccessesj tracks the
total number of memory accesses in interval j. Emem

rem (j) is the non-power-down
background energy in interval j, obtained by subtracting all other sources of
energy consumption from the total energy measured in the interval. Sensitivity
to the sampling interval (IntMem) is studied in the evaluation section.

Putting All Together

The DReAM approach requires little hardware overhead. DReAM mostly requires
setting up some counters similar to the PMCs currently available in most high-
performance processors. DReAM support does not interfere the execution of pro-
grams since it is not in any critical path. Table 3 summarizes those parameters
required from the memory vendor and the extra logic (i.e. counters) that must
be set up. Counters with the “(Tki)” suffix must be replicated for each task.

Regarding the interface with the software, the OS is responsible for keeping
track of the energy consumed by every task running in the system. DReAM exports
a special register, called Memory Energy Metering Register (MEMR), that acts
as the interface between DReAM and the OS. The OS can access that register to
collect the energy estimates made by DReAM. This typically will happen when a
context switch takes place. At that moment, the OS reads the MEMR using the
hardware-thread index (or CPU index) for the task that is being scheduled out
(Tout). Then, the OS aggregates the energy consumption value read in the task
struct for Tout. Right after the new task (Tin) is scheduled in, the memory state

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 119

Table 4. System Configuration

Main memory

Frequency and size 1000MHz, 8GB
Technology and supply voltage 65nm, 1.2V
Row-buffer management policy close-page
Address mapping scheme Shared Bank

Chip details

Core count 1, 4, 16 cores, single-threaded
Fetch, decode, issue, 2 instructions/cycle
commit bandwidth
Instruction & Data L1 32KB, 4-way, 32B/line (2 cycles hit)
Instruction & Data TLB 256 entries fully-associative (1 cycle hit)
LLC Size 256KB/core, 16-way, 64B/line (3 cycles hit + 12 cycles

L1 miss penalty and bus round trip)
256KB (1 core), 1MB (4 cores), 4MB (16 cores)

may remain at a particular state due to an access triggered by the task that has
been scheduled out. Although, DReAM attributes background energy consumption
to Tin, this occurs during few cycles (in the order of tens or hundreds of cycles).
Under a processor frequency of 2GHz, 500 cycles are equivalent to 0.25μs, while
context switches occur at much higher granularity, every 10-100ms.

As in [5], the time the OS spends working on behalf of a given task is attributed
to the calling task. The remaining energy consumed by the OS can be evenly
attributed to all running tasks. In any case, DReAM provides the hardware support
needed to attribute OS energy to tasks as required.

5 Evaluation

5.1 Experimental Setup

We use DRAMsim2 [15] to model off-chip main memory, a cycle-accurate mem-
ory system simulator for DDR2/3 memories including a memory controller and
DRAM memory. The processor is modeled with MPsim [18]. DRAMsim2 has
been connected to MPsim so that LLC misses are propagated to the memory
controller, which manages those memory requests. A power model based on Mi-
cron memories has been implemented in DRAMsim2.

We consider three Chip Multi-Processor (CMP) configurations with 1, 4 and
16 single-threaded cores. The second level cache (L2) is partitioned with 256KB
16-way per core. Therefore, L2 size is 256KB, 1MB and 4MB for 1, 4 and 16
cores respectively. These configurations have been chosen to discount the effect
of on-chip inter-task interferences due to shared resources (e.g., shared L2 cache),
thus allowing to consider memory effects only. Details about the configuration
can be found in Table 4. Other parameters are analogous to those in [5].

For the DRAM memory we model a 8GB memory since it is enough to support
the workloads used in this paper. DRAM memory is single-rank with 8 devices
per rank, 8 banks per device and 8 arrays per bank. DRAM memory row-buffer
management policy is close-page across all the evaluation section.

120 Q. Liu et al.

Benchmarks. We use traces collected from the whole SPEC CPU 2006 bench-
mark suite using the reference input set. Each trace contains 100 million in-
structions, selected using the SimPoint methodology [19]. Running all N-task
combinations is infeasible as the number of combinations is too high. Hence,
we classify benchmarks into two groups depending on their memory access fre-
quency. Benchmarks in the high-frequency group (denoted H) are those pre-
senting a memory access frequency higher than 5 accesses per 1,000 cycles when
running in isolation, that is: mcf, milc, lbm, libquantum, soplex, gcc, bwaves,
leslie3d, astar, bzip2, zeusmp, sphinx3 and omnetpp. The rest of the benchmarks
access with low frequency (denoted L). From these two groups, we generate
3 workload types denoted L, H and X depending on whether all benchmarks
belong to group L, H or a combination of both.

We generate 8 workloads per group and processor setup randomly, except for
the 1-core setup where all benchmarks run in isolation. In the case of X , half of
the benchmarks belong to L and the other half to H .

Metrics. In order to evaluate the accuracy of DReAM, we use as the reference
the ideal model. In each experiment, we measure the off estimation or prediction
error of each model with respect to the idealized model, which is computed as
follows, where N is the number of tasks in a workload.

