
DYON: Managing a New Scheduling Class to
Improve System Performance in Multicore

Systems?

Ramon Nou1, Jacobo Giralt1, and Toni Cortes1,2

1 Barcelona Supercomputing Center (BSC), Spain, <name>.<surname> at bsc.es
2 Technical University of Catalonia (UPC), Spain

Abstract. Due to the increase in the number of available cores in cur-
rent systems, plenty of system software starts to use some of these cores
to perform tasks that will help optimize the application behaviour. Unfor-
tunately, current Onload mechanisms are too limited. On the one hand,
there is no dynamic way to decide the number of cores that is taken from
applications and given to these system helpers. And, on the other hand,
the onload mechanisms do not offer enough control over when and where
onloading tasks should to be executed. In this paper we propose a new
Onload Framework that addresses these issues.
First, we propose DYON, a dynamic and adaptive method to control
the amount of extra CPUs offered to the Onload Framework to generate
benefits for the whole system.
And second, we propose a submission mechanism that given a task, ex-
ecutes it if there are idle resources or rejects it otherwise. This feature
is useful to move the execution of small pieces of code out of the critical
path (allowing parallel execution) when this is possible, or discard them
and execute a code that will not rely on them.

1 Introduction

Currently, processors have an increasing number of cores used for CPU intensive
workloads, but these cores are not exploited when they are idle. This extra
capacity can be used, for instance, to reduce a kernel critical path by executing
code in parallel, or to run additional services that provide additional benefits.
Consider an I/O analyser as IOAnalyzer [12] (to improve the I/O scheduler)
as an example of service (we will henceforth call them Onloaded Services in
general). This service can reduce the I/O time of a job with some I/O phases
up to 5 times [12] if the disk scheduler becomes optimal. This benefit affects the
rest of the system, which can increase its performance or go to an IDLE state
faster.
?

This work was partially supported by the EU IST program as part of the IOLanes project (contract FP7-248615),
by the Marie Curie Initial Training Network grant“SCALing by means of Ubiquitous Storage (SCALUS)”, by
the Spanish Ministry of Economy and Competitiveness under the TIN2012-34557 grant, and by the Catalan
Government under the 2009-SGR-980 grant. We would also like to thank Neurocom for letting us use their
TariffAdvisor application and Alberto Miranda for his help. Source available for kernel 2.6.32 under request at
the IOLanes project [5]



If the code is not executed (idle resources are unavailable) the system will con-
tinue working, but could we get extra benefits with additional resources to those
services? Yes, however the additional resources should be controlled dynamically.
For example, an HPC job with a processing stage and an I/O stage will rarely
obtain benefits if we change the I/O Scheduler. We can apply a dynamic CPU
partition method modifying the two stages behaviour forcing non-idle resources
to be offered only in the I/O stage. The proposed mechanism is called DYON.

An example of dynamic partition is the memory utilization between the page
cache [4,9] and normal memory. The key is that the page cache reduces a pos-
sible access to disk and thus, having more page cache should be beneficial in
most cases. Additionally, the kernel knows when the page cache size should be
modified via malloc calls. The CPU has a different behaviour: we can not assign
percentages of CPU directly (kernel divides cores using masks), and we neither
know in advance CPU requirements nor the maximum amount that we have to
offer to produce benefits to the system.

Onloaded Services need additional ways to be executed not found in current
Linux systems: for example, parallelized critical path code needs to know im-
mediately if it is going to be executed (using only idle resources), or processes
doing I/O analysis should be executed using a low priority and stopped immedi-
ately if the resources are going to be used. In this paper we propose the Onload
Framework that allows to execute those tasks and services only if there are idle
resources. With our proposal, we immediately know if the onload code is being
executed so we can then continue with a parallel workflow or move to a normal
workflow if the execution is not possible. The Onloaded Framework also allows
us to control the tasks priorities providing the needed tools to manage DYON.

Summarizing, the contributions of this article are the next ones:

1. An Onload Framework enhancing Linux workqueues with new capabili-
ties, along with a new scheduling class (Sched_Onload).

2. DYON, a dynamic CPU distribution method that maximizes the system
performance (CPU Cycles per I/O) modifying previous services priority.

