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Featured Application: This paper contains a comprehensive review of the current state-of-the-
art machine vision algorithms used to build a pipeline towards assisted driving and fully au-
tonomous vehicle development. Key and novel concepts such as distributed systems and paral-
lelization are explored to enhance said systems’ functionality.

Abstract: Autonomous vehicles are increasingly becoming a necessary trend towards building the
smart cities of the future. Numerous proposals have been presented in recent years to tackle particular
aspects of the working pipeline towards creating a functional end-to-end system, such as object
detection, tracking, path planning, sentiment or intent detection, amongst others. Nevertheless,
few efforts have been made to systematically compile all of these systems into a single proposal that
also considers the real challenges these systems will have on the road, such as real-time computation,
hardware capabilities, etc. This paper reviews the latest techniques towards creating our own end-
to-end autonomous vehicle system, considering the state-of-the-art methods on object detection,
and the possible incorporation of distributed systems and parallelization to deploy these methods.
Our findings show that while techniques such as convolutional neural networks, recurrent neural
networks, and long short-term memory can effectively handle the initial detection and path planning
tasks, more efforts are required to implement cloud computing to reduce the computational time
that these methods demand. Additionally, we have mapped different strategies to handle the
parallelization task, both within and between the networks.

Keywords: autonomous vehicle; autonomous driving system; computer vision; neural networks;
feature extraction; segmentation; assisted driving; cloud computing; parallelization

1. Introduction

The National Highway Traffic Safety Administration (NHTSA) reported that 94% of
severe crashes on the road are caused by human error [1]. In this regard, the rise of the
autonomous vehicle (AV) has a huge potential to decrease these accidents and make the
road much safer. Therefore, the implementation of robust and secure systems is paramount
for the proper design of an autonomous driving system (ADS) pipeline. This field has
been widely investigated for many years. Both academia and industry investigations have
achieved breakthroughs and state-of-the-art results in the last years. In 2004, the Defense
Advanced Research Projects Agency (DARPA) held the Grand Challenge competition for
American AVs (DARPA, The Grand Challenge, DARPA, https://www.darpa.mil/about-us/
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timeline/-grand-challenge-for-autonomous-vehicles); however, no team could complete
the designated 150 miles route. One year later, at the same event, all but one of the
finalists surpassed the best record (7.32 miles) from the previous year, and five teams
were able to finish the 132 miles desert terrain route without human intervention. In 2007,
during the third edition of this challenge (DARPA, DARPA Urban Challenge, DARPA,
https://www.darpa.mil/about-us/timeline/darpa-urban-challenge), 60 miles of the urban
course were proposed. Only six teams managed to complete the entire track successfully.
These three competitions were very significant events up to this time, so the results have
inspired universities and large corporations to improve the state of the art of in ADSs in
different environments and conditions.

Apart from the DARPA challenges, many other remarkable competitions have been
held until today. For instance, Hyundai Motor Company has been researching AVs for a
long time. They aim to expand future vehicle research at universities and improve Korea’s
automotive industry’s technological development, and thus they have organized four AVs
competitions (Hyundai NGV Industry-Academy-Research Cooperation, Autonomous Vehi-
cle Competition, Hyundai NGV, http://www.hyundai-ngv.com/en/tech_coop/sub05.do)
since 2010. Similarly, the Society of Autonomous Engineers (SAE) and General Motors
have partnered to sponsor the AutoDrive Challenge (SAE International and GM, Auto-
Drive Challenge, SAE, https://www.sae.org/attend/student-events/autodrive-challenge/),
which consisted of a three-year (2018–2020) competition for students to complete an
urban driving course. Furthermore, Indy Autonomous Challenge (Indianapolis Mo-
tor Speedway, Indy Autonomous Challenge, Indianapolis Motor Speedway, https://www.
indyautonomouschallenge.com/) is a new high-speed autonomous race held at the In-
dianapolis Motor Speedway. Every team must use the specific Dallara-produced IL-15
that has been retrofitted with hardware and controls to compete. It has been noted that
numerous universities and companies worldwide are very active in these kinds of events,
which indubitably will accelerate research on this field.

From the academic perspective, several survey papers in this area have taken different
approaches to review this field. Rangesh et al. [2] compared several representative online
Multi-Object Tracking (MOT) for AVs. Later on, the authors proposed M3OT (i.e., a 3D
variation of MOT), an approach suitable for tracking objects in the real world. It is worth
mentioning that M3OT can work with any type and number of cameras as long as they are
calibrated. Huang et al. [3] spanned the state-of-the-art technology in significant fields of
self-driving systems, such as perception, mapping and localization, prediction, planning
and control, simulation, etc. Yurtsever et al. [4] attempt to provide a structured and
comprehensive overview of state-of-the-art automated driving-related hardware-software
practices, high-level systems architectures, present challenges, datasets, and tools to ADS.

Badue et al. [5] published survey research on self-driving cars based on the aforemen-
tioned DARPA challenges. The authors presented a detailed description of the self-driving
vehicle developed at the Universidade Federal do Espírito Santo in Brazil, named Intelli-
gent Autonomous Robotics Automobile (IARA). This paper presents a complete overview
of each of the aspects that compose the matured used architecture of self-driving cars nowa-
days, dividing it into two systems, i.e., perception and decision-making. At the same time,
each design is composed of a variety of subsystems. Achieving its objective by describing
each of the technologies superficially, this work represents a notable introduction to the
interested reader. However, for a lettered person in the subject, this work’s scope might
fall short because it does not present the state-of-the-art technologies for driverless cars’
different paradigms.

Furthermore, the study of these techniques has been extended to other application
domains beyond AVs on the highway. For instance, Szymak et al. [6] presented a com-
parative study where different deep learning architectures were tested to perform object
classification in underwater AVs’ video image processing. In this study, the authors evalu-
ated different architectures’ performance to classify objects (i.e., fish, other vehicles, divers
and obstacles) and detect abandoned munitions’ corrosion. Interestingly, they were able to
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deduct that pre-trained algorithms have higher probabilities of success than tailor-made
approaches. This rationale will be explained and supported throughout our work.

This paper provides a thorough state-of-the-art investigation on object detection
methods for the ADS pipeline. In addition, distributed cloud computing and parallelization
techniques are studied to understand how these can be incorporated to deploy these
methods. Unlike other reviews, this study is centralized mainly in autonomous driving
perception systems, focusing on the neural network (NN) concepts for object detection,
and how the concept of a Distributed System (DS) for parallelization can be included
within. The paper is structured as follows. Section 2 provides the basic definitions and
background required to understand the domain, with concepts such as image acquisition,
feature extraction, object detection, DS, and route calculation. Section 3 presents a thorough
study of each of these concepts in light of the latest work presented in this regard. Section 4
introduces our proposed methodology to address the most recurrent issues of assisted
driving and AVs based on our study and with considerable focus on parallelization for
real-time deployment systems. Finally, Section 5 provides our final thoughts and comments
on the subject.

2. Background

In this section, the object detection task’s building blocks are explained along with
their corresponding evaluation metrics and applications (i.e., path planning using the
Frenét framework). This section describes feature extraction; the types and methods used
to discern distinctive characteristics from the data provided by various sensors. Moreover,
it will cover the discussion of multiple NN architectures and the concatenation of several
deep learning techniques, which will be used for the Frenét framework generation for
path tracking of vehicles on the road. DS architectures, whose components are located
in different networks, are also explored in deep learning systems. These can provide an
advantage when training and running computer vision architectures.

2.1. Feature Extraction Methods used for Object Detection in AVs

Feature extraction consists of gathering distinct characteristics to reduce the data
needed to describe important elements. The object detection task’s performance is deter-
mined not only by the learning algorithm responsible for most of the job at hand but also
by the methods that select and combine sensory inputs into discernible features. The raw
sensor data itself contains structural information extracted by the learning algorithm itself
(such as the Convolutional Neural Network). However, there is usually a process under-
taken to identify, extract and assign features so that the model learns only the most relevant
characteristics. This work discusses the most common feature extraction approaches in
machine learning for multiple object detection, such as camera-based, Light Detection and
Ranging (LiDAR) based, and a hybrid method that uses both.

2.1.1. Camera-Based

Most standard commercial cameras can capture rich color and texture information
from images used to locate objects and obstacles along the course. An image typically
has a representation of three channels. On the one hand, attempting only to use these
components’ values is defined as a pixel feature approach; this means that the machine
learning algorithm will obtain and learn the raw data features by itself. On the other
hand, crafted feature representation consisting of image processing techniques to extract
the features before the learning process, such as edge detection, corner detection, trans-
formations, smoothing, or blurring (among others), can be extracted before the learning
process. This process is known as an extracted feature approach. The latter follows a series
of traditional image pre-processing methods to extract a series of key points and their
respective feature descriptors. For instance, Scale Invariant Feature Transform (SIFT) [7]
is one of the most widely used methods for such purpose because of its outstanding ca-
pabilities of extracting pixel colors, intensities, position, and Gaussian properties such as
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the Difference of Gaussian (DoG) pyramid and edge key points. All of this information
is extracted while preserving scale invariance, as its name suggests. Although this is a
suitable feature extractor for a camera’s raw images, it is very slow in implementation and
unusable in a real-time scenario.

