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Abstract
The turbulent flow around a rotating cylinder sub-

merged in a uniform flow is simulated using direct nu-
merical simulations (DNS) using a Reynolds number
based on cylinder diameter D and free stream veloc-
ity U∞ of Re = 5000. The rotation relation is in the
range 0 ≤ α ≤ 5.

Rotation brings upon a fundamental change of the
pressure distribution, the stagnation point shifts down-
ward with increasing α, falling outside the cylinder for
rotation rates α > 4. The Magnus effect is observed:
as α increases a lift force appears and the drag force
is modified, reducing for α < 3 and increases slightly
for α > 3, additionally Prandtl’s limit for the lift co-
efficient, 4π, was exceeded in the present work. Flow
instabilities present for α = 0 are reduced for α ≤ 2
and disappear for higher rotation ratios. For α = 3,
the recirculation bubble loses the two vortex configu-
ration to have only one recirculating vortex in the near
wake and for α ≥ 4 norecircualtion vortices are seen.

1 Introduction
The flow around a rotating cylinder at Re =

U∞D/ν = 5000 (U∞ corresponds to the far field
velocity and D is the cylinder diameter) and rotation
relation ranging 0 ≤ α = U∞/UT ≤ 5 (UT is the
tangential velocity on the cylinder surface) is simu-
lated using direct numerical simulations (DNS). Vis-
cous forces cause the flow attached to the cylinder to
rotate about, strengthening the flow on one side of the
cylinder and acting against it on the opposite side. Ac-
cording to the Bernoulli equation, this effect implies a
rise in the pressure on one side of the cylinder and low-
ering it on the other creating a lift force, also referred
to as the Magnus effect. This geometry has been stud-
ied previously, especially for the laminar regime us-
ing both experimental techniques and two dimensional
(2D) simulations.

Prandtl (1925 and 1926) performed experiments
using a cylinder with end plates placed between two
walls and using a cylinder rotation ratio up to α = 4.
He observed wake deflection and the appearance of a

lift force. Additionally, theoretical analysis performed
set a limit for the lift force, CLmax = 4π, however his
experimental results yielded a lower lift coefficient.

Thom (1931 and 1934) performed measurements
on a cylinder rotating with a rotation ratio α = 2 de-
scribing the velocity field and surface pressure present,
deepening the understanding on the flow topology for
higher α and the relation between the lift and drag co-
efficient with rotation ratio.

Glauer (1957) performed a theoretical analysis for
the rotating cylinder at high α such that the flow sep-
aration is suppressed. A power series expansion was
used to describe the boundary layer flow on the cylin-
der and expressions for circulation and torque on the
cylinder were derived. Results showed a different
trend than those presented by Prandtl where a limit on
the lift force was theorized. In Glauert’s investigation
the circulation increased with α and did not reach a
limit.

Ludwig (1964) performed experimental measure-
ments on the rotating cylinder case for low rotation
rates (α ≤ 0.3). From his experimental data a criterion
for identifying the flow separation points was created,
predicting a linear relation of this separation point on
the downstream-moving wall with the rotation ratio α.

Constanceau and Ménard (1985) investigated this
flow configuration for Reynolds number up to 1000
and velocity ratios α ≤ 3.25 concluding that as
the velocity ratio α increases, meandering in the
wake decreases and the Strouhal number increases and
that these phenomena are strongly dependent on the
Reynolds number.

Chou (2000) performed two dimensional simula-
tions for Re = 1000 and α < 3, and Re = 10000 and
α ≤ 2. The author did a topological analysis to locate
stagnation points, finding they were in good agreement
with previous references. Additionally, vorticity con-
tours showed the formation of a Kármán vortex street
for α = 1. For α = 2 the formation of the vortex street
is delayed and for α = 3 it is suppressed. Their results
were in good agreement with experimental results for
the initial transient period, however, a discrepancy is
seen after the flow becomes turbulent (thus three di-



mensional).
Mittal and Kumar (2003) investigated via two-

dimensional computations this case, with Reynolds
Re = 200 and Re = 1000, and 0 ≤ α ≤ 5.
Good agreement between results and previous stud-
ies was found. Results also showed that very large
lift coefficients were observed for high rotation rates.
The two-dimensional computations performed yielded
higher lift coefficients than the theoretical limit. Simi-
larly as before, von Kármán vortex street was seen for
α < 1.9. A second instability zone was identified for
4.35 < α < 4.7 where vortices are shed only from
one side of the cylinder.

