
Hardware Primitives for the Synthesis of
Multithreaded Elastic Systems

G. Dimitrakopoulos, I. Seitanidis, A. Psarras, K. Tsiouris
Electrical and Computer Engineering

Democritus University of Thrace, Xanthi, Greece

P. M. Mattheakis
Mentor Graphics
Fremont, USA

J. Cortadella
Universitat Politècnica Catalunya

Barcelona, Spain

Abstract—Elastic systems operate in a dataflow-like mode
using a distributed scalable control and tolerating variable-
latency computations. At the same time, multithreading increases
the utilization of processing units and hides the latency of each
operation by time-multiplexing operations of different threads in
the datapath. This paper proposes a model to unify multithread-
ing and elasticity. A new multithreaded elastic control protocol
is introduced supported by low-cost elastic buffers that minimize
the storage requirements without sacrificing performance. To
enable the synthesis of multithreaded elastic architectures, new
hardware primitives are proposed and utilized in two circuit
examples to prove the applicability of the proposed approach.

I. INTRODUCTION

Elastic systems offer new degrees of freedom to the designer
by relaxing the strict global event scheduling requirements of
conventional synchronous designs and enabling the dynamic
scheduling of operations based on the availability of the
corresponding data [1]. This flexibility has been exploited in
SoC IP integration using elastic IP wrappers [2], in hardware
units synthesized from dataflow programming models [3], in
massively parallel processors [4], [5], as well as in elastic
coarse-grained reconfigurable arrays to schedule operations
dynamically via elastic control [6].

Synchronous elastic circuits are behaviorally equivalent to
conventional synchronous circuits with respect to the trace of
valid data observed at the inputs and outputs of the computa-
tion units and communication channels, as shown in Figs. 1(a)
and 1(b). However, the cycles at which the valid data appear
may vary significantly. Multithreaded elastic systems allow
independent threads to re-use the datapath of the baseline
elastic circuit thus maximizing hardware utilization and mini-
mizing the idle cycles that naturally arise from variable latency
operations and data-dependent branching. Fig. 1(c) shows an
example of the multithreaded elastic version of the elastic flow
presented in Fig. 1(b) where the empty slots are filled with
valid data that belong to a second independent thread.

Threads operate in a time-multiplexed manner and the
selection of the thread that proceeds to execution involves
arbitration among the active threads. Threads may share the
datapath either in a fine-grained manner by changing the
active thread on cycle-by-cycle basis or in a coarse-grained
manner that allows each thread to complete a larger set of
computations before moving to the next one [7].

In this paper we minimize the number of buffers required
to support multiple threads in an elastic system by sharing
buffers across threads. The proposed multithreaded elastic
buffers can be designed in a modular manner either with
regular edge-triggered flip flops or level sensitive latches. New
multithreading and control operators, such as join, fork, branch

Fig. 1. Single and multithreaded elasticity versus inelastic operation.

and merge are introduced that can be employed in the synthesis
of generic elastic architectures. In the same context, we
define and implement a new thread synchronization primitive
(barrier) that can be used for the high-level synthesis of mul-
tithreaded algorithms. Two examples, an MD5 cryptographic
hash function and a multithreaded pipelined processor, prove
the applicability of the proposed methodology.

II. BASELINE ELASTIC PROTOCOL AND CIRCUIT

A baseline elastic channel carries data signals and two
handshake signals (valid and ready) that implement the elastic
protocol, as shown in Fig. 2(a). The elastic buffers (EBs)
implement the handshake protocol by replacing any simple
data connection with an elastic channel. When an EB can
accept an input, it asserts its ready signal upstream; when it
has output available, it asserts valid downstream. When valid
and ready are both asserted, a data transfer occurs, as shown
in Fig. 2(b). In its simplest form, the forward and backward
latency of the handshake signals to the adjacent stages is one
cycle. With these conditions, any EB requires a minimum
storage capacity of two data items [8] and it can be in three
possible states: EMPTY, HALF and FULL depending on the
items stored in the buffer.

valid

ready

data

EB EB

clock

valid

ready

word1 word2 word3data

(a) (b)
Fig. 2. Single-thread elastic protocol and buffers.

