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In this work, a fault diagnosis methodology termed VisualBlock-Fuzzy Inductive Reasoning, i.e. Visual-
Block-FIR, based on fuzzy and pattern recognition approaches is presented and applied to PEM fuel cell
power systems. The innovation of this methodology is based on the hybridization of an artificial
intelligence methodology that combines fuzzy approaches with well known pattern recognition
techniques. To illustrate the potentiality of VisualBlock-FIR, a non-linear fuel cell simulator that has
been proposed in the literature is employed. This simulator includes a set of five fault scenarios with
some of the most frequent faults in fuel cell systems. The fault detection and identification results
obtained for these scenarios are presented in this paper. It is remarkable that the proposed methodology
compares favorably to the model-based methodology based on computing residuals while detecting and
identifying all the proposed faults much more rapidly. Moreover, the robustness of the hybrid fault
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diagnosis methodology is also studied, showing good behavior even with a level of noise of 20 dB.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Polymer electrolyte membrane (PEM) fuel cells are devices that
allow the direct transformation of chemical energy (hydrogen) into
electrical energy (Pukrushpan et al., 2004). This energy conversion
is clean because the only by-products are water and heat. Moreover,
this process is very efficient and has the same level of performance
than the main fossil alternatives. Amongst others, these advantages
are behind the recent increase in scientific production in the field in
the last years. Potential applications are grouped into three cate-
gories: generation of electricity for stationary applications; residen-
tial and electronic applications and automotive applications.
Applications in the automotive sector have been particularly attrac-
tive due to the fact that there is practically null emission of polluting
agents (Rajashekara, 2000). This means that fuel cells are
environmentally-friendly alternative to conventional fossil fuels that
significantly reduce pollution and man-made greenhouse gases.

With all, PEM fuel cells are complex and interrelated systems
and, as stated in recent research efforts (Feroldi, 2009), efficiency
in control is crucial. Different control problems must be solved
to obtain a correct operation of the system, i.e. control of the
power flows in the system to fulfill the power load, conditioning
of the generated power, handling of heat and water and suitable
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hydrogen and air supply. Therefore, a set of auxiliary elements
such as valves, compressors, sensors, regulators, etc., are needed to
guarantee that the fuel cell works in an optimal way. For this
reason, fuel cell systems are vulnerable to different set of faults
that can imply its temporal or permanent damage. Fault diagnosis
systems (FDS) become, therefore, fundamental in order to reduce
as much as possible this vulnerability.

There has been intensive research activity in the fault diagnosis
of fuel cell stack systems that includes quantitative as well as
qualitative approaches. According to Aitouche et al. (2012), fault
diagnosis methods can be classified on two types: model-based
and knowledge-based approaches. In model-based approaches a
priori knowledge about the model of the process is assumed.
However, this information is not always available and the dynamic
fuel cell model is characterized by multiple variables and a strong
coupling with profound dynamics. Model-based approaches
are primarily based on statistical techniques, first order logic,
control theory, mathematical modeling, and computer simulation
(Aitouche et al., 2011; Escobet et al., 2009; Rosich et al., 2014; Wu
et al., 2008a, 2008b; Wang et al., 2011; Zhang and Huang, 2011).
Knowledge-based approaches are based on the data available from
the system to perform learning. Examples of knowledge-based
approaches are signal processing, experimental methods and
artificial intelligence. There is a large amount of research done in
the area of knowledge-based FDS for fuel cell stack systems,
specially using artificial intelligence methods, like expert systems,
neural networks, and genetic programming (Chavez-Ramirez et al.,
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Nomenclature

PEM polymer electrolyte membrane

FDS fault diagnosis system

ANFIS  neural-networks fuzzy infer system
FIR Fuzzy Inductive Reasoning

KNN k-nearest neighbor
5NN 5-nearest neighbor

EFP equal frequency partition
MSE mean square error

LPV linear parameter varying
Q acceptability measure

C partial acceptability measure

Crel relative confidence

Iq computing the maximum number of local cumulative
errors possible

Ao, oxygen excess ratio

0,in oxygen input

o,react oxygen reacted

Iem compressor current

Dcm compressor speed

Ve voltages applied to the cell

I stack current

Vem voltages applied to the compressor

2010; Kamal et al., 2014; Liu and Wang, 2003; Nitsche et al., 2004;
Yousfi Steiner et al., 2011; Zheng et al., 2013). However in recent
years, the demand has arisen to develop FDS that are more robust
to uncertainty. In this context, fuzzy logic and hybrid fuzzy
approaches appear to offer a good alternative to other qualitative
FDS methodologies (Hissel et al., 2004, 2007; Olteanu et al., 2012;
Tao et al., 2005; Vural et al., 2009; Becker and Karri, 2010). Let us
look a little closer to this research that is clearly related to our
interests.