WldPredError =

∑N
i=0 |Energyideali − Energymodeli |

Energymeasured
(5)

We then take the average WldPredError across all benchmarks in each work-
load analyzed in each processor setup.

5.2 DReAM Energy Estimation

In this section we show the accuracy of DReAM with respect to the ideal model
presented in Section 3. We also include the ES model that uniformly splits
energy across all running tasks regardless of their activity and memory behavior,
together with a simple Proportionally To memory Accesses model (PTA) that
splits energy across tasks proportionally to their memory accesses.

DReAM Sampling Interval (IntMem). The memory energy consumption pre-
diction of DReAM varies with different sample period (interval) lengths. When
choosing the interval length, we seek for a reasonable tradeoff between accuracy
and hardware cost, by regulating the interval period from 128 to half million pro-
cessor cycles. As expected, higher sampling frequency increases accuracy. How-
ever, discrepancy between short and long sampling periods is not huge (from
4.6% to 7.4% average WldPredError). Some meaningful average WldPredEr-
ror increase is observed when moving from a 512-cycles sampling interval to a
1024-cycles interval. Further increasing the interval size until reaching half mil-
lion cycles has little impact on accuracy since deviation from the ideal model
quickly flattens. Thus, we have chosen two different interval sizes with different
accuracy/cost tradeoff: 512 and 50K cycles sampling intervals.

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 121

Fig. 2. Per-task DRAM energy prediction error for 4-core workloads

DRAM Energy Consumption Prediction. Next we evaluate the off esti-
mation for 4-core and 16-core processor setups with respect to the ideal model.
The left half of Figure 2 shows the result for the 24 workloads (8 of each type)
under the 4-core setup. We observe that, in general, the ES model is highly in-
accurate averaging over 45% prediction error across all workloads, and ranging
from 26% to 69% for all workload types. Prediction is more accurate for L and
H workloads than for X ones. This is expected since benchmarks in L and H
workloads are more homogeneous, so their individual power consumption is also
more homogeneous than in X workloads. PTA model improves the estimation
accuracy, with an average prediction error around 24%. PTA accuracy is high
for H workloads since the large number of accesses of H benchmarks makes
energy cost more proportional to the number of accesses (dynamic energy be-
comes dominant). However, benchmarks in L group seldom access memory, so
their memory energy is mainly background energy, which PTA fails to predict
accurately.

Our DReAMmodel improves prediction accuracy significantly over both ES and
PTA. When the sample period granularity is 512 cycles, the prediction error is
always below 10%, and 3.9% on average. If the sampling period increases to 50K
cycles, the prediction error may reach 14.0% at most for one particular workload,
and 6.1% on average. The right half of Figure 2 shows results under the 16-core
setup. First, we observe that ES and DReAM accuracy remains similar to that of
the 4-core setup. In contrast, PTA accuracy slightly improves. The average predic-
tion error across all workloads for the ES model rises to 53%. The error increment
mainly comes from L workloads. A similar effect occurs for DReAM, thus making L
workloads to exhibit the lowest prediction accuracy. Trends for PTA are similar
to those for the 4-core setup, thus exhibiting higher accuracy forH workloads, al-
though accuracy for the 16-core setup is higher. This is due to the fact that, with
4 cores, a large deviation for one benchmark has significant impact in average re-
sults, but such average impact becomes lower across 16 tasks. However, maximum
error for individual benchmarks in each workload still remains high. Nevertheless,

122 Q. Liu et al.

PTA has an average prediction error above 10%, and around 23% for a particu-
lar workload. Opposably, DReAM error is below 5% on average (512-cycles interval)
and always below 8% across all workloads. Note that the gap between 512 and 50K
cycles sampling intervals for DReAM is still around 2%, as in the 4-core case. Our
results prove that DReAM is far more accurate than ES and PTA models across all
workload types, and average prediction error remains nearly the same for 4 and
16 cores, thus proving that DReAM scales well.

Using the same evaluation methodology, we have also validated the prediction
accuracy of DReAM under open-policy. However, results obtained did not offer any
further insight. Since many current DRAM chips implement low-power mode,
and so is DRAMsim2, the open banks under open-page policy transition quickly
to power down state when there is no incoming request. This fact makes open-
page policy perform similarly to close-page in multicore systems. Results are not
shown due to space constraints.

DReAM Energy Overhead. DReAM requires some hardware support in the form
of counters to track memory activity. Those counters are placed in the memory
controller, which in general is on-chip, so the memory devices remain unchanged.

As shown in Table 3, DReAM needs few counters (5 shared counters and 4 extra
counters per thread). 32-bit counters suffice to track the corresponding events.
Further, few of those counters are accessed on each memory access and at the
end of a sampling interval. We have considered the energy consumption for two
different sampling intervals: 512 and 50K cycles. Area and power overheads have
been derived with power models analogous to those of Wattch [20]. Wattch-like
power models are built on top of CACTI 6.5 simulation tool [21]. Results for
4-core and 16-core configurations show that the total energy and area overhead
for DReAM is largely below 0.1% of the memory system.