2 Existing mechanisms overview

One of the current ways to execute code is the workqueues [10] mechanism,
used by some components in the Linux kernel to defer tasks. The workqueues
are implemented with a shared queue, being rarely used due the variability in
workloads. Recently they has been extended with the inclusion of Concurrency
Managed Work Queues [6], moving to a single pool of threads that serves all
queues. A single thread pool implementation avoids contention among threads
from each pool, but traditionally it has been difficult to find a solution for
all components. For example, some modules have built mechanisms on top of
work queues to handle ordering restrictions [8] and others simply use their own
workqueues since it is the easiest way to defer work inside the kernel.

The execution under the workqueues mechanism does not allow a conditional
execution of a parallel or sequential workflow depending on whether the task will



start executing or not (taking into account that these onloaded tasks will only
use idle resources).

Another mechanism is the Sched_Idle scheduling class, the processes of
such class are also enqueued and we do not know when they will be executed.
Those mechanism defer tasks, but deferring is in some scenarios undesired as
the execution can delay indefinitely not allowing a conditional execution of the
code.

3 Onload Framework mechanism

Our framework complements the workqueues, with a potential to parallelize tasks
and workflows and with a narrower target.

3.1 Design

The framework is designed for short kernel tasks and short/long off-kernel/user
tasks. The former, requested by the kernel, lack the issues (deadlocks, delays [7])
that are problematic for the workqueues management. Off-kernel tasks, requested
by a user level application, have similar requirements but they are preemptable
because they can not be trusted (as may block the framework). The common
and default behaviour of the framework is that it cannot preempt, so either it
accepts a task to be run immediately or it rejects it. Conceptually this means
either taking advantage of additional resources if they are present or doing it as
it was planned if they are not. We are going to enumerate the different features
and design principles:

Notifications - Tasks are executed asynchronously from the requester, so
there must be a callback mechanism to notify the end of a task. This callback
can be as simple as unlocking a semaphore. It is an optional feature, the tasks
can implement a different mechanism in their code.

Parallelism - Some of the operations we plan to onload might take advantage
of parallelism, and this means our framework needs to provide a way to express
it. For that matter, a range of CPUs 3 can be requested at once. Using a range
increases the possibility of success of the request, which is obviously critical since
otherwise the user would have to poll downwards from its maximum degree of
parallelism until the system can satisfy its requirements. At any moment, tasks
can retrieve the value of a private sequential id for this parallel operation and
the total number of threads collaborating.

Offloading - The framework also works in specialized resources (GPGPUs,
SPUs, etc.) seen by the framework user as an extended CPU mask with both
CPUs and these specialized cores. The user changes the target processor to
execute the requested task only by modifying this mask.

Deadlines - A task can be queued for a short time (deadline) while there
are not idle resources. The task will not use more than those idle resources on
3 We use CPU as simplification, referring to the smallest processing unit that can run
a task.



the machine, which will not happen using workqueues. This was implemented for
tasks like deduplication: setting up a deadline can be seen as a way to express
that the block to be deduplicated is not needed after the deadline.

NUMA selection - If we specify a memory address, the mechanism will try
to use an idle core near the memory address automatically.

Interface - The interface to onload tasks is similar to that of workqueues
but semantically richer and designed for parallel operations. Work requests are
defined with the following list of parameters: Function to onload, argument to
pass to the function, callback, CPU mask, minimum and maximum number of
resources requested, buffer address and a deadline value.

3.2 Implementation

The Onload Framework is implemented as a pool of threads in the kernel, each
bound to a core, from which only a subset will be available at a given moment
depending on the system load. If one thread is ready, it means its associated
CPU is idle so a task can be onloaded.

Internally, threads can be on two main states: ready and running. Availability
of a thread/CPU is expressed through a bitmap that is updated atomically on
every context switch. Checking whether there are idle resources to onload a task
is a fast operation. Apart from request time, a task (using the deadline feature)
can also be scheduled on two other points. Each time a CPU is about to idle,
the queue is checked, then one of the pending tasks could be selected. Similarly,
after an onloading task is finished, if its associated CPU run queue is still empty,
another of the pending tasks can be dequeued to be run immediately.

Whenever a new work request arrives at the framework, first its number of
CPU threads requirement (for example, use only core #4) is checked. If there are
idle cores to onload, the framework moves their associated threads to the running
list and then they wake up with a description of the task to perform. This is a
pointer to a function with three parameters: a void pointer and an id plus the
number of threads allocated for the task. While this task is running, others can
be accepted as long as there are resources to fulfill them all. Scheduling decisions
are simple at this point, but could be more elaborated if the optional deadline
functionality becomes more important in the future.