Hissel et al. (2004) presented a first step in the direction of fuel
cell systems diagnosis, by proposing a Sugeno-type fuzzy model
for two faults, i.e. an accumulation of nitrogen and/or water in the
anode compartment and an important drying of the proton
exchange membrane. The Sugeno model has been tuned using a
genetic algorithm. The conclusions obtained state that the fuzzy
diagnosis models help to improve the results. For instance, the
authors point out that thanks to the fuzzy model only 150 s are
needed to detect the accumulation of nitrogen and water in the
anode component fault. Hissel et al. (2007) present a new
approach to PEM diagnosis based on fuzzy k-means clustering.
The fuzzy clustering algorithm produces three clusters on the two
dimension feature space, each one corresponding to a specific
fault, i.e. a specific behavior of the fuel cell stuck. Olteanu and co-
workers also proposed a Sugeno-type fuzzy model. In this case the
goal was to model the polyelectrolyte membrane fuel cell by
means of a set of fuzzy rules built based on physical principles.
Therefore, this research follows a model-based approach and it is
not focused on fault diagnosis. Tao et al. use the adaptive neural-
networks fuzzy infer system (ANFIS) to build the temperature
model of PEM fuel cell which is used as the reference model of the
control system, and adjusts the model parameters to control it
online. Vural et al. also uses the ANFIS to model the PEM fuel cell
under various operational conditions. The models obtained are
able to predict fuel cell performance with a high accuracy in an
easy, rapid and cost effective way. Becker and Karri also build
predictive ANFIS models, in this case for hydrogen flow rate,
electrolyzer system-efficiency and stack-efficiency. They found
that these models are reliable predictive tools with an excellent
accuracy. Notice that neither Tao et al. nor Vural et al. nor Becker
and Karri research are focused on fault diagnosis.

Therefore, the number of works that can be found in the
literature that propose fuzzy or hybrid fuzzy FDS for PEM fuel
cells is quite low. This is the reason why we propose a FDS based
on the Fuzzy Inductive Reasoning (FIR) methodology.

The main motivation of our research is to explore the added
value of using a fuzzy knowledge-based approach as an alternative
to other knowledge-based and model-based approaches, for cases
in which the non-linear dynamics are insufficiently known. The
goal of this research is to allow a tolerant fuel cell control by
means of the addition of a fuzzy fault diagnosis system operating
in real-time. With this idea in mind, the VisualBlock-FIR FDS based

on the Fuzzy Inductive Reasoning (FIR) methodology is presented
in this work. The FIR methodology is based on a hybrid fuzzy
pattern recognition approach and its conceptualization arises of
the General System Problem Solving (Klir and Elias, 2002). This
methodology of modeling and qualitative simulation is based on
systems behavior rather than structural knowledge. It has the
ability to describe systems that cannot easily be described by
classical methods (e.g. differential equations), i.e., systems, whose
physical processes are awkward to model.

The novelty of this work lies in using the FIR methodology to
model the different fault scenarios and the plant without faults, and
applying the detection and identification VisualBlock-FIR algorithm
to detect and isolate the faults occurred as fast as possible.

Most of the inductive model identification techniques, such are
neural networks and its hybridizations, assume a fixed (although
often arbitrary) structure and map the knowledge contained in the
training data set onto a set of parameter values. The training data
are only used during the model identification phase, i.e., the
modeling phase. Once the model has been identified, simulation
runs are based solely upon the previously optimized parameter
values. Such techniques suffer from the problem that they nor-
mally are unable to recognize, when the testing data lie outside
the range, for which the model has been validated.

In contrast, FIR is a non-parametric technique. The training data
are characterized and classified during the model identification
phase, but they are not mapped onto parameter sets. Therefore, FIR
refers back to the classified training data set also during the
simulation or prediction phase. This property makes it impossible
for FIR to extrapolate “generously” during simulation and, therefore,
to predict values that are not physically possible. Finally, FIR has self-
assessment capabilities that enable it to warn the user of the
methodology if it makes “risky” predictions, i.e. predictions that are
not well founded on the basis of the available training data.

To prove the usefulness and robustness of the proposed metho-
dology, the PEM system simulator developed by Pukrushpan et al.
(2004) and modified by Escobet et al. (2009), to include a set of
typical fault scenarios, has been used. This allows comparison of the
results obtained by the VisualBlock-FIR methodology to the results
achieved by the model-based fault diagnosis methodology presented
by Escobet et al. (2009). It is important to mention that we have
chosen the fault scenarios described by Escobet et al. (2009), because
the data was easily available. Moreover, in that work, the detection
and identification of the faults is reported not only taking into
account whether it is possible or not to detect and identify them;
they also take into account the time needed to do it. We could not
find many papers that present the time needed by the proposed
methodologies to detect and identify the faults of PEM fuel cells.

The VisualBlock-FIR fault diagnosis methodology is introduced in
Section 2. Section 3 describes the PEM fuel cell system. Section 4
presents the application of VisualBlock-FIR to the fuel cell system and
the results obtained. Section 5 presents the study of robustness of
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VisualBlock-FIR methodology. Finally, the conclusions of the research
are outlined in Section 6.

2. Fault diagnosis methodology

It is necessary to clarify here that the Fuzzy Inductive Reasoning
(FIR) methodology is responsible for identifying models that repre-
sent specific behaviors of a system. With a FIR model available the
FIR prediction process forecasts the next output value of the system.
On the other hand, the VisualBlock-FIR methodology is the FDS based
on the FIR models previously mentioned.

A FDS aims to detect and identify the different faults that may
occur in the system over time. VisualBlock-FIR performs these
tasks in two modules, i.e. detection and identification, which the
user can manage by means of a user-friendly framework. In the
fault detection module, a FIR model is used to find out if a fault has
occurred, setting off an alarm in that case. In the identification
fault module, the type of fault is identified. In the following
sections the VisualBlock-FIR is described and, when necessary,
the FIR modeling and prediction processes are also explained.

2.1. VisualBlock-FIR fault detection

The fault detection process of VisualBlock-FIR is presented in
Fig. 1. In this figure the gray boxes represent FIR processes, whereas
the white boxes constitute the fault detection procedure. As in other
diagnosis methods, a model allows checking the consistency
between measured system output and its predicted behavior. If an
inconsistency is detected, the existence of a fault is proved. In the
proposed approach, the FIR methodology has been used for obtaining
a qualitative behavioral model.