The orchestration of the computation in elastic architectures
requires additional primitive control operators such as join and



fork modules that handle data convergence or split and pro-
gram control flow operators such as “if-then-else” statements
using the branch and the merge operators, shown in Fig. 3.

Fig. 3. The operators used for the synthesis of elastic architectures.

III. MULTITHREADED ELASTIC PROTOCOL AND BUFFERS

Multithreaded elastic control assumes that the elastic mod-
ules and channels operate in a time-multiplexed manner allo-
cating time slots to threads. A multithreaded elastic channel
carries the data of only one thread at each cycle and as many
pairs of handshake wires (valid(i)/ready(i)) as the number of
concurrent threads supported by the system. Among the active
threads only one uses the channel, i.e., only one valid(i) signal
is asserted per cycle. An arbiter is responsible for selecting the
active thread after taking into account which threads are ready
downstream.

A baseline multithreaded elastic buffer (MEB) can be built
by replicating one EB per thread and adding an arbiter and a
multiplexer, as shown in Figure 4 for the case of 3 threads.
The use of a 2-slot EB per thread, called full MEB, is an
expensive solution since the available resources (EBs in this
case) are effectively replicated per thread.

vout[1]
rin[1]
vout[2]
rin[2]
vout[3]
rin[3]

data_out

a
rb
it
e
r

vin[1]
rout[1]

vin[2]
rout[2]
vin[3]
rout[3]

data_in

EB

EB

EB

Fig. 4. The micro-architecture of a 3-thread MEB using multiple EBs.

A. Reducing the capacity of MEBs
Let us assume that the system can support S threads and

that M threads are active in an elastic channel in a particular
cycle. If M = 1 (only one thread is active), a 100% throughput
can be achieved for the active thread. If the active thread stalls,
the two available slots will be occupied, while the slots of the
remaining S − 1 threads will be empty.

When M threads are active, with 2 ≤ M ≤ S, each thread
will receive a throughput of 1/M . In this case of uniform

utilization, each thread will use only one buffer out of the
two available per thread since it will be accessed (read or
written) once every M cycles. Only when a thread stalls, it
will use its second auxiliary buffer. If every thread can use
its secondary buffer independently of the rest it can always
enjoy full throughput. If we relax this requirement we can
build a reduced MEB using only S + 1 slots. Each thread
owns a single slot (S in total) which is enough in the case of
uniform utilization when each thread delivers a throughput of
1/M . Also, when a single thread uses the channel without any
other thread being active or blocked, i.e., M = 1, it receives
full throughput and in the case of a stall it may use the extra
slot available in the reduced MEB. The extra slot is shared
dynamically by all threads, although only one of them can
occupy it at a time.

MEB#0

MEB#1

cycles

A0

A3B2

A1

B3

B0

A0

A1

B1
B1

A2

B1

B3

X

B2B3

A5

B3

A4

Thread B stalls Thread B released

0 1 2 3 4 5 6 7 8

B0

A1

B1

A1

A2

A3

B3

B2
B2 B2

B4

B4

B4

A5

B1

A2

B0

B1 B2

A2

A2

B2

A4

B4

B5

Input output

MEB#0 MEB#1

Input

Output

A3

A3

B3

Channel

channel

A6

B1

A4 A3

A3

A4

B2 A4

A5 A4

B5

(a) A 2-stage pipeline of full MEBs.

MEB#0

MEB#1

cycles

A0

A3B2

A1

B3

B0

A0

A1

B1
B1

A2

B1

B1

A4

B3

X

B2

B3

A5

B2

B3

A4

Thread B stalls Thread B released

0 1 2 3 4 5 6 7 8

B0

A1

B1

A1

A2

A3

B3

B2
B2

B2

B4

B4

A5

B4

A5

B1

A2

B0

B1 B2

A2

A2

B2

A4
B4

A4

B5

Input output

MEB#0 MEB#1

Input

Output

A3

A3

B3

A3

Channel

channel

A3 A4

X

(b) A 2-stage pipeline of reduced MEBs.
Fig. 5. Elastic flow on MEB pipelines.