Once a task is finished, its associated callback is invoked and then the current
CPU load is checked. If its runqueue is still empty, the framework inspects if there
is another onload task waiting (to maximize CPU utilization). If it is not, the
thread is put back to the pool and the CPU marked as unavailable.

The scheduling is handled through a new scheduling policy which is set with
the POSIX function sched_setscheduler(). Current Linux versions implement
five different policies: FIFO, round robin, other (standard), batch and idle. Our
framework adds an extra one, Sched_Onload, whose effect is those processes
will only be scheduled whenever there are idle cores (similar to Sched_Idle but
with lower priority and different preemption scheme). For our IOAnalyzer exam-
ple means that the processing and analysis threads are of the Sched_Onload
class so their execution is subject to the existence of idle cores.



4 DYON - Dynamic Mechanism

As we have explained in Section 1, for certain types of services it is appropriate
to offer additional resources to increase the system performance. For example,
if we offer some extra CPU to IOAnalyzer we can get an extra gain surpassing
the loss of performance. With the default policy, we will not get this extra gain
resulting in a slower working system. Summarizing, DYON offers more or less
performance to some threads that are aiding the system to improve the overall
system performance.

4.1 Selection Mechanism

This dynamic system does not have a monotonic relationship between the CPU
partition (Onloaded Services and the rest of the system) and the performance
obtained. Therefore, we do not know if increasing or decreasing the processing
power offered is going to affect the performance. For this reason, we need to test
all the possibilities.

The method used to select the most beneficial partition is iterative and guided
by past performance. This method is based on the Armed Bandit [3], which
chooses the next partition based on the near-past observed performance. As it
is probability based, sometimes non-favourable partitions will be used. Those
non-favourable partitions may become favourable at any time, recalibrating the
system.

To summarize, the global workflow is the next one: each t seconds we obtain
P (performance) for the current partition ni. The new performance is merged
with previous performance values for the same partition. Once we have the
system values stored, we update the different probabilities (gradually) to favor
the best partition and select, using the afore-mentioned probabilities, the new
partition that will be used. We do not do any filtering as noise is considered to
be inside the system to optimize.

To get a finite number of partitions, we divide the CPUs in a number, n, of
parts. For example, 5 parts will divide the system processing power in : 0%, 25%,
50%, 75% and 100%. A 25% means that a 25% of the CPUs will be dedicated
to Onloaded Services. Furthermore, 0% will select the default Sched_Onload
policy, meaning that only idle resources will be used.

4.2 Metrics chosen to improve

To guide our dynamic system, we are going to use an I/O oriented metric ex-
tended to cover CPU Only scenarios. The metric, CPIO [1] (Cycles per I/O,
lower is better), is defined as the next formula:

(user cycles+ system cycles) ∗ CPUFreq ∗#Cores

system I/O blocks read+ written



Server1 Server2

0.00

0.25

0.50

0.75

1.00

20 40 60 50 100 150 200
Cycles x1000

E
m

pi
ric

al
 C

D
F

Onload WQueue

Fig. 1. ECDF for CPU Cycles to create-execute-finish a task on different servers.

We change it with (user cycles+ system cycles)−1 (lower is better) to cover
applications without I/O. Thanks to CPIO we can compare two system snap-
shots and decide if an action produces a better working global system without
the need of application metrics that are not always available.

5 Evaluation

We will evaluate the two components presented, i) the Onload Framework with
the Workqueues in a common scenario (creation-execution-finish of a task) and
ii) DYON using IOAnalyzer as Onload Service.

5.1 Onload Framework - Task Creation-Execution-Finish
comparison

If we exclude checking the CPU availability, onloading a task could be similar to
queueing the task to be run by the global workqueue. The workqueue needs to
be empty and restricted to schedule on a different CPU than the requester. We
use 2 servers: Server 1 has 4 cores and Server 2 has 8 cores. Figure 1 shows the
range of # of CPU cycles to create, execute and finish a task (1000 runs). Our
proposal is more stable(less variation) when we have a longer number of cores as
the restriction of running the task on a different core results on high variability
for the workqueue mechanism, evidencing it is not the appropriate way to onload
a task in the Linux kernel given a processor restriction. This comes from the fact
that they do not take processor availability into account. Other features of the
Onload Framework are not directly comparable.