The data measured from the system is converted into qualitative
triples (class, membership, and side) by means of the FIR fuzzification
process. The class value represents a coarse discretization of the
original real-valued variable. The fuzzy membership value denotes
the degree of belonging of the data to a fuzzy set. Finally, the side
value indicates whether the quantitative value is to the left or to the
right of the peak value of the associated membership function. The
side value, which is a specialty of the FIR technique since it is not
commonly used in fuzzy logic, is responsible for preserving, in the
qualitative triple, the complete knowledge that had been contained
in the original quantitative value. The defuzzification is the inverse
process of the fuzzification. Fig. 2 illustrates the process of fuzzification
by means of an example. A temperature of 23 °C would hence be

fuzzified into the class normal with a side value of right and a fuzzy
membership value of 0.755. The determination of the number of
classes per variable and the distribution of the classes in the search
space (shape of the membership functions) is defined by the applica-
tion's experts or by the modeler that has available a set of clustering
algorithms, such are fuzzy c-means, equal frequency partition, hier-
archical clustering, k-means, etc. FIR also offers the possibility to use
genetic algorithms to learn the granularity (number of classes per
variable) and/or the shape of the membership functions. However, the
computational time is quite large if this option is chosen.

The fuzzy forecasting process predicts the next qualitative output
value from the qualitative input data using the best FIR model
identified, which represents the current behavior of the system. The
FIR model should be identified out of line, before the fault detection
process takes place. A FIR model is composed by a structure, called
mask, and a pattern rule base, named input/output matrix. A mask
represents a possible causal and dynamic relation among the qualita-
tive variables. It is represented by a matrix where each column
corresponds to a measured variable. It has a certain number of rows,
which represents the temporal domain that can influence the output.
Each row is delayed relative to its successor by a time interval of
otrepresenting the time lapse between two consecutive samplings. An
example of a mask is presented in Fig. 3. This mask has four m-inputs,
{u(t—28t), ug(t—26t), y(t—5t), uy(t)}, denoted by iy, iy, i3, is
respectively, and one m-output, Oy, associated to y;(t).

The best mask is found by means of an optimization process
that determines the most deterministic state transition matrix.
The optimality of the mask is evaluated with respect to the
maximization of its forecasting power.

How can the one mask be found that, within the framework of
all allowable masks, represents the most deterministic state
transition matrix? This mask will optimize the predictiveness of
the model. In the FIR methodology, the concept of a mask
candidate matrix has been introduced. A mask candidate matrix
is an ensemble of all possible masks, from which the best is chosen
by a mechanism of exhaustive search. Another search strategy
based on genetic algorithms has also been implemented.

The optimal mask function searches through all legal masks of
complexity two, i.e., all masks with a single m-input, and finds the
best one; it then proceeds by searching through all legal masks of
complexity three, i.e., all masks with two m-inputs, and finds the
best of those; and it continues in the same manner until the
maximum allowed complexity (a parameter) has been reached. In
all practical examples, the quality of the masks will first grow with
increasing complexity, then reach a maximum, and then decay
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Fig. 1. VisualBlock-FIR fault detection process.
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(Classes) (Pattern Rule Base)

Fig. 4. Derivation of FIR pattern rule base.

rapidly. Each of the possible masks is compared to the others with
respect to its potential merit. The optimality of the mask is
evaluated with respect to the maximization of its forecasting
power that is quantified by means of a quality measure, based
mainly on Shannon entropy (Escobet et al., 2008).

Fig. 4 illustrates how the input/output matrix (pattern rule based)
is obtained from the mask. The left hand side of Fig. 4 shows an
excerpt of the qualitative data matrix that stores the class values. It
shows the numerical rather than the symbolic class values presented
in Fig. 2, i.e. instead of fresh, normal and warm linguistic values we
use numerical values to represent them. The box symbolizes the
mask that is shifted downwards along the qualitative data matrix.
The round “holes” in the mask denote the positions of the m-inputs,
whereas the square “hole” indicates the position of the m-output.

The class values are read out from the qualitative data matrix
through the “holes” of the mask, and are placed next to each other in
the input/output matrix that is shown on the right hand side of Fig. 4.
Each row of the matrix represents one pseudo-static qualitative state
or qualitative rule (also called pattern rule). For example, the shaded
rule of Fig. 4 can be read as follows: “If all m-inputs (iy, i3, i3, i4) have a
value of 2 (corresponding to medium) then the m-output, O,
assumes a value of 1 (corresponding to low)”.

In the forecasting phase, future qualitative output states can be
predicted using the model by means of the inference engine (Escobet

time, and therefore, the nearest neighbors are far away from each
other. It is important to keep in mind that the FIR methodology is
driven by the system's behavior rather than relying on structural
knowledge, and therefore, the amount and richness of the data
available from the system are crucial in order to assure the
identification of an accurate and reliable model that represents it.

Fault detection process checks if the real signal lies inside the
envelope. If the observed (real) value leaves the bounds specified
by the envelope, an instantaneous error is recorded, meaning that
the model used in the prediction no longer represents the system
at that specific point in time.

In order to reduce the effect of instantaneous errors due to the
presence of noise in the measurements or unmodeled dynamics, two
filters are introduced, a detection time window and a threshold error.
The instantaneous errors recorded inside a predetermined detection
time window are accumulated. When the cumulative error surpasses
the specified threshold, an alarm is triggered, and it is then necessary
to identify the fault that has occurred (see Fig. 1).