Figure 5 depicts an example of control flow for an elastic
channel that supports two threads using both full and reduced
MEBs. In the first cycles, each thread receives 1/2 of the
throughput per channel and utilizes only one buffer slot. In
those cycles, the shared auxiliary registers are not utilized. The
shared slots are used for accommodating the stalled data items
of thread B. If the backpressure for B reached the input of the
pipeline, as done in Fig. 5(b), injection for thread B stops
and only data for thread A enter the system. This situation
is the only one in which the difference between the full and
the reduced MEB arises: when all threads, except one, are
blocked and the shared buffers of all pipeline stages up to the
source are utilized by a blocked thread, then the only active
thread will obtain 50% of throughput, since it effectively sees
only one available slot per channel. Full MEB, on the other
hand, will allow the active thread to fully utilize the channel.
The occurrence frequency of this effect depends on how often
all but one of the threads are stalled, which is application
dependent, and on the number of cycles it takes the stall to
propagate to the source of the pipeline.



IV. MULTITHREADED ELASTIC PRIMITIVES

In this section, we describe in detail the implementation of
(a) the proposed reduced MEB, (b) the multi-threaded variants
of the data redistribution and control primitives as well as (c)
the thread synchronization primitive that are employed in the
synthesis of multithreaded elastic circuits.

A. Reduced Multithreaded Elastic Buffer
The reduced MEB can be designed using the datapath

shown in Figure 6 that consists of a single register per thread
along with an auxiliary register that is dynamically shared by
all threads.

0

1
enen

EB control

0

1
enen

EB control

0

1
enen

en

EB control

shared
buffer

m
u

lt
it
h

re
a

d
e

d
 c

o
n

tr
o

l 
lo

g
ic

a
rb

it
e

r

vin[1]
rout[1]

vin[2]
rout[2]
vin[3]

rout[3]

data_in
Empty

vxt[1]

rit[1]

vout[1]
rin[1]
vout[2]
rin[2]
vout[3]
rin[3]

data_out

EMPTY HALF FULL

valid(i)/

ready(i)/goHalf(i)

valid(i) ready(i)' Empty/
goFull(i)

ready(i) valid(i)'/

goFull(i)

goHalf(i)

Empty

EMTPY FULL

ΣgoFull(i)

ΣgoHalf(i)

Fig. 6. The reduced 3-thread MEB with a dynamically shared buffer.

The elastic thread control unit copies S times the control
logic of a single EB that implements the 3-state FSM shown
in Fig. 6, allowing each thread to be in EMPTY, HALF or
FULL states. The elastic thread control tracks the state of
each EB by inspecting the additional goFull and goHalf signals
and guarantees via the Empty output signal that only one of
them will move to the FULL state. This is needed since in
the reduced MEB only one thread is allowed to store two
data items in case of a downstream stall by using the shared
buffer. A two-state FSM associated with the shared buffer
tracks this condition and produces the Empty signal that allows
the transition of only one EB control from HALF to FULL
state.

When a new data item arrives that belongs to the i-th thread
which is in EMPTY state, it is stored at the main register of the
i-th thread and moves to the HALF state. The threads in the
HALF state are ready to accept new data, as long as no thread
is in the FULL state. If this is the case and new data arrives,
three operations take place in the same cycle: (a) the new data
item is stored to the shared buffer, (b) the corresponding thread
moves to the FULL state, and (c) all threads that were in the
HALF state stop being ready to accept new data.

When the arbiter selects a thread that is in HALF state,
its data is dequeued from the thread’s main register and the
thread returns to the EMPTY state. On the contrary, if the
selected thread was the only one in the FULL state having

join

join

voutA[1]

rinA[1]

voutA[2]

rinA[2]

voutB[1]

rinB[1]

voutB[2]

rinB[2]

dataA

dataB
function data

vin[1]
rout[1]
vin[2]
rout[2]

fork

fork

vin[1]
rout[1]
vin[2]
rout[2]

voutA[1]

rinA[1]

voutA[2]

rinA[2]

voutB[1]

rinB[1]

voutB[2]

rinB[2]

dataA

dataB
data

(a) (b)