In contrast, the Speeded-Up Robust Features (SURF) [8] method is one of the fastest
and most robust feature extractors. It behaves similar to SIFT, but its outstanding accuracy
in extracting important key points between matching images, its real-time performance
capability, and the possibility for parallelization with GPU architectures using CUDA
(a parallel computing platform developed by NVIDIA using C and C++ libraries) puts this
feature extractor at the forefront [9]. SURF uses Hessian matrices to detect blobs and to find
critical key points. Then, these are used to measure the focal length with each neighboring
point in the image. Afterward, the sum of Haar cascades is used to obtain rotational and
translational invariance. Finally, its descriptors are compared to those on another image
picturing the same object but from a different angle.

2.1.2. LiDAR-Based

LiDAR is one of the most widely used sensors in robotics [10]. The classical 2D LiDAR
uses a rotating mirror, which sends laser beams along the x-y plane, sensing objects within
range. On the other hand, a 3D LiDAR also shoots beams along the x-z plane, capturing
the distance to items along this plane. Figure 1 shows an example of this setting.
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The features extracted from a LiDAR sensor are the so-called point clouds. Point clouds
represent the surfaces in which the LiDAR laser bounced before reaching the LiDAR
sensor back. These points follow a specific array of algorithms to be scale, position,
and orientation invariant; all of this to perform Simultaneous Localization and Mapping
(SLAM). LiDAR sensors can make a single point cloud swift in an outstanding short
amount of time, which means that feature extraction is performed with a comparable
speed to classical feature extraction. When it comes to object detection, a LiDAR sensor
can also be used to aid AVs. BirdNet [11], for example, can detect 3D obstacles from the
LiDAR’s point cloud using three steps: first, a Bird’s Eye View (BEV) image is created
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from the raw sensor data. Then, using CNNs intended initially for image processing,
the position and orientation of obstacles are estimated. Finally, for the post-processing
phase, predictions are corrected using statistical data, and the height of the barriers is
projected on a predicted plane. This method was tested using the KITTI data set to show
a state-of- the-art performance. Similar approaches include the Multi-View 3D Object
Detection Network for Autonomous Driving (MV3D) [12]. MV3D fuses the camera and
the LiDAR features to obtain a more rigorous representation, although the results of both
methods show the state-of-the-art performance. When it comes to LiDARs in AVs, 3D
LiDARs [13] are used for various reasons. First, this is a more robust sensor that includes
more laser scans along the z-axis so a more extensive range of obstacles can be detected,
whereas a 2D LiDAR is bounded to scanning a fixed-line along this axis. Second, the 3D
point cloud produced by a 3D LiDAR can easily be transformed into the camera’s coordinate
system [14]. Thus, the object detection task can be performed by the camera and aided by
the LiDAR, as explored in the following section.

2.1.3. Hybrid Approaches

Several approaches intend to combine multiple modalities of features to provide com-
plementary information and leverage the classification performance. The single modality
of the features is not enough to solve some scenarios, such as self-driving, which in-
volves volatile strategies and requires the utmost precision for safety reasons. In these
cases, extracting features from different sensors and fusing them might improve obstacle
detection effectiveness.

When it comes to self-driving cars [4], one common approach is to use the data of both
cameras and LiDARs. Combining the cameras’ detail to achieve reliable object detection
with the laser scan reading provided by LiDAR allows us to identify obstacles and place
them in the world. As discussed in Section 2.1.2, a 3D LiDAR enables the fusion of a 3D
point cloud and a 2D image, combining image detail and object positioning, as shown in
Figure 2.
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Figure 2. LiDAR point cloud projection (image under creative commons license). Figure 2. LiDAR point cloud projection (image under creative commons license).

To validate this, tests were carried out inside a gazebo simulator. The point cloud from
a 2D LiDAR (mounted on a 2-wheel robot) was projected onto an image produced by a
camera on the same robot. Data were projected from one sensor onto another, thus proving
this method to be a low computation and low-cost procedure to accurately detect the
distance to objects identified by computer vision algorithms. However, for the robustness
needed in ADSs, the 3D LiDAR is still the more reliable option as the 2D LiDAR is bounded
to a single line along the x-y plane.
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It is essential to point out that using a LiDAR sensor is not the only way to obtain point
clouds. Using a stereo camera and performing SIFT-like algorithms, point clouds can also
be generated for autonomous driving applications. The only issue is the frame rate, which is
not as good as when using a LiDAR swift. Moreover, this alternative would require image
pre-processing to acquire the point clouds properly. Nonetheless, this alternative is much
less expensive, and even some GPU-based architectures of this kind have shown a very
competitive point cloud generation compared to LiDAR sensor-based architectures [15].

2.2. Object Detection

Object detection is the action of recognizing and locating every single object within an
image. In contrast, image classification detects all items in an image but only displays those
with the highest probability of being the one of interest. Therefore, object classification is
commonly used for classification tasks, while object detection is demanded in AV scenarios.

2.2.1. Convolutional Neural Network (CNN)

CNN is one of the most widely used image classification methods, object detection,
and semantic image segmentation because of its robust feature learning and classification
capabilities [16,17]. Their primary purpose is to reduce the images into a more straight-
forward process without losing features relevant for the right prediction. In other words,
the objective is to extract the high-level features from the input image.

A typical CNN consists of an input layer, a convolutional layer, a pooling layer,
a fully connected layer, and an output layer. The convolutional layer contains feature
detectors, best known as kernels or filters, followed by a normalization layer and a non-
linear activation function to extract feature maps of the input image. These feature detectors
swiftly through the input image and filter the critical parts to scan images and categorize
them more accurately. These feature maps are then down-sampled by pooling layers,
removing redundant features, and reducing their dimensions from their previous layers
to improve the statistical efficiency and model generalization. Finally, fully connected
layers are applied to classify the extracted features and obtain an input-based probability
distribution. After that, the network’s output is a fixed-sized vector [18,19]. Figure 3 shows
the classical CNN architecture example.
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In terms of accuracy, the CNN is superior to traditional image classification methods,
such as Directed Acyclic Graph-Support Vector Machine (DAG-SVM) [20] or Constrained
Linear Discriminant Analysis (CLDA) [21], and are the most developed networks for image
classification tasks nowadays [17,18]. The structure of early CNNs was relatively simple,
such as the classic LeNet-5 model [22] (shown in Figure 4), which was mainly used in
handwritten character recognition and image classification. However, with the continuous
deepening of research and the need for more complex and extended applications, CNN’s
structure is continuously optimized. For example, the Convolutional Deep Belief Network
(CDBN) [23] is an unsupervised generative model resulting from combining a CNN and
a Deep Belief Network (DBN). Successful applications in the field of object detection
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(discussed in detail in the following section) were presented in [24] with the intent of
performing region feature extraction based on a CNN.
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2.2.2. R-CNN

The Region-Based Convolutional Neural Network (R-CNN) model is an object de-
tection architecture. This model allows selective search, which is based on proposing
≈2000 regions per image, which are then passed through the convolutional layers for
the classification of the areas and features differentiation, finally output the boundary
box and the label of the object’s type. [25] This method’s principal disadvantage is that
it is very slow, taking around 50 s for object detection. Another consideration is that it is
memory-consuming. Additionally, the authors considered a supervised pre-training stage
for the convolutional network, as shown in Figure 5.
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Figure 5. Basic Region-Based Convolutional Neural Network (R-CNN) algorithm.

R-CNN architecture appeared as an innovative method, combining region proposal
and convolutional networks approaches to produce the bounding boxes. This result is a
promising approach if disadvantages could be solved, thus developments in the study have
been done generating improved versions of this architecture. The following subsections
are devoted to discussing the most popular R-CNN-based methodologies presented in the
literature that solved the mentioned issues. Moreover, architectures similar in purpose
but different in nature will be discussed, such as the renowned You Only Look Once
(YOLO) architecture.

2.2.3. Fast R-CNN

Similar to the standard R-CNN, this method inputs regions of an image into the convo-
lutional layers but at the same time inputs the whole image. Besides, it combines different
architectures to process the data, such as ConvNet (a sequence of convolutional layers to
pre-process the input image), Region of Interest (RoI) pooling layer for region proposal and
a classification layer. These architectures reside in the same principal, as shown in Figure 6.
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This architecture dramatically improves the training time, over ten times the normal
R-CNN, and achieves higher precision. Another contribution is that no storage is required
for feature acquisition, reducing the memory needed. Although it drastically improves the
time to about 2.5 s, it is still considerably slow for real-time applications; the selective search
region proposal generation algorithm takes the most of the time. A newer architecture
called Faster R-CNN attempted to overcome the problem mentioned above.