Fig. 6 presents an example of FIR fault detection using the
enveloping concept with a time window of 15 prediction points.
The upper and lower dotted lines represent the upper and lower
bounds of the envelope, respectively, whereas the continuous line
is the real output signal. In the bottom part of the figure, the
instantaneous errors are accumulated. As can be seen, the real value
leaves the envelope for the first time at point number 6 where the
observed value exceeds the upper bound of the envelope, causing
an instantaneous error. The same occurs at points number 7 and 11.
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The threshold of cumulative errors specified in this example was 3,
and therefore, the alarm is triggered at point number 11 when the
third instantaneous error arrives.

2.2. VisualBlock-FIR fault identification

When an alarm is triggered, the fault identification process,
described in Fig. 7, starts. The main part of this process is the fault
model library, where each model has been identified, out of line,
using the FIR methodology.

As in the detection process, the gray boxes represent FIR
processes whereas the white boxes constitute the fault identifica-
tion procedure.

At each instant of time, the measured data, once fuzzified, is used
for each model stored in the fault model library to obtain the
envelope interval. As in the detection process, the instantaneous
errors recorded for each fault model are accumulated over time. A
predetermined identification time window defines the number of
prediction values that will be used in order to identify the fault that
has occurred. Notice that a small-sized identification time window is

preferred because it implies fast model identification. In order to
determine the size of the time window it is necessary to take into
account the system's dynamics. Due to the fact that the FIR models
for each of the different faults are already available, it is possible to
experiment with them to establish a small useful time window.

The accumulated errors are used to compute the model accept-
ability measure. The acceptability measure is a relative index ranking
the models in terms of their ability to predict the new behavior of the
system. This measure allows us, in a reliable way, to identify the fault
that has occurred. It also offers guidance when the identification
process faces additional problems, e.g. when the produced fault is not
a foreseen fault and therefore is not available in the fault model
library, or when two different models can be identified that both are
able to explain an observed fault.

The acceptability measure of the ith model, Q;, is described by

Eq. (1).
Qi = CiCp, )

where C; is the partial acceptability measure of the ith model and
Cyeis a relative confidence that takes the dispersion between the
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C; values into account. C; is obtained adding the cumulative errors
of the ith model, I, and computing the maximum number of local
cumulative errors possible (depending on the size of the identified
time window), I, as shown in Eq. (2).
Ci=1.0-Iq/la,, )
C; is a confidence measure, i.e. a real-valued number in the range
[0,1], where larger values indicate increased confidence. The
relative confidence is obtained by Eq. (3).

n
Crel,» = Ci/ kzl Ck (3)

If there is only one model with a high value ofC;, C,,;, will still
be very high, but if there are other models with high C; values as
well, C, will be much smaller. The model with the largest
acceptability measure is selected as the one that best represents
the new behavior of the system, and therefore, the detected fault
has been identified.

Table 1
Parameters used in the PEM fuel cell.

Symbol Variable Value

0.002 kg/cm?

3. Case study: PEM fuel cell system

A PEM fuel cell system is an electrochemical cell where chemical
energy is directly converted into electricity, by combining hydrogen
fuel with oxygen from air, with waste heat and liquid water as by-
products. In this paper, a simulator of the PEM fuel cell system is
used as case study for fault diagnosis. The simulator system uses the
non-lineal model and controller strategies proposed by Pukrushpan
et al. (2004) which represents a 75 kW fuel cell system with 381
cells. This PEM fuel simulator allows incorporating various faults
(Table 2) within the Simulink environment.

A schematic diagram of the main subsystems of a PEM fuel cell
system and system supervision variables is shown in Fig. 9. Table 1
describes the set of parameters of the PEM fuel cell used in this study.

The air supply system consists of an air compressor to feed
atmospheric air to the fuel cell cathode, the supply manifold that
connects the compressor output with the air cooler input, and the air
cooler and the static humidifier that, respectively, refrigerates and
humidifies the air before it goes into the stack. The majority of the
parasitic power for an automotive fuel cell system is spent on the air
compressor, thus, it is important to determine the proper air flow. The
air flow excess is reflected by the term oxygen excess ratio, defined as
the ratio of oxygen supplied to oxygen used in the cathode, i.e.
Ao, = 02in/0;react.

The model guarantees the required stoichiometry by regulating the
hydrogen, supplied from a pressurized or liquid hydrogen tank, by
means of a controlled valve. The electrochemical principles of the fuel
cell stack are also modeled in order to accurately evaluate the
electricity production and the outputs of the stack. This implies
specific model equation for the anode, the cathode, the membrane
and the stack voltage. Finally, the cathode outlet manifold of the fuel
cell is considered in the model as an external component. The
simulated model only describes the normal operational mode and
purges in the anode side are not considered, meaning that all the
hydrogen in the anode side is consumed. It is also assumed that the
temperature of the fuel cell stack is known and constant since its
dynamic behavior is much slower than that of the rest of the model.
The transient phenomena captured in the model include the flow and
inertia dynamics of the compressor, the manifold filling dynamics
(both anode and cathode), reactant partial pressures, and membrane