5.2 DYON

The system under test is an Intel Core 2 Quad CPU Q9300 @ 2.50GHz with
4Gb of RAM with a ST31500341AS HDD (Server 1 in previous experiment). The
onloaded service selected for the evaluation is an I/O workflow analyzer to select
the I/O scheduler (IOAnalyzer [12]) for the current workload automatically. As
the service is highly optimized, we modified it in order to increase its CPU



consumption. We will use the following applications and benchmarks to build
the evaluation scenario creating a 3-phases workload, composed as explained in
Table 1, generating an heterogeneous workload. Each application has its own
performance metric that will be used to evaluate the system.

TariffAdvisor (TA) is a real parallel application [11], it uses CPU to make
fast rating for Telecom operators and does intensive writes to store the results.
The metric studied is the reports per second obtained (higher better).

Flexible I/O (FIO) [2] is a benchmark doing sequential I/O to 10 files in
parallel. The performance metric is the runtime (lower better).

CPU is a basic CPU consumer, it tries to use a 100% of each CPU for
the time specified. The metric to improve is the number of operations (higher
better). Offering CPU power to the Onload Framework, reduces its performance.

Table 1. Workload phases description.

Phases composition Description

TA + CPU An equilibrated value is the best as we are running one CPU
intensive parallel process and one I/O intensive process.

TA + FIO + CPU We have 2 I/O processes and 1 CPU consumer. The best
global performance will be obtained improving the I/O.

CPUc In this phase CPU is a direct target to optimize. Hence, the
best option is to reduce the CPU devoted to onload services
to 0% to lower the CPIO metric.

We will evaluate three scenarios using the IOAnalyzer service to optimize the
I/O Scheduler of the TA and FIO (able to offer a 50% of improvement for each
application): i) The static partition of CPUs, ii) The dynamic partition using
CPIO metric or application metrics and iii) the selection mechanism reactivity.

i. Static partition. For this experiment, we partition the CPU from 0% to
100% in 10% steps, so 90% means that 90% of extra non-idle resources are
available to IOAnalyzer. For each of the partitions we are running the 3-phases
workload defined in Table 1 obtaining a normalized mean performance value for
the entire workload.

On Figure 2 (left side) we show each static partition performance as a boxplot.
We can observe how with a 50% static partition the median performance (box
horizontal line) is higher than any other partition. On the other side, a 80% static
partition is a 10% less efficient than the optimal. The default partition (0%)
which only offers idle resources to IOAnalyzer, also obtains less performance
than the optimal.

If we analyse each workload phase, the optimal partition changes (50% for
TA+CPU, 70% for TA+FIO+CPU and 0% for CPU) as the effect of IOAna-
lyzer over the applications depends on the level of I/O (1, 2 or 0 applications



generating I/O respectively). This produces an heterogeneous workload, being a
perfect target for a dynamic method as DYON.

Dynamic Partition

Fig. 2. Static partition (left side) showing the mean application performance on Y-
Axis of the three phases described on Table 1. Results with DYON using CPIO or
application metrics are on the right side.

ii. Dynamic partition. Using the previous Fig.2 (right side), we show the
performance obtained running DYON guided by CPIO metric (CPIO, blue) and
Application metrics (App, red).

With any of the two metrics, we are able to obtain more performance than the
optimal static partition (50%) as we are on an heterogeneous workload. In the
case of CPIO we obtain clearly a 1.5% more, but the benefits with Application
metrics are lower.

This may be surprising at first: On the one hand, CPIO optimizes the global
system behaviour but it does not know anything about the jobs performance.
On the other hand, application metrics potentially can offer better results as
the output is more direct if they are of enough quality. Precisely, quality is the
problem on our scenario: for example, TA application metrics only report how
many records per second we have in the last period: It does not include any
relation with the CPU used for that processing, i.e., effectiveness reducing the
information offered to DYON in comparison with CPIO.