2.2.4. Faster R-CNN

With aims to real-time object detection, Faster R-CNN is a consolidated algorithm
based on a Region Proposal Network (RPN). RPNs start by taking an image as input.
As output, they provide a set of different rectangles of object proposals. In this architecture,
the selective search algorithm is different with respect to the previous R-CNN architectures.
RPNs share full-image convolutional features with the detection network. It is a fully
convolutional network (FCN) that simultaneously predicts object bounds at each position.
This network is trained in an end-to-end base to learn the task of generating detection
proposals. First, it generates a convolution feature map, which then can be passed into the
RPN. Finally, it is passed into a classification layer responsible for determining whether an
object or not is present [25]. The mentioned process can be visualized in Figure 7.
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As the original paper’s title proposes, this architecture’s main objective was to get as
close to a real-time object detection algorithm as possible. This architecture has achieved
outstanding performance and time response (between 0.05 and 0.2 s). The proposal’s
accuracy increased critically in various applications, being its most significant advantage
over other analog methods. It uses a reduced number of needed rectangle region proposals
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to 300, minimizing the computer processing need. One drawback compared to its most
similar architecture (i.e., YOLO) is that all R-CNN architectures are two-stage algorithms,
with YOLO being a single-stage one. Hence, YOLO is faster. YOLO is proposed as the faster
approach in the literature, while Faster R-CNN is more accurate. The YOLO algorithm will
be explained later in this same section.

2.2.5. Mask R-CNN

This method extends the Faster R-CNN concept by adding a branch for predicting
an object segmentation mask in parallel with the bounding box prediction. In that case,
the two units work for class prediction, both within an RoI. Segmentation is widely used
for estimating poses, although it requires a much more refined spatial layout of an object.
This method harnesses the velocity and, principally, Faster R-CNN’s accuracy to get over
the precision requirements and get over the known image segmentation approaches [25].

A mask encodes an input object spatial layout, and thus, a mask is predicted for
each RoI using an FCN. This mask maintains the spatial layout without collapsing into
vector representations. Instance segmentation is challenging since it requires correct object
detection and precise segmentation to classify each pixel into a fixed set of categories.
Recalling, this method adds a segmentation mask on each RoI. The added branch for
segmentation comprises a small FCN applied to each RoI, predicting a segmentation
mask in a pixel-to-pixel manner. This scenario only adds a small computational extra
requirement, non-considerable compared to the needs of the standard R-CNN methods
and other segmentation algorithms. The process is shown in Figure 8.
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Furthermore, it is essential to remark that the authors proposed the RoI-Align layer,
a quantization-free layer instead of RoI-Pooling that has misalignments between the RoI
and extracted features. RoI-Pooling does first the same step for all RoI abstraction methods,
dividing each coordinate by K, from the new relative coordinates the RoI is cropped. Finally,
with quantization, the cut part is divided into bins that give an n × n RoI. RoI-Align
presents a standard operation to extract small feature maps, properly aligning with the
input to show the per-pixel spatial correspondence by defining the RoI with four points
from the feature’s division coordinates map is then bilinear interpolated to result in the
final RoI, as shown in Figure 9. This process results are critical for the mask prediction,
and has an enormous impact, improving the mask accuracy between 10–50%.

The model outperformed the baseline of other state-of-the-art instance segmentation
models. The authors reported the inference time of architecture, capable of running at
195 ms per image on Nvidia Tesla M40 (plus 15ms CPU by resizing outputs). This method
has been satisfactorily used in different applications. However, it presents a slightly higher
accuracy than other mature architectures; there is a dilemma because faster architectures are
capable of real-time working, such as YOLO (explained in the next section), which shows
an adequate working velocity.
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2.2.6. You Only Look Once (YOLO)

YOLO deserves an analysis of its own, as it happens to be one of the most used
architectures to perform recognition tasks. YOLO is an algorithm that uses a deep NN
architecture output for making bounding boxes around all the objects that the algorithm
recognizes in an image. The actual architecture used in YOLO is called DarkNet [26].
First, the image is divided into a grid, and in the last convolution layer of DarkNet,
a sliding window analyzes each of the grid’s dimensions at once. DarkNet uses a VGG-
like [27] architecture with leaky ReLU activations in each layer, but in contrast to other
architectures, it has no fully-connected layers at the end. Instead, it uses a 5 + C vector.
That is, concatenated to a C channel vectors, being 5 the key components for detecting
all objects in an image, i.e., object presence, objects localization in x and y coordinates,
and objects dimensions, and C corresponding to the number of classes that DarkNet is
trained on (20 in the original paper [27]). This vector is then convolved into a final net
output with the width and height of the grid dimensions chosen for a specific image.
The last dimension uses an arrangement, where B is the number of boxes per grid that the
net is capable of handling. Once this last layer is done, then the YOLO algorithm works
its task by sliding a window through each pixel of the final convolution layer, which then
traduces into analyzing each of the cell grids of the original image at once, hence the name
of the architecture. Once a simultaneous sliding window in each grid cell is produced,
YOLO searches for an object that DarkNet can recognize, derived from the training data.
In the original paper, each grid cell has two boxes, meaning that B = 2, giving a channel
dimension of 30. These boxes exist because it could happen that two objects share a single
grid cell, and so because there are two boxes, then two bounding boxes can be drawn
and recognize both objects. B can increase so more objects are recognized per grid cell.
In further YOLO applications B is commonly set to 5. This makes YOLO a very fast and
accurate algorithm, being very suiting for real-time applications.

Despite this, YOLO does not cope well in very crowded scenarios. Given the grid
approach, a minimum-maximum number of elements can be found in each grade depend-
ing on the setting. To address this issue, the last layer would be needed to be retrained
with a finer grid and more boxes per grid cell, thus complicating the architecture, as not
only YOLO would need to detect more classes, but also needs to be retrained to see more
objects of the same classes it has already been trained for. It is important to state that YOLO
has been experiencing several updates, which lead to improved versions. For instance,
YOLO v4 is the best one, exceeding the 40 FPS in and NVIDIA GTX 1080 Ti GPU archi-
tecture, having a 65.7% mAP. It uses only three boxes for the B variable. Its training uses
weighted-residual connections, cross mini-batch normalizations, and other techniques that
make YOLO v4 very fast and accurate compared to different object detection algorithms.

2.2.7. RNN

A Recurrent Neural Network (RNN) is another type of architecture designed to model
time series. A multilayer perceptron has the distinction of allowing connections among
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the hidden layers to describe a time delay. This architecture is known as the short-term
memory of the NN. Because of the kind of relationships mentioned before, the model
can retain information about past states, allowing it to understand temporal correlations
between events distant in time to each other [28]. A basic example is depicted in Figure 10.
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Figure 10. Recurrent Neural Network (RNN) Architecture.

In principle, RNN presents a robust and straightforward solution to predicting possi-
ble future scenarios based on previous events allowing information to persist. Its initial
architecture presents two main problems at the update stage of backpropagation; The
vanishing gradient problem and the exploding problem. Both stand for improper training
or wrong updating. On the one hand, the vanishing gradient describes that the neurons
at the very back take too much time to update or even stop being updated. Nonetheless,
the exploding gradient problem represents the closest to present neurons, which tend to
have the highest weights, which gives less importance to farther weights. Both issues have
been solved in more advanced architectures derived from the classical RNNs. RNNs are
brought to this work because they have been used as an extra tool for object detection,
taking advantage of its memory capacity; this can be seen in the next section.

2.2.8. CRNN

The Convolutional Recurrent Neural Network (CRNN) is the combination of the two
previously mentioned kinds of NNs; the CNN (Section 2.2.1) and the RNN (Section 2.2.7).
The CRNN architecture has been widely used in several applications such as sound recogni-
tion and classification [29–31], where they have found particular success. Figure 11 shows
the schematic of a CRNN.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 31 
 

 

Figure 11. CRNN Architecture, in which a CNN and a type of RNN are present among other layers. 

CRNN based methods were developed to generate more profound and accurate im-

age analysis. Given that convolutional layers have mainly been used to obtain image rep-

resentations and features, these methods were enough to get acceptable results in many 

cases. However, as the need for a better quality of analysis has increased (due to the high 

demand for accurate classifications), recurrent layers have become a promising solution 

in combinations with the ones mentioned above. This setting offers the possibility to re-

member and connect independent features. 

Zuo et al. [32] proposed a CRNN model consisting of a CNN as a first step to extract 

middle-level image features and general image analysis. In series to the convolutional lay-

ers, the data must be adapted to suit the recurrent layers; this can be done by converting 

the regions previously obtained into a matrix of the total amount of areas. After this step, 

the data can be analyzed in a parallel recurrent layer of 1-dimension for each one. From 

this output, dependencies and correlations are generated from the recurrent layers, taking 

advantage of the memory capacity. Finally, the parallel layers must converge in a final 

layer that will merge all the gathered information. 