Type Magnitude

Pm.dry Membrane dry density
Mpay ~ Membrane dry equivalent weight 1.1 kg/mol
tm Membrane thickness 0.01275 cm
n Number of cells in stack 381
Ag Fuel cell active area 280 cm?
d. Compressor diameter 0.2286 m
Jo Compressor and motor inertia 5x 1075 kg m?
Van Anode volume 0.005 m?
Vea Cathode volume 0.01 m®
Vm Supply manifold volume 0.02 m?
Vim Return manifold volume 0.005 m*®
Cprm Return manifold throttle discharge coefficient 0.0124
ATrm Return manifold throttle area 0.002 m?
Ksmour  Supply manifold outlet orifice constant 0.36293 x 10~ ° kg/(s Pa)
Kea,out Cathode outlet orifice constant 0.21773 x 10~ ° kg/(s Pa)
ky, Motor electric constant 0.0153 V/(rad/s)
ke Motor torque constant 0.0225 N-m/A
Rem Compressor motor circuit resistance 12Q
Table 2
Description of the fault scenarios used in this study.
ID Fault description
#1 There is suddenly a increase of friction in the mechanical
component part of the compressor
#2 The compressor motor suffers an overheating
#3 The fluid resistance increases due to water blocking the channels or

flooding in the diffusion layer

#4 Air leak in the air supply manifold

#5 Increase in the voltage value below which the compressor motor
does not turn

Parametric abrupt 100% of increment (the constant is duplicated)

Parametric abrupt
Parametric abrupt

100% of increment (the constant is duplicated)
50% of reduction of the water flow

50% of reduction of the air flow
Increased from 30V to 60 V

Parametric abrupt
Parametric abrupt

220 -

200 /o

180 \
160 -\ J/

stack current

Training data Test data

100 200

300

400 500 600

seconds (s)

Fig. 8. Stack current periodic set-point signal.
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humidity. For a deeper description of the PEM fuel cell simulator
please refer to Lira et al. (2010).

The available sensors in the system are another important issue to
take into account for fault diagnosis. In the study case, system provides
measures of the compressor current I, and its speed, @y, and the
voltages applied to the compressor, Vi, and the cell, V. The stack
current I, is regarded as a measured disturbance to the system.

The simulator includes the five faults presented in Table 2. The
fault #1 is simulated with an increment in the compressor constant
and, similarly, the fault #2 is simulated with an increment in the
compressor motor resistance. Both faults are translated in a change in
the compressor torque. The fault #3 is simulated with an increment in
the orifice constant of the cathode output which produces a change in
the outlet air flow in the cathode. The fault #4 is simulated with an
increment in the supply manifold outlet flow constant, which is
translated into a change in the outlet air flow in the supply manifold.
The fault #5 is simulated with an increment in the lower voltage that
the controller supplies to the compressor motor, a boundary that also
influences the compressor torque.

4. Fault diagnosis of the PEM fuel cell system

Fault diagnosis requirements applied to PEM fuel cell system
are to detect and isolate the five faults proposed as a study case. In
order to do so, it is necessary to first identify the FIR qualitative
model of the plant both in normal operation and in failure mode.
4.1. FIR qualitative models identification

The first step for building the FDS is to obtain the FIR
qualitative models, which constitute the model library. As Fig. 9

Normal behaviour Fault #1 Fault #2
t/Iem Ire Ven Iem Ire Vem  Iem Iie Vem Iem
t—46t -1 =2 0 0 0 0 -1 -2 0
t—36t 0 0 0 0 0 0 0 0 0
t—-26t 0 0 o0 0 0 o0 0 0 o0
t—ot -3 0 -4 0o 0 -1 -3 0 -4
t 0 0 1 -2 -3 1 0 0 1

Normal behaviour Fault #1 Fault #2
t/@Wem Iie Vem @cm Iye Vem @cm Ie Vem @cm
t—46t -1 -2 0] [ 0 0 0 0 0
t—36t 0 0 0 -1 2 0 -1 -2 0
t-26t 0 0 0 0 0 0 0 0
t—ot -3 0 -4 0 0 0 0 0 0
t | o 0o 1] [-3 0 1 -3 -4 1
Normal behaviour Fault #1 Fault #2
t/ Ao, Ie Vem Ao, Ie Vem Ao, Ie Vem Ao,
t—4ot 0 0 07 0 0 0 0 0 0
t—36t -1 =2 0 0 0 0 -1 -2 0
t-25t 0 0 0 0 0 0 0 0 O
t—ot 0 0 -3 -1 -2 -3 0 0 0
t -4 0o 1] | o o 1 -3 -4 1
Normal behaviour Fault #1 Fault #2
t/ Vfc Ifc Vem Vfc Ifc Vem Vfc Ifc Vem Vfc
t—4ot 0 0 -1 0 0 0 0 0
t—36t 0 0 0 -1 -2 0 0 0 0
t-26t 0 0 0 0 0 0 0 0 0
t-ot 0 0 -2 0 0 0 0 0 -1
t -3 -4 1 -3 0 1 -2 -3 1

shows, the measured data are I, Vem, Iem, @em, Ao,and Vg, where
the first two are input variables.

When load changes, the current delivered by the fuel cell stack
varies. At that point, the fuel cell system controller adjusts the air
pump in order to maintain appropriate air feeding. In this study,
PEM fuel cell has been perturbed with a periodic load change. The
load periodically draws the current signal shown in Fig. 8, with a
period of 160 s and amplitude between 160 and 250 A. The second
and third periods are used to train the models and the last one to
test them.

The input and output variables are discretized into 3 classes.
The number of classes per variable has been determined by the
modelers after an analysis of the signals. The membership func-
tions are defined following the equal frequency partition (EFP)
algorithm, which distributes the membership functions in the
search space in such a way that each class contains the same
number of training data points. In this case, it is not necessary to
use a genetic algorithm to optimize the discretization parameters,
due to the fact that the prediction results obtained with the
proposed discretization values are already really good.