Lam (2009) investigated experimentally the flow
past a rotating cylinder al Re = 3600-Re = 5000 at
low rotation ratios (α < 2.6). In agreement with the
state-of-the-art vortex shedding was found to occur for
rotation ratios lower than α = 1.9 and that the vortex
shedding frequency increases as the the rotation ratio
increases. However, the value of vortex shedding re-
ported at α = 0 was of St = 0.18, which is lower
than that reported in the literature (St ≈ 0.21 Nor-
berg (1994), amongst others). It is worth noting that
the cylinder aspect ratio of the experiment was 11.6.
Norberg (1994) showed that the flow exhibits large in-
stabilities in the range of Re = 1000-Re = 10000
when it comes to the dependence with the cylinder as-
pect ratio and the size of the cylinder end plates. He
found that variations in the vortex shedding frequency
and base pressure become independent of the aspect
ratio and end plates size for aspect ratios of about
70. This might explain why the vortex shedding fre-
quency measured by Lam (2009) at Re = 5000, for
the still cylinder, is considerably lower than the values
reported in the literature.

The present work aims at shedding some light on
the effect of the rotation ratio in the vortex shedding,
drag and lift coefficients in transition turbulent flows
using DNS in order to fully understand the physics in-
volved and the influence of rotation in the flow topol-
ogy. These issues are of major importance in many
practical application e.g. marine structures, civil engi-
neering, aerodynamic design, etc. Finally, it is also
important to consider the reduction of flow induced
vibrations and the role of the vortex shedding in this
phenomenon. Simulations are performed using differ-
ent meshes to correctly capture the three-dimensional
structures present in the wake of the cylinder and the
effects brought on by rotation.

2 Mathematical formulation
In order to solve the flow, the three dimensional -

time dependent Navier-Stokes equations are solved:

∂u
∂t

+ (u · ∇)u − ν∇2u + ρ−1∇p = 0 (1)

∇ · u = 0 (2)

where u is the three-dimensional velocity vector,
p is the pressure scalar field, ν stands for kinematic
viscosity and ρ for the density of the fluid.

Figure 1: Computational domain.

The geometry to be considered is a cylinder with
diameter D shown in figure 1 submerged in a uni-
form fluid flow and rotating with velocity ratio α in
the clockwise direction. Simulations are carried out at
a Reynolds number Re = 5000 based on the cylin-
der diameter and free stream velocity. The computa-
tional domain is 30D × 30D × 2πD in the stream-,
cross-stream and span-wise directions. The center of
the cylinder is located at a distance of 10D downwind
from the inlet boundary and at a distance of 20D from
the bottom boundary as shown in figure 1.

Governing equations (1 and 2) are discretized on a
collocated unstructured mesh by means of finite vol-
ume techniques. A second-order conservative scheme
is used for the spatial discretization (Verstappen and
Veldman 2003). Such schemes preserve the sym-
metry properties of the continuous differential oper-
ators and ensure both stability and conservation of the
kinetic-energy balance. The velocity-pressure cou-
pling is solved by means of a fractional-step algo-
rithm. The temporal discretization for the convective,
diffusive and derivative terms was made using a sec-
ond order self-adaptive scheme (Trias and Lehmkuhl
2011); whereas a backward Euler scheme was used
for the pressure gradient. For more details about the
discretization the reader is referred to Jofre et al. 2014
and Trias et al. 2014. Meshes are constructing by us-
ing a constant-step extrusion of a 2D mesh. Under
these conditions, the Poisson equation can be solved
by means of a Fast Fourier Transform (FFT) method.
This diagonalization decouples the 3D system into a
set of uncoupled 2D subsystems which can be solved
by means of a Direct Schur-complement decomposi-
tion method (Borrell et al. 2011). Present numerical
model and discretization technique has been success-
fully used in solving transition Reynolds number flow
over cylinders (Lehmkuhl et al. 2013) and a sphere



(Rodrı́guez et. al 2011).

Table 1: Mesh parameters. CVplane is the number of con-
trol volumes in the plane, Nplanes is the number of
planes in the span-wise direction, NCV the total
number of control volumes in the domain.