This method’s improvement was presented by Hu et al. [33], doing the same proce-

dure of starting with a convolutional layer to extract image features and then feeding the 

data into the recurrent layers. This method proposes the implementation of the CRNN 

module in between any of the convolutional layers. What differentiates this module from 

a classic RNN is that the connection between layer and layer is convolutional and not fully 

connected. This approach demonstrated better performance, reliability, and accuracy, alt-

hough they consume more computer capacity for each of the modules used. 

2.2.9. LSTM 

Long Short-Term Memory (LSTM) is a recurrent-type cell for regressive NN. LSTMs 

are explicitly designed to avoid long-term dependency. This architecture consists of three 

gates, mainly intended to solve gradient disappearance and explosion in the long se-

quence training process. Put merely, LSTM can perform better on longer sequences than 

normal RNNs. An example of the LSTM architecture is shown in Figure 12. 
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CRNN based methods were developed to generate more profound and accurate
image analysis. Given that convolutional layers have mainly been used to obtain image
representations and features, these methods were enough to get acceptable results in many
cases. However, as the need for a better quality of analysis has increased (due to the high
demand for accurate classifications), recurrent layers have become a promising solution
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in combinations with the ones mentioned above. This setting offers the possibility to
remember and connect independent features.

Zuo et al. [32] proposed a CRNN model consisting of a CNN as a first step to extract
middle-level image features and general image analysis. In series to the convolutional
layers, the data must be adapted to suit the recurrent layers; this can be done by converting
the regions previously obtained into a matrix of the total amount of areas. After this step,
the data can be analyzed in a parallel recurrent layer of 1-dimension for each one. From this
output, dependencies and correlations are generated from the recurrent layers, taking
advantage of the memory capacity. Finally, the parallel layers must converge in a final
layer that will merge all the gathered information.

This method’s improvement was presented by Hu et al. [33], doing the same procedure
of starting with a convolutional layer to extract image features and then feeding the
data into the recurrent layers. This method proposes the implementation of the CRNN
module in between any of the convolutional layers. What differentiates this module from
a classic RNN is that the connection between layer and layer is convolutional and not
fully connected. This approach demonstrated better performance, reliability, and accuracy,
although they consume more computer capacity for each of the modules used.

2.2.9. LSTM

Long Short-Term Memory (LSTM) is a recurrent-type cell for regressive NN. LSTMs are
explicitly designed to avoid long-term dependency. This architecture consists of three gates,
mainly intended to solve gradient disappearance and explosion in the long sequence
training process. Put merely, LSTM can perform better on longer sequences than normal
RNNs. An example of the LSTM architecture is shown in Figure 12.
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Figure 12. Long Short-Term Memory (LSTM) architecture, with three gates composed of four NN
layers (image under creative commons license).

The previous image shows in more detail the structure of an LSTM, which, contrary
to the standard RNN, the repeating modules have four neural network layers instead of
a single tanh layer. The principal idea behind the LSTMs is to have the ability to add
or remove information to the cell state, which is the horizontal line running through the
top of the diagram, where the data could flow along with it unchanged. This ability is
regulated by structures called gates composed of a sigmoid neural net layer and a pointwise
multiplication operation. Depending on the digital output state, the information would be
let through. LSTMs have three of these gates. The first one decides which inputs are going
to be ignored by the cell state. The second one determines which values will be updated.
With the help of a tanh layer, which creates a vector of new candidate values, an update to
the state will be produced to decide which further information will be stored in the cell
state. Finally, the third decides what parts of the cell state will be the output [34].
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2.2.10. GAN

A Generative Adversarial Network (GAN) is a type of NN that consists of two ar-
chitectures: a discriminator D and a generator G. In principle, the idea is that based
on a minor amount of training data Z, D is capable of generating a set of artificial data
X f ake. Afterward, D is trained on X f ake and real data Xreal to recognize the difference by
estimating losses from prediction and ground truth. An example of this architecture is
shown in Figure 13. Notice that, in contrast, G estimates the log-likelihood of the distri-
butions of the data. The early version of this architecture, often called Vanilla GAN [35],
uses the Kullback-Leibler divergence as the distribution similarity to produce false images.
Some other architectures presented in the literature are C-GAN [36], S-GAN [37], AC-
GAN [38], and F-SGAN [39], with an ever-growing market in the research community
(Hindupuravinash, ‘The GAN zoo’, Github, hindupuravinash/the-gan-zoo: A list of all
named GANs! (github.com)).
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These networks are typically used to generate more data samples so that the data
used to train classification systems can be improved. Most notably, this has been applied
for industrial applications such as face detection [40], fish classification [41], and symbol
recognition in engineering drawings [42].

2.3. Distributed System (DS)

According to Coulouris et al. [43], the concept of a DS refers to different agents
connected working for a standard system. Each node communicates through messages to
achieve a common goal. A DS in the cloud has the following characteristics:

• Concurrency: Each node can perform different tasks or parts of the same task-sharing
resources, allowing parallel computing.

• Quality of service: this concept refers to the idea that a specific type of message’s
sensibility depends on the type of information transmitted. For example, if you
download a file, it may not be vital if it delays for some seconds. However, in a phone
call, or a video call, any delay may result in a loss of data that troubles communication.

• Scalability: Any network must be built, having in mind that it may expand.
• Security: With the constant growth of devices connected to the cloud, and the high amount

of information transmitted, safety must be implemented on every network designed.
• Failure handling: In a DS, there must be a plan for possible failures. If a computer fails,

the others will keep working.
• No global clock: This happens because of the communication through messages. Each node

may have its frequency of operation as each one has its own hardware. This situation
may difficult the transmission because there is a limit to computer synchronization accu-
racy in a network. Therefore, a bottleneck in communication, where the best bandwidth
that may be reached is the lowest in the network, may be caused. This allows each node
to operate independently with its requirements of hardware.

However, it’s important to note that each node is a different device because, in edge
computing, they will process the information without sending it to the servers. The nodes
that are closest to the sensors can be the ones that process the information because they
will have a processing unit, memory, and the hardware needed resulting in less latency,
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less energy consumption, more privacy, and a faster process overall. When deep NN grow
in complexity, usually the training time increases as well. CNNs, as well as other architec-
tures mentioned above, might face this challenge, especially when several convolutional
layers are required. With the current average computer systems, a CNN might end up
needing a couple of hours to train, not to mention the time it takes to process the input
data, along with any other specific operation.

Due to this hindrance, several attempts in the literature to develop DS applied on
NNs, now referred to as Distributed Deep Neural Network (DDNN), have been presented.
DDNNs implemented through DS offer the same advantages with regards to the ones
mentioned above for DSs. In [43,44], the authors modified the raw data before sending it
to the NN in the cloud. This prototype is an example of edge computing applied in DDNN
to avoid bandwidth limitations in network communications. Additionally, this helps with
training time because the information will be filtered. As a result, the system’s privacy is
strengthened because all information packets will only be available locally on the nodes
that gather data. It is expected that, similar to image pre-processing, NNs in the cloud need
to modify data before feeding it to the NN. One might even say it is necessary because
of the limitation of bandwidth. Usually, gathered data needs to be pre-processed before
uploading it to the cloud as input to the NN, as shown in [43,44].

Usman et al. [44] implemented a cloud-based video analytics system. They used
several layers in the system to process the information. They used parallel model training,
which trains several partial models and combines them in a central one. The information
received was filtered by separating consecutive frames that lacked a significant change
in the object. These characteristics reduced resource usage and training time by filtering
video frames that lacked an essential change in the image observed.

Teerapittayanon et al. [45] proposed a DDNN, which works over the cloud, edge,
and end devices. This system was used to analyze different sensor data, minimizing
resource usage for devices by processing a portion of the information recovered in the
end devices and an edge layer. This separation also allowed system fault tolerance and
enhanced data privacy because each end device did not offload raw sensor data to the
cloud directly.

Although this approach may come with several advantages, it also brings a handful
of problems to the table. Unlike centralized systems, information transferred faces the
problem of bandwidth. Data cannot travel at the same speed. In the Internet of Things
(IoT) systems, the filter can be local, right before traveling to the cloud. This way, useless
or repetitive information can be disposed to reduce time and space for training, allowing
the part of the DS in which the NN is present to focus all its resources to train on sufficient
data. In [44], a CNN was trained to classify objects. Although videos were set to 25 frames
per second, the system only used five frames each second.