Due to the fact that each FIR model can have only one output, it
becomes necessary to identify 4 models for normal plant behavior and
4 for each fault studied. A total of 24 different models (4 outputs x 6
plant behaviors) should be identified before VisualBlock-FIR is ready to
perform fault detection and identification.

For each of these 24 scenarios, the system is simulated during
3 complete signal periods of 160 s each, i.e. 480 s of simulation
time, with a sampling rate of 0.1 s, generating 4800 data points.
The first 320 s (3200 data points) are used by FIR to identify the
model, and the final 160 s are used to verify the model. The masks
obtained for the 24 scenarios are presented consecutively in
Eq. (4).

Fault #3 Fault #4 Fault #5
Ifc Vem  lem Ifc Vem  lem Ifc Vem  lem
-1 -2 0 -1 -2 0 -1 -2 -3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
-3 0 -4 -3 0 -4 -4 -5 -6
0 0 1 0 0 1 0 0 1
Fault #3 Fault #4 Fault #5
Ife Vem @em Iie Vem @cm Ife Vem @em
-1 -2 0 -1 -2 0 0 0 0
0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 -2 -3 0
-3 -4 0 -3 -4 0 0 0 0
0 0 1 0 0 1 0 0 1
Fault #3 Fault #4 Fault #5 @
Ifc Vem /102 Ifc Vem /102 Ifc Vem /102
0 0 -1 0 0 -1 -1 -2 -3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 -2 0 0 -2 -4 -5 -6
-3 0 1 -3 -4 1 0 0 1
Fault #3 Fault #4 Fault #5
Ifc Vem Vfc Ifc Vem Vfc Ifc Vem Vfc
-1 0 -2 -1 -2 -3 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 -3 -4 -5 -6 0 0 -1
-4 0 1 0 0 1 -2 -3 1
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Fig. 9. Schematic diagram of FDS with PEM fuel cell system (adapted from Feroldi et al. (2007)).

The mean square error in percentage defined in Eq. (5) is used to
compute the prediction error.

MSE = (E [(y(r)— y(r))z]/az) % 100%; o2 =E[y> ()] — {Ey(n}’
©)

where E is the mean value, y(t) is the system output, QUOTE is the
predicted value and ¢ denotes the variance.

For each of the 24 FIR models identified, mean square errors
lower than 1 x 10~2% are obtained when predicting the test sets.
These prediction errors are very low, meaning that the models
obtained represent accurately each of the system's behaviors. The
FIR models are stored in the fault model library and are used
during the fault identification phase of VisualBlock-FIR.

It should be taken into account that if a possible fault is not
included in the fault model library it can be detected but not
identified. Therefore, the set of faults should be selected accu-
rately. However, it is possible to include new faults in the model
library when needed. On the other hand, the mask and the pattern
rule base are stored in the model library for each fault and,
therefore, if the number of faults becomes very large the memory
burden for on-line applications could become a problem.

As has already been explained, FIR is a data driven methodol-
ogy that infers the model from system measured trajectories. As all
other inductive model identification techniques, FIR is not able to
obtain “good” models with poor and/or scarce data. From statis-
tical considerations each legal discrete state should be recorded at
least five times (Law and Kelton, 1990). Thus, a relation exists
between the total number of legal states and the number of data
points required to base the modeling effort upon. The total
number of legal states is computed multiplying the number of
classes of all input variables. Obviously, fault detection and
identification are more accurate when the fault models identified
represent accurately its behavior. However, as mentioned earlier,
FIR has self-assessment capabilities that enable to know if it makes
predictions that are not well founded on the basis of the available
training data.

4.2. Simulation results

Turning to the detection and identification performance of
VisualBlock-FIR, different experiments have been performed intro-
ducing the previously described 5 faults. The goal of these
experiments was to study the usefulness of our approach detecting
and identifying the faults. Fault #1 is introduced at second 150
when the plant is working properly. Figs. 10 and 11 show the
dynamic comparison of the six FIR models when used for
predicting oxygen excess ratio,Ao,, and compressor current, Icm,

output variables, respectively. The envelope is computed at the
same time for the non fault model (most upper plot of Fig. 10), and
the fault models (rest of the plots of Fig. 10). The maximum and
minimum values of the enveloping are represented as dashed lines
whereas the real data is represented as a continuous line.
As explained before, the FIR models identified are very accurate
(have low prediction errors) and, therefore, the upper and lower
bounds of the enveloping are, in both figures, almost undistin-
guishable. In this study case, the detection time window lasts 1 s,
the threshold of the cumulative error is 3 and the identification
time window lasts 6 s.

Table 3 shows the detection and identification time (s) for each
of the output variables and all of the faults analyzed. In the case of
fault #1, VisualBlock-FIR needs only 0.4 s (4 samples) to detect a
fault when oxygen excess ratio and compressor current output
variables are analyzed. At second 150.4 an alarm is triggered and
the identification phase starts, as seen in Figs. 10 and 11. For
compressor speed, ¢y, and stack voltage, Vi, output variables,
VisualBlock-FIR needs 0.5 and 0.8 s, respectively, to detect that a
fault has occurred.