If we analyse each of the phases separately (not shown), we obtain more per-
formance with DYON than any static partition in the (TA+FIO+CPU) phase
because it is heterogeneous. However, CPUc phase obtains 10% less performance
than the maximum attainable: As this workload does not benefit from IOAn-
alyzer, any resource taken from it will decrease its performance. As DYON
needs to try different partitions to find the best one, these tries give resources
to IOAnalyzer, but result in no benefit to the CPU application.



iii. Selection mechanism and system reactivity. There are two considera-
tions in order to have a working selection mechanism as the one we are proposing:

Number of partitions. Having a lot of partitions reduces the capacity
of the algorithm to react. For example, with 10 partitions and only 1 of them
optimal (not a very common scenario) we need in median 17 tries or iterations
to find and select the optimal value in a stable way (two consecutive tries) as
we can see on Fig. 3a. On the same scenario, we have more than a 75% of the
selections going to the optimal partition (Fig. 3b). The other 25% will be devoted
to near optimal partitions and occasionally testing other ones. However, as the
performance of the other partitions is bad the maximum performance will be
75% of the optimal.

(a) Iterations to Optimal

%

(b) Optimal value frequency

Fig. 3. Selection mechanism and System Reactivity.

Time between checks. Between each partition change, the selection mech-
anism waits t seconds. For the previous experiments we selected a high t value
(15 seconds) to accentuate bad selections. However, when we were designing the
experiment, we found that the test time must be selected accordingly: with a
short test time (to be able to run more repetitions, in a reasonable time) the dy-
namic mechanism will not be able to detect/learn about how the system behaves.
Additionally, changes below t inside a workload will not be detected directly.

Fig. 4. Effect of the test length on the dynamic mechanism.



Reducing test time below that value will produce unexpected results (mainly
not being able to find the optimal value). To show this described effect, we
repeated TA+CPU phase using an 8 times shorter workload than in the evalu-
ation increasing the variability and reducing the performance obtained (Figure 4,
compares the each static partition performance for the phase, as 11 vertical bars,
with the performance obtained withDYON as a blue boxplot). This is produced
because all the partitions and its associated performance has not been explored.

6 Conclusions

The Onload Framework complements Linux workqueues to support our On-
loaded Services, background-like services and tasks aiding the system, and offer
new workflow capabilities to parallelize code based on the resources available.

We show that if we allow to use more CPU to those Onloaded Services we can
obtain extra benefits. To control the quantity of CPU offered to those services
dynamically we created DYON, a dynamic CPUs partition system. DYON is
guided by CPIO metric, providing a way to compare two system snapshots and
decide if the the new CPU partition is providing more or less performance.

We have seen on the evaluation as CPIO metrics offers more performance
than direct application metrics as CPIO captures the whole system behaviour.
With DYON we obtain more performance than any static selection.

References
1. Akram, S., Marazakis, M., Bilas, A.: NUMA Implications for Storage I/O Through-

put in Modern Servers. 3rd Workshop on Computer Architecture and Operating
System co-design (CAOS’12) (2012)

2. Axboe, J.: fio Flexible IO Tester. http://git.kernel.dk/?p=fio.git (2012)
3. Berry, D.A., Fristedt, B.: Bandit problems: Sequential allocation of experiments.

Monographs on Statistics and Applied Probability, 1985 (1985)
4. Bovet, D.P., Cesati, M.: Understanding the linux kernel. O’Reilly (2003)
5. FORTH, UPM, BSC, IBM, INTEL, NEUROCOM: IOLanes - Advancing the

Scalability and Performance of I/O Subsystems in Multicore Platforms. http:
//www.iolanes.eu (2010)

6. Heo, T.: RFC of Concurrency Managed Workqueues patch. http://lwn.net/
Articles/355347/ (2012)

7. Heo, T.: RFC of Concurrency Managed Workqueues patch take 2. http://lwn.
net/Articles/367289/ (2012)

8. Klassert, S.: RFC of padata patch. http://www.mail-archive.com/
linux-crypto@vger.kernel.org/msg03329.html (2012)

9. Love, R.: Linux System Programming: Talking Directly to the Kernel and C Li-
brary. O’Reilly Media, Inc. (2007)

10. Molnar, I.: Inclusion of Work Queues on Linux. http://lwn.net/Articles/11247/
(2012)

11. Neurocom: TariffAdvisor / TariffSuite. http://www.tariffsuite.com (2012)
12. Nou, R., Giralt, J., Cortes, T.: Automatic i/o scheduler selection through online

workload analysis. In: Apduhan, B.O., Hsu, C.H., Dohi, T., Ishida, K., Yang, L.T.,
Ma, J. (eds.) UIC/ATC. pp. 431–438. IEEE Computer Society (2012)