2.4. Metrics for Evaluation

Several metrics exist to evaluate the performance of object detection and segmentation
tasks. These are useful to assess the behavior of a new model and to compare it to existing
ones. Furthermore, there are competitions, such as the Common Objects in Context Object
Detection Challenge (COCO-ODC) or the PASCAL Visual Object Classes (VOC) Chal-
lenge [46], that use a combination of metrics to serve as benchmarks of quality for object
detection models. Before explaining said metrics, some concepts need to be defined. Firstly,
the Intersection over Union (IoU) or Jaccard Index is defined as the intersection between the
predicted bounding box and the ground truth bounding box over the union of those two,
or simply put, the similarity between the prediction and the ground truth. This score ranges
from 0 to 1; the higher the score, the closer the prediction is to the ground truth. This metric
can generate four outcomes: (1) True Positive (TP) the model detects an object where,
indeed, an object exists, (2) False Positive (FP) the model detects an object where there is no
object, (3) False Negative (FN) the model detects no object where there is an object present
and (4) True Negative (TN) the model detects no object where there is no object. The next
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essential concepts are precision and recall. Precision refers to the probability of the predic-
tion matching the ground truth. It can be defined as TP

TP+FP or P
ALL DETECTED BOXES [47,48].

In counterpart, recall refers to TP’s rate or the probability of a TP to be detected. The recall
can be defined as TP

TP+FN or P
ALL GROUND TRUTH BOXES . Adding on, the precision-recall

curve is a metric that summarizes the two previous concepts and is especially useful to
assess the performance of models with imbalanced datasets [30]. In this curve, precision is
plotted on the -axis and recall on the x-axis. Ideally, a model should deliver both high pre-
cision and recall, although this is not always the case. When comparing models, generally,
the one with the highest curve indicates the best performance. Another way to gauge these
two metrics is the F-measure or F1-score, defined as F1 = 2× precision ×recall

precision+recall .
Furthermore, it is also possible to calculate average precision (AP), which, as the

name indicates, is the average precision among the precision-recall curve. Mean average
precision (mAP), on the other hand, involves the AP among several classes, whereas the

AP only covers one. The mAP is defined as mAP = ∑K
I=1 APi

K . Regarding the competitions
mentioned above, the COCO-ODC uses 12 metrics, where mAP is the main one. On the
other hand, PASCAL VOC uses two metrics: the precision-recall curve and AP. It is also
worth mentioning that different challenges use different datasets with different scenarios
in mind. For example, the KITTI dataset consists of hundreds of hours of driving systems
gathered from an on-board camera on a car, which is especially useful when working
with AVs.

On the other hand, the COCO-ODC dataset contains many frequently found objects
(80 different classes) such as animals, tools, people, etc. The PASCAL VOC data set is
very similar, and both are commonly used when training object detection architectures.
However, there are some key differences worth noting. For instance, annotations in
COCO are facilitated by employing a JSON file, while PASCAL uses the XML format.
Furthermore, the bounding box format is different: COCO uses xmin top-left, ymin top-
left, width, height, while PASCAL uses xmin top-left, ymin top-left, xmax bottom-right,
ymax bottom-right [46]. Although these differences may sound minimal, some researchers
decided to focus on specific challenges based on the formats that they are more familiar
with. Thus, there are no common grounds to compare every single algorithm ever made.

2.5. Frenét Motion Planning

The Frenét frame method consists of transforming the Cartesian coordinates x and
y to a more dynamic reference frame n and t, which are normal and tangential to the
road vectors, respectively [49]. If a motion planning algorithm in a highway uses the
traditional cartesian coordinate plane, it would have to parametrize x and y coordinates
positions concerning time and solve for polynomials with significant coefficients. This is a
challenging and computationally expensive task. Thus, the Frenét coordinate system uses
vectors projected on the road’s curves, treating the road as if it was all forward plane with
no curves. Hence, by changing these vectors’ magnitude, lane changing and braking and
acceleration happen to be an isolated problem from the road following task. It helps to have
two different easier problems: lane keeping and lane changing, instead of one more difficult
situation. Frenét coordinate systems are preferred since these allow for lane-keeping using
minimal computing effort. They also predict and calculate lane deviation in dodging for
static or dynamic obstacles to then return to the lane’s boundaries. The Frenét algorithm
does not execute the prediction task, but its output can be easily used in many prediction
algorithms. The Frenét coordinate system can also be taken for peripheral vehicles other
than the ego. Still, its original purpose remains for the car to perform inertial odometry
tasks. Much more can be exploited, but to get it to work, many sensor fusion tasks need to
be performed to state the vehicle’s center of mass since it will be the origin of the Frenét
coordinate system. For example, in Figure 14, a route in which x and y coordinates are
the curve’s points, the vehicle doesn’t see those coordinates. Instead, it transforms its
coordinates to vectors T and N, so the car perceives itself as traveling in a straight line,
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only changing the N vector to keep the lane and vector T changing its speed. To update its
N and T vector values, the following linear algebra equation is used:[

T′

N′

]
=

[
0 δ
−δ 0

][
T
N

]
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Since each car’s Frenét route needs to be predicted, the T and N vectors are given by
combining many algorithms, as discussed later in Section 3. The T and N derivatives are
calculated with respect to the arc length, and thus the only missing value, and the one
that needs to be predicted, is δ. Once δ is predicted, the Frenét Frame can be calculated by
solving for the x and y curve which is tangent to T and normal to N. The updated frame
for each point of δ will be 35 Hz as it is the vision algorithm frame rate and T and N will be
captured using computer vision algorithms.

It is essential to state that the Frenét framework is mainly used for motion and path
planning, and so the equation given above is not the only one.

3. Methods to Address the Pipeline of End-To-End ADS

This section will discuss the latest literature methods to address the different stages
that constitute an end-to-end ADS. This section is divided into four main categories.
The first one presents image pre-processing and instance segmentation, in which the main
aim is to locate all legal boundaries and other objects of reference. It is inferred that al-
though one vehicle is physically capable of driving on a sidewalk, it is not correct for it
to do so, and therefore the ADS needs to recognize the road lanes. Nonetheless, not all
road lanes are used for driving in the required direction (i.e., the single direction only,
cycling/pedestrian lanes). Thus, this step plays a crucial role in detecting which road
lanes shall the vehicle occupy. The second one focuses on object detection within the
semantic segmenting boundaries of the route. For instance, algorithms such as YOLO are
used to recognize each object, and this data is fused with LiDAR point clouds using an
MV3D-like architecture [12]. Processes such as these help the vehicle draw prism points on
each detected object and know where its center of mass relies upon and the volume being
handled within the lane space. Human and sentiment detection techniques (for driver, pas-
sengers, and pedestrians) are discussed in the third section. Finally, in the fourth category,
cloud computing and parallelization are discussed to speed up and improve the pipeline.
For instance, these techniques can train all object detection models, communication of
different vehicles, etc.



Appl. Sci. 2021, 11, 2925 17 of 29

3.1. Image Pre-Processing and Instance Segmentation

Chen et al. [18] proposed a CNN model for object localization using camera and
LiDAR data for 3D multi-view object detection, or MV3D. In this method, three CNNs are
deployed in parallel. Two of them are fed with the point cloud LiDAR data (one obtained
from a BEV and the other from the front view). The third CNN uses raw RGB images
from a camera located at the front, on the sides, and the car’s back for a 360-degree view.
Once each architecture finishes, a deconvolution process occurs to identify where the tracks
are located and their shapes. Like an RCNN architecture, a decoder-like function outputs
decoding fed to the architecture performing the localization task and shared between the
other parallel architectures. This process generates a 3D object proposal of the classes,
combining a region-wise feature obtained via ROI pooling caused by each architecture.
The output is a 3D bounding box around the recognized objects. It is important to note
that this method can realize the item’s class, position, and volume. This method performs
with a 14.9% higher accuracy than state-of-the-art methods, comparable in runtime. As a
result, this method is computationally demanding, and deducting the 3D bounding box
will require a specific and robust hardware architecture for the algorithms to be deployed
correctly and in real-time scenarios.

Zhou et al. [50] proposed VoxelNet, an end-to-end trainable deep architecture for
point cloud-based 3D detection. In contrast to the previous two methods, this is a LiDAR-
only based detection, which relies on the object size, occlusion state, and other superficial
information. To improve the localization and detection, the authors proposed the Mul-
timodal Voxel for 3D Object Detection Network (MVX-Net) framework. In this method,
fused augmented LiDAR point clouds with semantic image features are used at early stages
to improve 3D object detection. Moreover, two fusion techniques were developed to extend
the VoxelNet. The first one is PointFusion, which combines features at early stages to add
3D points to an image feature and capture dense context, extracting features from a 2D de-
tector (i.e., a camera) and then jointly inputting them into the VoxelNet model. The second
technique is called VoxelFusion and employs non-empty 3D voxels to be projected on the
image plane. Features are extracted and fed into the voxel feature encoder used by a 3D
RPN to deduce the bounding boxes. Authors state that the VoxelFusion technique delivers
a slightly inferior performance compared to the PointFusion one; however, it has more
efficiency in memory consumption. The authors evaluated the KITTI 3D object detection
benchmark model and concluded that their approach demonstrated better results than the
single modality VoxelNet [51].