In this case, a time window of 60 data points (corresponding to
6 s) is used to determine the fault that has occurred. Six seconds is
enough for the acceptability measure to be sure that fault #1 has
been produced. In this application acceptability measures of 1
(maximum value) are obtained. In Figs. 10 and 11 it can be seen
that at second 156 the enveloping of fault #1 contains the real
signal, meaning that fault #1 model represents the current
behavior of the plant. Contrarily, envelopes of the rest of the
models do not contain the real signal.

Almost identical results are obtained when the same analysis is
carried out for fault #2, as summarized in Table 3. As can be seen
in the second row of this table, the detection for each output
variable is done very quickly (from 0.4 to 1.5 s). The identification
performance is also very good, i.e. only 6 or 7 s is needed to know
which fault has occurred.

If the same experiment is applied to fault #3 it is found that the
behavior of compressor speed, w.n,, and stack voltage, V., variables
is extremely similar to the signals of the same variables when the
plant is working properly (there is no fault). This is clearly seen in
Fig. 12, for stack voltage signal. Notice that the real signal is inside
the enveloping when the system is working properly (most upper
plot of Fig. 12) as it also happens in fault #3 (middle plot of Fig. 12).
For this reason, VisualBlock-FIR is not able to detect fault #3 when
analyzing @, and V. variables, as shown in Table 3.

If the same experiment is applied to fault #3 it is found that the
behavior of compressor speed, @, and stack voltage, V., variables
is extremely similar to the signals of the same variables when the
plant is working properly (there is no fault). This is clearly seen in
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Fig. 11. VisualBlock-FIR detection and identification of fault #1 for compressor current, I, output variable.
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Fig. 12, for stack voltage signal. Notice that the real signal is inside
the enveloping when the system is working properly (most upper
plot of Fig. 12) as it also happens in fault #3 (middle plot of Fig. 12).
For this reason, VisualBlock-FIR is not able to detect fault #3 when
analyzing @, and V. variables, as shown in Table 3.

However, fault #3 is rapidly detected and identified when A,,
and I, variables are analyzed. This can be clearly seen in Fig. 13,
which shows the dynamic comparison of the six FIR models when
used for predicting oxygen excess, 4,,, output variable. In this case
the fault is detected in 0.4 s and identified in 6.

VisualBlock-FIR also obtains good detection and identification
results for fault #4. As before, it is able to detect the fault in 0.4 s
and needs only 6 s to identify it. However, it is not able to detect
the fault when the compressor speed, @, variable is the only one
taken into account. The same reason outlined in fault #3 is
valid here.

Fault #5 should be approached in more detail due to the fact
that the detection and identification of the four output variables
become much more difficult than in the previous faults (see last
row of Table 3). VisualBlock-FIR needs around 22-25s to detect

Table 3
VisualBlock-FIR performance for the five faults (s).

the fault and 28-31 s to identify it. Notice that the seconds shown
in Table 3 are absolute seconds, i.e. the identification time includes
the detection time. This time increase needed to detect and
identify faults is a consequence of the similarity between the
behavior of the output signals of fault #5 and the behavior of the
same signals when the system is working properly, mainly in the
positive semi-period of the signals. During the negative semi-
period, the signals behave differently from one another, allowing
the detection of the fault.

Fig. 14 shows the detection and identification results obtained
by VisualBlock-FIR for the oxygen excess ratio,4,,, output signal in
fault #5.

As in the previous experiments the fault has been introduced in
the plant at second 150. VisualBlock-FIR detects the fault at second
172.7, and identifies it at second 178.

These results compare favorably to the detection and identifi-
cation time obtained by the methodology based on computing
residuals presented by Escobet et al. (2009), where more than 2 s
were needed to detect faults #1 and #2 and more than 30 s were
required to identify each of the first two faults. No specific results
were reported in that research related to faults #3, #4 and #5.
Therefore, no comparison can be made between their research and
ours for these three faults.

On the other hand, the work of Lira et al. (2010) also analyzes

Detection Identification five faults; two of them correspond to our #1 and #4 faults. Their
; I v h " I v methodology is based on computing residuals using a LPV obser-
@, . . o s .
© bl bl * * - - * ver. They conclude that with this methodology it is possible to
Fault #1 04 05 04 0.8 6 6 6 6 detect and identify the faults studied. On the other hand, in the
aul . . X . research of Kamal et al. and Kamal and Yu ve faults
Fault #2 0.6 0.9 0.4 15 6 6 6 7 h of K letal. (2014 dK I and Yu (2011) five fault
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Fig. 12. Enveloping and real signals of fault #3 for stack voltage, V., output variable.
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Table 4

VisualBlock-FIR performance for the five faults with uniform white noise of 60, 40, 30 and 20 dB added to the output signals (s).

Added noise Increment enveloping (%) Detection Identification
AOZ @cem Iem Vft /{OQ @cm Icem Vfc
Fault #1 0.1% (60 dB) 0 04 0.5 04 0.8 10 10 10 10
1% (40 dB) 0 0.4 0.5 04 0.9 10 10 10 10
3.5% (30 dB) 2.5 0.5 0.7 04 0.8 10 10 10 10
10% (20 dB) 8 0.7 14 0.5 1.7 10 1 10 1
Fault #2 0.1% (60 dB) 0 0.6 0.9 04 18 10 10 10 1
1% (40 dB) 0 0.5 13 04 2.0 10 1 10 1
3.5% (30 dB) 2.5 0.7 1.6 0.5 2.3 10 1 10 12
10% (20 dB) 8 2.3 2.7 0.7 7.6 12 12 10 17
Fault #3 0.1% (60 dB) 0 0.4 - 0.5 - 10 - 10 -
1% (40 dB) 0 04 - 0.4 - 10 - 10 -
3.5% (30 dB) 2.5 04 - 0.6 - 10 - 10 -
10% (20 dB) 8 0.6 - 19.6 - 10 - 29 -
Fault #4 0.1% (60 dB) 0 0.3 - 04 0.4 10 - 10 10
1% (40 dB) 0 03 - 0.4 04 10 - 10 10
3.5% (30 dB) 2.5 0.3 - 0.5 0.7 10 - 10 10
10% (20 dB) 8 0.6 - 45.0 - 10 - 54 -
Fault #5 0.1% (60 dB) 0 228 234 223 253 32 33 32 35
1% (40 dB) 0 22.6 235 224 24.7 32 33 32 34
3.5% (30 dB) 2.5 235 23.6 22.7 25.9 33 33 32 35
10% (20 dB) 8 25.9 33.0 23.6 - 35 41 33 -