vin[1]

rout[1]

vin[2]

rout[2]

branch

branch

condition

data

voutA[1]

rinA[1]

voutA[2]

rinA[2]

voutB[1]

rinB[1]
voutB[2]

rinB[2]

dataA

dataB

merge

merge

voutA[1]

rinA[1]

voutA[2]

rinA[2]

voutB[1]

rinB[1]

voutB[2]

rinB[2]

dataA

dataB

vin[1]
rout[1]
vin[2]
rout[2]

data

(c) (d)
Fig. 7. Multithreaded versions of the elastic control operations (a) M-Join
and (b) M-Fork. (c) M-Branch and (d) M-Merge.

stored two words in MEB (at the main register and the shared
buffer), then it should move to the HALF state after reading
the data from the main register. During this state transition,
the main register of the thread should be refilled by the data
stored in the shared buffer. The shared buffer cannot receive a
new word in the same cycle since its availability will appear
on the upstream channel in the next clock cycle.

B. Multithreaded Elastic Control Operators
The multithreaded versions of the control primitive oper-

ators join and fork named M-Join and M-Fork are designed
by using multiple join and fork modules, equal to the number
of supported threads, as shown in Figure 7. The handshake
signals of both inputs are first gathered per thread and then
connected to the baseline single-thread join and fork operators.

In the case of M-Branch operator the movement of data
and its associated elastic control is dictated by a condition
flag, as in the single-thread case. The active valid bit of the
input elastic channel reveals to which thread the condition
corresponds to, as shown in Figure 7(c) for the case of
two threads. The M-Merge unit merges the data streams
created by M-Branch to a single multithreaded elastic channel.
Figure 7(d) shows the implementation of M-Merge for two
threads. Which path and which thread will be active are
dictated by the operation of M-Branch that distributes the
control information per thread and per path. Out of the two
paths, only one will be active. Therefore, two baseline merge
units suffice to merge the control information per thread.

C. Thread Synchronization
Thread barrier synchronization acts like a coordination

mechanism that forces the threads that participate in a mul-
tithreaded elastic system to wait until each one of them has
reached a certain phase of the algorithm’s execution. Once all
threads have reached the barrier carrying valid data, they are
all permitted to continue past the barrier.

The implementation of a barrier [9] that is compatible to the
multithreaded elastic protocol is shown in Figure 8. Initially



counter
en rst

== N

golgo FSM

count_enable[k]Thread #k

IDLE WAIT FREE

valid/
load lgo(i), 

cntEn(i)

lgo(i)=go

!valid

selected
from arbiter

!selected
from arbiter

lgo(i)!=go

Fig. 8. Multithreaded elastic thread synchronization primitive (barrier).

all threads that do not have valid data stay in IDLE state. Once
a new data item arrives for a certain thread, this thread moves
to the WAIT state and increments the counter. If this was the
last thread to arrive, the counter will reach the barrier’s limit
and it will be reset to zero. At the same time the value of
the global go flag will be flipped thus signaling the arrival of
all the threads in the barrier and their transition to the FREE
state. On the contrary, if the arriving thread was not the last
one, thread’s state remains unchanged. All threads remain at
the FREE state until they are selected by the arbiter. Once
selected, they move to IDLE state waiting for the barrier to
re-open.

V. DESIGN EXAMPLES

The proposed design methodology have been verified in two
different cases of multithreaded elastic circuits: (a) an MD5
hash function and (b) a multithreaded pipelined processor.

A. MD5 Cryptographic Hash Function

The MD5 algorithm takes as input a plaintext of arbitrary
length and, after processing it in fixed-length blocks, it pro-
duces a 128-bit hash value. The algorithm comprises of 4
rounds of 16 steps each. The 16 steps of each round are
fully unrolled and implemented in a single cycle, although
they could have been pipelined with minimum changes due to
elasticity. Each thread requires four rounds to complete the ex-
ecution of MD5. Since MD5 requires a different configuration
for each round, all threads need to synchronize before moving
to the next round. This is achieved by using a barrier, which
blocks the data flow after the output buffer. When all threads
have been processed and reached the barrier, the data flow is
released, allowing the round counter to be incremented.