Avoiding person-to-person contact is the best way to control and prevent the virus’
transmission amidst the COVID-19 epidemic that affected the world in 2020. Still, people
require food and other basic goods to address their essential needs. Liu et al. [52] developed
Hercules, an autonomous logistic vehicle used for contactless delivery, to address this issue.
It has an autonomous navigation capability and a stable hardware-software system to
manage the operations. Its maximum payload and capacity are 1000 kg and 3 m3, sufficient
for most of the people delivery’s requirements, and uses 3D object detection with LiDAR
point clouds to recognize and classify objects. Multiple calibrated LiDARs provide data
that are fused as input into the 3D object detector of the VoxelNet. Authors consider that
the real-time performance deserved much more attention than accuracy for this particular
application. To improve efficiency, they replaced dense convolutional layers with spatially
sparse convolutions to obtain inference time boosting. Another critical part of Hercules’
perception task was to build the 3D map of the environment with 3D point clouds from the
LiDARs and the readings from the inertial measurement unit. Objects in motion should be
treated differently than static entities. Thus, this task is very crucial for motion planning
in AVs. Hercules’ solution is called Ego-motion Compensated Moving-object Detection,
which detects objects based on the consecutive point cloud frames. The autonomous
navigation technology was reported to work well on the state-of-the-art scenarios.

The Intelligent Autonomous Robotic Automobile (IARA) was presented in Moraes et al. [53]
and Cardoso et al. [54]. It is a vehicle that uses a suite of sensors (including LiDAR and
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odometry sensors) to perform various tasks. The two papers present an NN-aided approach
to state-of-the-art navigation, mapping, and localization methods. The first publication
presents a novel, image-based real-time path planner. Using a CNN, the algorithm can
deduce a path from images the on-board camera sends. This path (a cubic spline) is then
transformed to the car’s coordinates, and thus the route can be followed. The second
publication presents a new approach for real-time inference of occupancy maps using deep
learning. The network proposed in this paper, NeuralMapper, takes the LiDAR data as
input and creates an occupancy grid map. It further uses a NN to infer certain parts of the
route where LiDAR data is not very accurate, creating a completer and more efficient map.

If a car detects an obstacle, it brakes and corrects its course, but it does so when the
interruption has already occurred. Analyzing human gestures can help avoid sudden colli-
sions; however, deep learning models do not have enough data to train them. For this reason,
Cruise’s AVs [19] use motion capture to understand human gestures technology, which is
a technique that video game developers use to create and animate characters. With this
technology, the necessary characteristics would be extracted to train the deep learning models
and be one step closer to predicting pedestrians’ or drivers’ sudden movements.

There are two types of mo-cap systems optical and non-optical. The visual uses
cameras distributed over a sizeable grid-like structure that surrounds a stage; the video
streams from these cameras can triangulate the 3D positions of visible markers on a
full-body suit worn by an actor. In a non-optical way, this system [55] uses a sensor-
based version of motion capture instead, which relies on microelectromechanical systems
(MEMS) [56,57], which are portable, wireless, and do not require dedicated studio space.
That gives a lot of flexibility and allows to take it out of the studio and collect real data of
world locations.

Barea et al. presented an integrated CNN for multisensory 3D vehicle detection in
a real autonomous driving environment [58]. As the title expresses, the proposal of their
paper aims to present an outstanding architecture based on the combination of state of the
art methods for object detection such as YOLO and Mask R-CNN for 3D segmentation
besides a LiDAR point cloud. Figure 15 shows the results achieved in this paper, integrating
Mask R-CNN, YOLOv3 and cloud point LiDAR. It can be seen that an accurate bird eye
view, which corresponded with the object detection in the superior image, is created.
Moreover, an accurate mapping of the road’s current state, with the vital information of the
3D sizing of the moving and static objects in the ego car’s peripheric view, is obtained with
complete navigation details. The unique architectures applied in this proposal achieved
high performance in the KITTY test set.
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This work proves that individually each architecture cannot overcome itself. Still,
in the correct combination, new opportunities might be found. For the reader, in machine
learning and similar technologies, the novel results are achieved based on experimenting
and not in a fixed formula. Thus, the following question arises: What would be the best set
combination for acquiring the correct data for a completely autonomous car?

As mentioned previously, autonomous driving is a challenging problem addressed
with various technologies, methods and algorithms. Still, it seems that there’s always space
for more efforts due to the rigorous task of taking decisions in an always-changing and
mostly unpredictable environment, especially on busy streets and highways. The following
paper [59] discusses how image segmentation allows the class to classify the road’s drivable
and non-drivable regions. To do so, a Mask R-CNN architecture was trained to differentiate
these possibilities. The architecture was trained and tested in the Berkeley Deep Drive
(BDD100k) dataset, with 100k on road pictures, achieving a final mAP of 0.79 (a sample of
the results is provided in Figure 16). To identify the drivable areas, the model determines
the ego car’s current line, making the difference with the alternatives. The implementation
problem was broken into various subproblems; road object detection to declare a line as
non-drivable, segmentation breaking a 2D Image into depth-based layers, and lane maker
detector to separate each of the lanes.
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This paper also explores new possibilities demonstrating that the architectures men-
tioned in the previous part of this paper can be used in different ways to achieve similar
objectives, which provides more information to the ego car, to be able to make better
decisions by evaluating the state of the environment. On the other hand, this paper does
not mention the time it takes for the algorithm to drop a given state’s results.

3.2. Driver Assistance and Predicting Driver Patterns

One characteristic that differentiates a good driver from a bad one is the capability of
choosing the best possible action in the proper time and execute it correctly, at all times,
even in the rarest and most dangerous circumstances. In those cases, being a skilled driver
can save lives. In the context of AVs, this is a real threat because, as mentioned before, one of
the biggest challenges for self-driving cars is the unpredictability of the always-changing
road conditions and human behaviors. At its beginnings, AVs were based on precarious
algorithms, based on state conditionals, with the first driver-assisted systems, acceleration
and deceleration, and conditional automation. The human intervenes only when needed.
These old approaches were not able to counter the odds of real-time decisions (WIRED
Brand Lab, A brief history of Autonomous Vehicle Technology, WIRED, 2019, A Brief History of
Autonomous Vehicle Technology|WIRED).

Nowadays, state-of-the-art aims to evolve to fully automated systems, where non-
human intervention is needed. But one barrier that challenges all the developments is
how a human perceives the driving and, consequently, decides how a computer does.
Many background context conditions are known for humans that can be subjective and for
computers becomes complicated to understand; for example, the local cultural manners of
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driving often define what to expect from other cars, which differ in geographic location.
Another condition is the passengers’ feel. This concept means that it might be the same
for a computer to avoid an object a second before the collision; therefore, this move can
be made smoothly. Conversely, this decision for the passengers may seem uncomfortable,
causing other issues, such as a human hitting the window. Therefore, the autonomous
system should consider the passengers’ inner motions, thus being dynamic and based on
human behavior to improve it, without realizing actions that might confront what a human
expects from another car.

The mentioned considerations are causes and circumstances that must be considered
for a full automotive driving system. Thus, the decision-making part of an autonomous
system is a critical part of the process. Driving patterns are ways in which a human driver
behaves. These patterns are developed through experience and practice. Humans can
predict how the environment can change within these driving patterns, and based on these
predictions, a decision is made. Various methods and solutions make use of different NN
architectures [60]. Some of them are explained in the following sections.

3.2.1. Behavioral Cloning (BC)

BC consists of a CNN that uses the real driving data obtained through the vehicle’s
camera and computer when driving during different situations. Then, the network learns
the response of the driver to obstacles in other locations. According to [61], a whole model
can be trained using only raw data and expect to have a steering output. This approach
is called end-to-end learning, but electromobility and autonomous driving named BC
are much more appealing. End-to-end learning is called that way because there are no
subprocesses when expecting and output from the NN. These subprocesses include SLAM,
Path planning, object recognition, etc. None of these techniques is used for the vehicle’s
motion planning; the only information used is data taken from feature extraction in images
taken when the car was being driven. These images have the steering angle and gas pedal
position as a label for the dataset. Thus, when seeing a similar scene to the ones in its
training data set, then the gas and steering values are close to those trained on.

It could be very promising that there are no subprocesses required for achieving
autonomous driving. Using raw images, then the only two values needed for driving are
the ones generated. But the reality is much more discouraging. It would require enormous
amounts of data, which is not at hand. Because of the model generalization, millions of
different driving scenarios need to be recorded but have not yet been taken. BC works
only during certain situations, but it works encouragingly. BC is a method that deserves
to be discussed in the future once more data is available. For the time being, end-to-end
learning is used and applied in natural language processing because of its capability of
finding sense in sentences, compared to traditional methods. Data in this language is large
enough for end-to-end learning to be applicable, not the case for autonomous driving in
which research is being developed but years away from practical applications.