studied are detected and identified with the proposed methodol-
ogy, but no time information is included.

It is interesting to remark that usually the papers found in the
literature do not specify the time needed to detect and identify the
faults studied. They only report if the fault has or has not been
detected and identified. That is the reason why it is not possible to
perform a deeper comparison here with other methodologies.

5. Robustness of VisualBlock-FIR

In order to study the robustness of the method developed,
uniform white noise is added to the four output system variables.
The robustness is tested for each of the five faults and for different
noise levels. It is important to clarify that the noise is not included
in the signals used to identify FIR models, i.e. FIR models are
identified from data without noise, and are tested for fault
detection and identification in a noise environment.

The reason not to use noisy data to obtain the models is
twofold. On the one hand, we think that if the models are obtained
without noise and afterwards they are used to detect and identify
faults in a noisy environment, the robustness of the methodology
is tested in higher depth. On the other hand, in real environments,
it is always possible to perform a filtering of the data before using
it in the model identification process. The decision to analyze the
robustness studying what happens when noise is added to the
sensors is a prerequisite to test VisualBlock-FIR with real data.

For these experiments the detection time window is set to 1's,
as it was in the previous section, whereas the identification time
window has been increased from 6 to 10s, and the cumulative
errors needed to trigger an alarm remains to three. Table 4 shows
the time needed by VisualBlock-FIR to detect and identify all faults
and each of its four levels of noise studied, i.e. 60, 40, 30 and 20 dB.
If we compare the detection results from Tables 3 and 4, it can be
easily seen that when a noise of 60 dB and 40 dB is added to the
signal, the detection time is almost the same than the one when
the signal has no noise at all.

This makes sense since 60 dB and 40 dB correspond to only a
0.1% and 1% of noise, respectively. When the noise is increased,
the time needed by VisualBlock-FIR to detect the fault is also

increased. However, the detection time is still acceptable when a
3.5% and a 10% of noise are added to the signal. In fact, it is very
low compared to the results reported by Escobet et al. (2009).

Notice that when the percentage of noise increases more than
1% the enveloping signal is also increased in the percentage
specified in the third column of Table 4. Remember that the FIR
models obtained are very accurate thus, implying very narrow
envelopes. Fig. 15 shows the enveloping signals obtained for fault
#1when a noise of 20 dB is added to the output signals. In this
case, the percentage of increment of the enveloping is 8%, allowing
fault detection and identification.

If we now compare the identification results from both tables, it
can be seen that the identification time is increased from 6 to 10 s
when the noise is added to the output signals. This is due to the
fact that the identification time window has been increased from
6 to 10s in order to get a good identification performance.
Therefore, it is not possible to identify the faults in fewer seconds.
However, the identification time obtained for all faults is very
satisfactory and definitely lower than the time reported by other
approaches for the same application (Escobet et al., 2009).

6. Conclusions

The VisualBlock-FIR fault diagnosis system is presented and
applied to a fuel cell system. Five faults are studied in this work,
i.e. an increase in the friction in the compressor motor, when the
compressor motor suffers an overheating, the fluid resistance
increases due to water blocking the channels or flooding in the
diffusion layer, air leak in the air supply manifold and, finally, an
increase in the voltage value below which the compressor motor
does not turn.

For the first four faults, a detection time lower than a second
and a half is accomplished and a correct identification is obtained
in less than 7s. Detection and identification of the last fault
becomes more difficult due to the similarities in behavior between
the compressor speed, @.m, and stack voltage, Vf, signals and that
of the plant when working properly. For this fault, minimum
detection times between 22 and 25s and identification times
between 28 and 31 s (i.e. absolute seconds, including detection
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Fig. 15. Enveloping with an increment of 8% for fault #1, when a noise of 20 dB is added to the output signals.

time) have been found. These results compare favorably with
those obtained by the computing residuals approach (Escobet
et al., 2009). The robustness of VisualBlock-FIR has been also
studied by adding different levels of noise to the output signals.
The detection and identification time has been shown to increase
slightly in the presence of noise. However, the performance is still
very good for values of 60, 40 and 30 dB.

Here we have assumed that single fault occurs at a time.
However, in the near future, we plan to extend this research to
fault conditions where multifaults occur simultaneously. We
strongly believe that the methodology developed in this work
has the potential to be applied to real world fuel cell stacks and
that it could be implemented for on-board applications. It should
be taken into account that the identification of FIR models can be
done out of line and that, once the model library is available, the
FDS, i.e. VisualBlock-FIR, is able to perform the detection and
identification in real time. Also notice that new models can be
added to the fault model library anytime and no adjustment or
reconfiguration of the FDS is required.
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