B. Pipelined Multithreaded Elastic Processor

In the second example, we designed a multithreaded elastic
processor that implements the instruction set of [10] and
allows each thread to execute its code independently by
sharing the functional units of the datapath. Every pipeline
register has been replaced by a MEB that selects independently
at each stage which thread to promote for execution. Each
thread sees a different copy of the register file and has a private
program counter. All threads are eligible to move forward in
the pipeline as long as they contain a valid instruction. The
instruction and data memory as well as the execution units are
considered variable latency units.

C. FPGA implementations
Table I summarizes the implementation results (area/delay)

of the MD5 hash function and the multithreaded processor
when built with full and reduced MEBs in the place of pipeline
registers. For the processor, the number of block RAMs used
for data and instruction memories as well as the multithreaded
register file and the DSP blocks are not included and they are
the same in both cases by construction. The reduced MEBs
save in average 15% in both examples without sacrificing
either clock frequency or performance in terms of throughput.
Actually, the slightly higher clock frequencies achieved are
a result of the smaller wiring delays due to lower area. The
savings in the processor are larger than in MD5, since it has
a larger ratio of MEB area vs combinational logic area. If we
increase the number of threads to 16 the average savings rise
above 22%.

TABLE I
FPGA IMPLEMENTATION RESULTS OF THE 8-THREAD DESIGN EXAMPLES.

Design Full MEB Reduced MEB
Area (LEs) Freq. (MHz) Area (LEs) Freq. (MHz)

MD5 hash 12780 11 11200 12
Processor 6850 60 5590 68

VI. CONCLUSIONS

The unification of elasticity and multithreading opens up
new possibilities to the designer for deriving systems that can
support variable latencies and multiple threads under a fully
distributed and self-contained data flow control. At the same
time, the cost of buffering that may dominate such systems
is significantly reduced by allowing sharing of buffers across
threads, while still offering deadlock free operation in an
efficient and modular manner. Newly derived multithreaded
elastic control primitives as well as the thread synchronization
barrier enable the automated synthesis of complex algorithms
to their multithreaded elastic equivalent circuits.

REFERENCES

[1] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, “Elastic
circuits,” IEEE Transactions on Computer-Aided Design, vol. 28, no. 10,
pp. 1437–1455, Oct. 2009.

[2] L. Carloni and A. Sangiovanni-Vincentelli, “Coping with latency in soc
design,” IEEE Micro, Special Issue on Systems on Chip, vol. 22, no. 5,
pp. 24–35, 2002.

[3] D. Capalija and T. Abdelrahman, “Towards Synthesis-Free JIT Com-
pilation to Commodity FPGAs,” in Int. Symp. on Field-Programmable
Custom Computing Machines, 2011, pp. 202–205.

[4] M. Butts, A. M. Jones, and P. Wasson, “A Structural Object Pro-
gramming Model, Architecture, Chip and Tools for Reconfigurable
Computing,” in 15th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Apr. 2007, pp. 55–64.

[5] R. Panda and S. Hauck, “Dynamic Communication in a Coarse Grained
Reconfigurable Array,” in 19th Annual International Symposium on
Field-Programmable Custom Computing Machines, 2011, pp. 25–28.

[6] Y. Huang and et al., “Elastic CGRAs,” in Proc. of the ACM/SIGDA
Intern. Symp. on Field programmable gate arrays, 2013, pp. 171–180.

[7] T. Ungerer, B. Robic, and J. Silic, “A survey of processors with explicit
multithreading,” ACM Computing Surveys, vol. 35, pp. 29–63, 2003.

[8] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “Theory
of latency insensitive design,” IEEE Transactions on Computer-Aided
Design, vol. 20, no. 9, pp. 1059–1076, 2001.

[9] G. Andrews, Foundations of Multithreaded, Parallel and Distributed
Programming. Addison-Wesley, 1999.

[10] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, “iDEA: A DSP Block
Based FPGA Soft Processor,” in Proc. of the Intern. Conf. on Field
Programmable Technology, Seoul, Korea, Dec. 2012, pp. 151–158.