3.2.2. Reinforcement Learning (RL)

One of the most famous machine learning paradigms is RL; this type of algorithm
has been used in different ways to process the information given by the sensors to output
the best actions. This broad field of study aims to replicate with algorithms how living
beings learn through the process of gaining experience by exploring their environment and
realizing which activities are suitable and which are not, based on rewards, concerning a
specific objective or task inherent to the environment. RL has been widely used as a control
algorithm to determine the best policy or a simple word. This strategy will determine
the best possible action for any presented state or circumstances that the environment
presents [62]. Figure 17 shows the basic flow of this type of algorithms.
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The necessary process for an RL to work is as follows. An agent that is the learning
object interacts with the environment, which can be virtual or real, the agent performs
actions (a) given an environment state s, that will affect the environment, in exchange,
the environment will feedback the agent with a new state s′ and a reward r. If the action
were right, then the reward would be positive. Contrarily if the move were wrong, the re-
ward would be negative; in other words, a punishment. The purpose of the agent is to
maximize rewards. The process aims to create a system that behaves in the best possible
way to achieve a goal.

With a good overview of RL and without deepening the algorithm’s details because
of this work’s scope, this paradigm’s application to AVs can be discussed. This type of
algorithm is used in the second part of the vehicle’s decisions process. First, it has to
acquire data of the environment, in this case, the road and the objects such as other cars
interacting within it, via the already mentioned and studied approaches such as LiDAR
and object detection algorithms via image processing. Based on these data, advanced RL
versions based on NNs, such as deep RL, deep Q-learning, and deep deterministic policy
gradient (amongst others), have been used for AVs’ decision-making processes. These deep
versions of RL present the advantage of a more robust, more powerful capability of learning
behaviors, understanding patterns, and predicting situations in comparison with their
non-deep versions.

An example is control of speed and lane change decisions [63]. As the authors mention,
a known problem of decision taking on AVs is that the methods are designed for a specific
task. An example would be the Intelligent Driver Model (IDM), which is applied to decide
only when to change lines. Therefore, there’s a need for a more global algorithm to take
care of AVs’ multiple decision needs. This work proposes that the car uses a 27-input
vector providing information on the road and eight possible surrounding cars to make lane
change decisions and speed control. However, in the same DQL algorithm, they trained
two agents to address each task [64].

One perceived disadvantage of RL algorithms in autonomous cars is that they cannot
predict other road users’ intentions but evaluate all the objects’ current state. These kinds
of learning do not have long-term future recognition of the environment. This problem is
intrinsic in the math that the algorithms are based on because Markov’s decision process
takes decisions based on the last observations state.

3.2.3. LSTM Based Models

Currently, there are many approaches to road prediction using LSTM architectures
for these types of forecasts. Bai et al. [65] suggested spatiotemporal LSTM architecture for
motion planning in AVs. It uses convolutional layers for feature extraction in an image,
and it runs through an LSTM to find sequences in those images, something similar to a
CRNN architecture. Once this data is acquired, a CNN architecture is applied to extract
spatiotemporal information from multiple frames. Lastly, a fully connected layer is used to
extract the trajectory taken by peripheral vehicles. This trained model can be of service
for detecting multiple object trajectories. It is considered an end-to-end algorithm since
all this raw data enters this architecture, and it outputs a solution. Additionally, it is quite
demanding in terms of training and testing data.
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Atlché et al. [66] propose using an LSTM architecture for lane changing detection
on highways, using data such as velocity and lateral displacement from vehicles. It was
trained using the NGSIM US-101 dataset and trained two different LSTM models, one for
lateral displacement and another for linear velocity. It performed very rapidly with 70 cm
of error in displacement and 3 m/s error for speed, with 10 s ahead of raw predictions.
This is a less direct approach since it requires the labeling of data. It can be assumed that
they are using a Frenét like topology since they are only considering linear velocity and
lateral displacement in their model.

3.3. Human Sentiment Analysis

One of the most critical objectives for intelligent transportation applications is road
safety, and unfortunately, one part of traffic accidents is human error. A driver’s behavior
could affect its way of driving. For that reason, a monitoring system inside an intelligent
vehicle would provide relevant information and indicate if the driver’s action is allowed.
Otherwise, the car would be able to correct it. This monitoring system used cameras
inside the cabin of a vehicle to detect face sentiment. Then, CNNs are applied for action
recognition. To be more specific, R-CNNs are the ones that select the most informative
regions from the drivers [67].

These NNs are trained and tested with an extensive data set to detect any change in
gaze and facial emotions, thus discerning regular and aggressive driving [68] or distracted
driving actions [69]. In some other cases, there want to predict drivers’ behavior; to make
this possible, CRNNs are used. Kim et al. [70] proposed a line-segment feature analysis-
convolutional recurrent neural network (LFA-CRNN) to analyze drivers’ facial expressions
indicating pain to prevent automobile accidents and respond to emergency health-risk
situations. The LFA-CRNN showed an accuracy of 97.4% in contrast with 98.21% and 97.4%
of CRNN and AlexNet.

Other systems also analyze people’s voice tones inside the cabin, such as Affectiva
Automotive2, which understands what is happening inside a vehicle. This technology
works as both a driver and monitoring tool, ensuring that the safety drivers keep their
eyes on the road even as the self-driving software drives the car. An emotional tracker
ensures robot taxi passengers feel safe during the trip. The system monitors levels of
driver fatigue or drowsiness, driver distraction, understanding driver mood and reactions,
and could enhance fleet management. To solve these tasks, the software uses some deep
learning architectures that have been mentioned in the previous sections. For instance,
for face detection, tracking and classification are used CNNs, in specific RPNs; and for
voice-activity detection and classification RNNs, in specific LSTM.

3.4. Using the Cloud with Autonomous Driving Systems

To solve the limitations posed by cloud systems, there are different solutions in
the literature. In this section, some of the solutions proposed are discussed. According
to Liu et al. [71], the cloud has to provide distributed computing, distributed storage,
and heterogeneous computing. It is expected that these systems are tailored together.
However, this creates problems with resource sharing because it has to be copied between
each application, reducing available space and speed. In this paper, the authors propose
a unified infrastructure that complies with the services mentioned. The system devel-
oped was reliable, had low latency, and a high-throughput autonomous driving cloud.
These practices are useful if anyone wants to build a system in which several AVs share the
compiled information.

Kumar et al. [72] developed a cloud-assisted system that involved several vehicles
communicating with each other and with several sensors located in the environment.
To avoid bandwidth limitations, they used a request-based system, which allowed the
car to have information about different locations at various resolutions. They used the
Octree representation, which is a 3D-point cloud that can be divided recursively into eight.
For more information, the reader is referred to [72].
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4. Future Trends

Research on AVs has shown great promise, and there have been so many break-
throughs in recent years. However, there are still many challenges that the community
needs to overcome to provide the safest and robust vehicles. All the sensors involved in
ADS produce a lot of data from their surroundings, and they are required to be processed
in real-time so that the AV can make a correct decision; this is very critical because a
small delay could make a considerable change. In this section, some future ADS trends,
which can improve performance and reduce response times, will be presented.

4.1. Cloud Computing

Nowadays, cloud computing is becoming a trend for many aspects of our everyday
life. More and more businesses are migrating several of their systems to the cloud because
of its availability, security, scalability, among others. When discussing businesses’ status,
payments, or stock inventory, the amount of time required to get a result may be enough if
a human perceives it as instantaneous or even tolerated if a small delay occurs. However,
in application domains such as autonomous driving, real-time results are a must if accidents
or life-threatening scenarios have to be avoided. Thus, the need to explore concepts such
as edge and fog within the cloud computing domain. Edge and fog computing consists of
moving the location where the information is processed closer to where it is generated [73].
Any device with an internet connection that can store and process data can be used as a fog
node (Cisco, “Fog Computing and the Internet of Things: Extend the Cloud to Where the
Things Are”, Cisco, computing-overview.pdf (cisco.com)). This way, the cloud server might
rely on these nodes for most analysis, reducing latency and increasing privacy. The authors
considered three characteristics of an application that needs fog computing:

1. Data is gathered on an edge. In this case, an AV or a group of AVs can be considered
an extreme edge.

2. There is a lot of data being generated in a large geographic area.
3. The information gathered needs to be analyzed, and it has to provoke a response in

less than a second.

An average cable provider in 2008 allowed 16 Mbps (Jakob Nielsen, Nielsen’s Law
of Internet Bandwidth, Nielsen Norman Group, Nielsen’s Law of Internet Bandwidth
(nngroup.com)). Two years later, bandwidth increased to 31 Mbps. The last measure-
ment was from 2019 with 325 Mbps. This behavior can be described by Nielsen’s law,
which says that each year, bandwidth increases by approximately 50%. Some authors even
compare Nielsen’s law with Moore’s law, which describes computer power. Despite recent
advances in bandwidth capacity, edge computing is still the most critical step for real-time
cloud analysis. As shown in [45], a DDNN that involves the edge brings several benefits,
such as fault tolerance, privacy, and reduced communication costs.