Furthermore, relative overheads do not change noticeably if the core count is
increased, which proves that DReAM scales well. Energy overheads for 512 cycles
sampling intervals are higher than for 50K intervals, but still under 0.1% for the
whole chip.

6 Conclusions

Different programs show highly different energy profiles in different components.
However, per-task memory energy metering has not been considered so far. In
this paper, we propose, for the first time, an ideal model to measure per-task
DRAM memory energy and devise DReAM, an efficient and accurate implementa-
tion of such ideal model. We show how DReAM achieves a prediction error between
3.9% and 4.7% w.r.t. the ideal model with negligible overhead for 4 and 16 core
setups respectively. The error is largely below the error introduced by approaches
such as even distribution and proportional-to-accesses distribution.

Acknowledgements. This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant TIN2012-34557, the HiPEAC

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 123

Network of Excellence, by the European Research Council under the European
Union’s 7th FP, ERC Grant Agreement n. 321253, and by a joint study agree-
ment between IBM and BSC (number W1361154). Qixiao Liu has also been
funded by the Chinese Scholarship Council under grant 2010608015.

References

1. Barroso, L.: The Price of Performance. Queue 3(7) (2005)
2. Hamilton, J.: Internet-Scale Service Infrastructure Efficiency. In: ISCA (2009)
3. Jimenez, V., Gioiosa, R., Cazorla, F., Valero, M., Kursun, E., Isci, C., Buyukto-

sunoglu, A., Bose, P.: Energy-aware accounting and billing in large-scale computing
facilities. IEEE Micro 31(3), 60–71 (2011)

4. Bircher, W.L., John, L.K.: Complete system power estimation: A trickle-down
approach based on performance events. In: ISPASS (April 2007)

5. Liu, Q., Moreto, M., Jimenez, V., Abella, J., Cazorla, F.J., Valero, M.: Hardware
support for accurate per-task energy metering in multicore systems. ACM Trans.
Archit. Code Optim. 10(4) (December 2013)

6. Intel Corp.: Intel 64 and ia-32 architectures software developer’s manual (2012)
7. Phansalkar, A., Joshi, A., John, L.K.: Analysis of redundancy and application

balance in the SPEC CPU2006 benchmark suite. In: ISCA, pp. 412–423 (2007)
8. Pathak, A., Hu, C., Zhang, M., Bahl, P., Wang, W.M.: Fine-grained power mod-

eling for smartphones using system call tracing. In: EuroSys. (2011)
9. Chung, Y.F., Lin, C.Y., King, C.T.: ANEPROF: Energy profiling for android java

virtual machine and applications. In: ICPADS (2011)
10. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: Memory

power estimation and capping. In: ISLPED (2010)
11. Intel Corp.: Intel xeon processor E5-2600 product family uncore performance mon-

itoring guide (March 2012)
12. Shen, K., Shriraman, A., Dwarkadas, S., Zhang, X., Chen, Z.: Power containers:

an os facility for fine-grained power and energy management on multicore servers.
In: ASPLOS (2013)

13. Bellosa, F.: The benefits of event-driven energy accounting in power-sensitive sys-
tems. In: ACM SIGOPS European Workshop, pp. 37–42 (2000)

14. Kestor, G., Gioiosa, R., Kerbyson, D., Hoisie, A.: Quantifying the energy cost of
data movement in scientific applications. In: IISWC, pp. 56–65 (September 2013)

15. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: A cycle accurate memory
system simulator. IEEE Comput. Archit. Lett. (2011)

16. Micron: Calculating memory system power for DDR3. Micron Technical Notes
(2007)

17. Deng, Q., Meisner, D., Ramos, L., Wenisch, T., Bianchini, R.: Memscale: Active
low-power modes for main memory. In: ASPLOS (2011)

18. Acosta, C., Cazorla, F., Ramirez, A., Valero, M.: The MPsim simulation tool.
Technical Report UPC-DAC-RR-CAP-2009-15, UPC (2009)

19. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: PACT (2001)

20. Brooks, D.M., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-
level power analysis and optimizations. In: ISCA (2000)

21. Muralimanohar, N., Balasubramonian, R., Jouppi, N.: CACTI 6.0: A tool to un-
derstand large caches. HP Tech Report HPL-2009-85 (2009)

	DReAM: Per-Task DRAM Energy Metering in Multicore Systems

	1 Introduction
	2 Background and Related Work
	3 Metering Per-Task Energy Consumption
	3.1 Memory Model
	3.2 Memory Energy Consumption
	3.3 Per-Task Energy Metering for Close-Page Policy
	3.4 Ideal Per-Task Energy Metering Model

	4 DReAM, A Practical Approach to Per-Task Energy Metering

	5 Evaluation
	5.1 Experimental Setup
	5.2 DReAM Energy Estimation

	6 Conclusions
	References