All and all, it is concluded that edge and fog computing are the best ways to implement
a NN in the cloud for applications that require fast analysis like AVs. Despite requiring
more powerful end devices, or edge servers, these techniques reduce network traffic,
allowing faster analysis of information, more privacy, and fewer transmission errors.

4.2. Parallelization of Neural Networks

The review of deep learning NNs presented in Section 2 showed that the accuracy
of models could be improved by increasing the number of parameters and the scale (i.e.,
nodes, layers, etc.). However, these actions also derive slower training times, which is
inefficient for adaptive autonomous driving scenarios. Therefore, it has been acknowledged
that deep learning models need to be parallelized to accelerate training and deployment.
Indeed, deep learning models can be trained and executed in multiple GPUs. The key
consideration to take advantage of their parallelization is to know how to divide the GPUs’
tasks. Hence, three approaches should be considered if anyone wants to train parallelized
models: data parallelism, model parallelism, and data-model parallelism [73].

computing-overview.pdf
cisco.com
nngroup.com
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• Data parallelism: Data parallelism is a different kind of parallelism that, instead
of relying on the process or task concurrency, is related to both the flow and the
information structure. Each GPU uses the same model to trains on different data
subsets. If there are too many computational nodes, it is necessary to reduce the
learning rate to keep a smooth training process.

• Model parallelism: In model parallelism, each computational node is responsible
for parts of the model by training the same data samples. The computational nodes
communicate between them when a neuron’s input is from another computational
node’s output. However, the performance is worse than data parallelism, and the
performance of the network will be decreased if it has too many nodes.

• Data-model parallelism: Both previous models have disadvantages, but they also
have positive characteristics. Model parallelism could get good performance with
many neuron activities, and data parallelism is efficient with many weights.

In summary, data-model parallelism combines the best of the first two approaches
and is more suited for AV tasks as long as there is a clear idea of where to apply each step.
For instance, the convolutional layer of a CNN could use data parallelism (since it contains
about 90% of the computation and 10% of the parameters). In contrast, the fully connected
layer could only rely on model parallelism because it contains 90% of the parameters and
10% of the computation.

4.3. Parallelization of the Whole System

One thing that is rarely discussed in research is the likelihood of the proposed solution
being applicable in real-life settings. Factors such as the time required for the whole data
to be processed and if that time is good enough for real-time applications are commonly
discussed for a system to be deployed in the real world. However, hardware requirements
for the processing are acceptable for these applications. Code parallelization that accelerates
the clocks in the processor at just the right rate speed (but not too much so that hardware
operates at dangerous temperatures) needs to be acknowledged well. In this regard,
thermal throttling can be considered a viable solution. Thermal throttling is a safety
protocol that the processor starts once the system reaches a determined temperature.
It starts to diverge power from processing the data towards the cooling system techniques
to avoid any hardware malfunctions.

Although this technique is beneficial for the hardware, it derives from slower data
processing (almost half of its capabilities). For example, using thermal throttling in image
processing might drop the frame rate from 30 FPS to 15 FPS (or less); this quality drop
in autonomous driving could even be dangerous as it could result in lower recognition
rates and maximum risk of accidents. This issue can be addressed using proper paral-
lelization techniques in CPU and GPU architectures. It is implemented for data to be
transferred smoothly throughout the system without frame drops and appropriate speed
for real-time applications without compromising the hardware’s integrity. For instance,
CUDA libraries from NVIDIA (NVIDIA, “CUDA Toolkit 10.1 original Archive”, NVIDIA
developer, CUDA Toolkit 10.1 original Archive|NVIDIA Developer) have excellent par-
allelization frameworks to segment complex instructions into smaller ones; all of them
are run concurrently in different GPU CUDA cores, giving the system the robustness
and speed it requires. From Google, TensorFlow API also has adequate parallelization
protocols for NN training and deployment in GPU architectures. It can be used in object
detection, instance segmentation, and RNN prediction tasks. The robotics operating system
provides parallelization options in CPU for the SLAM, path planning, communication
protocols, and wireless data transfer for multiple path planning operations in the Frenét
coordinate system.

4.4. First Thoughts towards an Approach for LSTM-Based Path Planning Prediction

After considering the conditions mentioned above, we propose a novel LSTM ap-
proach to predict both lateral displacement and linear velocity in a Frenét coordinate system.
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Many techniques have been proposed to achieve this (as described in Sections 2.5 and 3).
Still, they are considered isolated ways to solve the problem as they do not consider inte-
grating the overall pipeline. The reader must recall that vast amounts of data are required
to perform this task and acknowledge that a critical concept is often ignored in this phase,
i.e., causality. It is essential to consider a high chance of a reckless driver making a poor
judgment that could affect the AV, or that a single car’s predictions would not change
because another care changes the whole driving scenario to poor or unexpected choices.
Even deployed systems, such as the Ego Car (described in Section 3), would be part of
this causality scenario. Therefore, using the output from the Frenét coordinate system
that was taken from object classification via YOLO and boundary classification with in-
stance segmentation, a bidirectional LSTM can be fed with the Frenét data, both for lateral
displacements and linear velocities.

These are four different LSTM models that feed their weights and share weights
between lateral displacements and linear velocities. As seen in Figure 18, the LSTM
architecture is represented graphically.
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Every Frenét point of each car will be fed to the model, including the Ego Car points.
Thus, the prediction will consider every variable in the scenario and change its predictions
if the causality demands it. This will derive in a new Frenét prediction point for every
neuron in the LSTM architecture, and so the position, orientation, and velocity of every
point can be predicted. As a result, the car’s volume can be included in every future time
instance. This output data can be used for decision-making in an AV, reducing the number
of accidents enormously since causality is part now of the overall algorithm deployment
and execution.

5. Conclusions

This paper presented a comprehensive and thorough review towards achieving au-
tonomous driving by considering concepts such as image processing, NNs, and other deep
learning models. Moreover, it is acknowledged that two key concepts must be addressed
to deploy these systems in real life, i.e., DS and parallelization. The review was struc-
tured towards establishing the proper ways to evaluate these systems and structure their
use in pipeline systems that attempt to perform path planning (using Frénét coordinates)
and identify multiple objects on the road analyze the driver’s behavior. Although the
review’s scope is extensive and demanded a considerable amount of time to sort and
select the proper references, we believe that the result is a comprehensive guide for novel
and experienced researchers who intend to develop systems autonomous systems in the
near future.

Our efforts and research in this domain do not conclude here; there is still a con-
siderable amount of research to be made regarding the latest trends in this area and
incorporating them into our proposed system’s design. Additionally, we are considering
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how the latest developments, such as the COVID-19 pandemic, will affect these systems’
development. The team comprises members working in different parts of the world. There-
fore, our investigation in DS and parallelization techniques is not only intended for the sole
purpose of improving the performance of the system but also, to better sort the training
and deployment tasks in different machines and servers. Finally, it is worth noting that
this study may have some further developments and applications for other areas which
demand enhanced ADS, such as underwater vehicles (as described in Section 1).
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Abbreviations

ADS Autonomous Driving System
AV Autonomous Vehicle
AP Average Precision
mAP Mean Average Precision
BC Behavioral Cloning
BEV Bird’s Eye View
CDBN Convolutional Deep Belief Network
CLDA Constrained Linear Discriminant Analysis
CNN Convolutional Neural Network
COCO-ODC Common Objects in Context Object Detection Challenge
CRNN Convolutional Recurrent Neural Network
CUDA Compute Unified Device Architecture
DAG-SVM Directed Acyclic Graph-Support Vector Machine
DARPA Defense Advanced Research Projects Agency
DBN Deep Belief Network
DDNN Distributed Deep Neural Network
DS Distributed System
DOG Difference of Gaussian
FCN Fully Convolutional Network
FP False Positive
FN False Negative
GAN Generative Adversarial Network
IARA Intelligent Autonomous Robotics Automobile
IDM Intelligent Driver Model
IoU Intersection over Union
LiDAR Light Detection and Ranging
LSTM Long Short-Term Memory
MOT Multi-Object Tracking
M3OT 3D Multi-Object Tracking
MV3D Multi-View 3D Object Detection Network for Autonomous Driving
MVX-Net Multimodal Voxel for 3D Object Detection Network
NHTSA National Highway Traffic Safety Administration
NN Neural Network
R-CNN Region-Based Convolutional Neural Network
RL Reinforcement Learning
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RNN Recurrent Neural Network
RPN Region Proposal Network
RoI Region of Interest
SAE Society of Autonomous Engineers
SIFT Scale Invariant Feature TransformScale Invariant Feature Transform
SLAM Simulation Localization And Mapping
SURF Speeded-Up Robust Features
TN True Negative
TP True Positive
VOC Visual Object Classes
YOLO You Only Look Once
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