α CVplane Nplanes NCV
0 88519 256 2.26× 107

115709 320 3.70× 107

1 95030 256 2.43× 107

123145 320 3.94× 107

2 97887 256 2.5× 107

130020 320 4.16× 107

3 127234 320 4.07× 107

133145 320 4.26× 107

4 127234 320 4.07× 107

138461 320 4.43× 107

5 127234 320 4.07× 107

147591 320 4.72× 107

Table 1 shows information on the meshes used for
the present study. Two meshes were used for each ro-
tation ratio. Meshes for the lower α’s use two differ-
ent span wise resolution whereas the meshes used for
higher α, due to the increased difficulty in the bound-
ary layer resolution use the higher span wise resolution
for both meshes.

Table 2: Non-dimensional wall distance (y+) values

α 0 1 2 3 4 5
y+1MIN 0.12 0.05 0.04 0.05 0.04 0.05
y+1MAX 2.72 3.01 2.23 2.63 2.80 3.08
y+1MEAN 0.95 1.50 1.28 1.41 1.47 1.85
y+2MIN 0.14 0.06 0.2 0.16 0.06 0.1
y+2MAX 3.46 3.57 3.07 3.68 3.85 4.15
y+2MEAN 1.29 1.79 1.86 1.95 1.96 2.22

Mesh refinement is done in the near-wall area to
improve resolution of the boundary layer. Table 2
shows values for the distance to the wall in wall units
for the first two nodes in the finer meshes. The location
of the two first nodes is of great importance for the cor-
rect resolution of the boundary layer flow. Within the
viscous sublayer, defined for y+ . 5, viscous stresses
are the dominating force in the flow. Meshes used in
the present investigation have, at least, the first two
nodes in the boundary layer fall within the viscous
sub-layer to ensure its correct resolution.

3 Results
Figure 2 shows the averaged in time and span wise

direction streamlines in the x-y plane. For α = 0 and
α = 1 a two vortex configuration is seen, being the
top vortex smaller for α = 1. For α = 2 the top

(a) α = 0

(b) α = 1

(c) α = 2

(d) α = 3

Figure 2: Averaged streamlines, colored by pressure.

vortex is almost gone and bottom vortex has reduced
its size considerably, whereas for α = 3 top vortex is
has dissapeared and the bottom one is barely visible.



(e) α = 4

(f) α = 5

Figure 2: Cont. Averaged streamlines, colored by pressure.

Rotation relations between α = 0 and α = 3 all have
the stagnation point within the cylinder surface and the
saddle point in the edge of the recirculation region. A
different flow configuration is observed for α = 4 and
α = 5. For the higher rotation ratios no vortices in
the recirculation area are clearly visible. Additionally,
the stagnation point is now located off the cylinder and
coincides in location with a saddle point.

Figure 3 shows the mean pressure distribution
around the cylinder surface, where 0◦ corresponds to
the front of the cylinder. Angles are measured in a
counter clock wise direction. There are three aspects
to observe in this figure: stagnation point, base pres-
sure and pressure minimum. Cylinder rotation induces
a shift in the stagnation point. Locations for this pa-
rameter can be seen in table 3. Oncoming flow at-
taches to the front of the cylinder as it rotates. For
α = 0 the stagnation point is placed on the symme-
try plane, however, as α increases an upward motion
is gained by the fluid in front of the cylinder. This
upward motion bends the incoming flow, shifting the
stagnation point’s location.

For α = 0 base pressure is constant and behind
the cylinder. As α increases its location shifts down-
ward dragged by the rotation motion and it spans for
a smaller arch due to the influence of the low pres-
sure zone from the top. Rotation effect on this pa-
rameter can be divided in three segments: α = 0 and
α = 1, where base pressure remains nearly constant,

Figure 3: Local pressure coefficient at different rotation ra-
tios.

Table 3: Pressure parameters
α Stag. Point Base Press. Press. Min.
0 0◦ −0.94 −1.2
1 10◦ −0.99 −3.3
2 30◦ −0.32 −6.4
3 45◦ 0.32 −10.9
4 101.5◦* 0.54** −16.2
5 89.4◦* 0.05** −20.6

* Stag. point off the cylinder
** Pressure maximum in the cylinder surface

influenced by the flow separation that creates the large
recirculation region seen in figure 2. As α increases to
α = 2 and α = 3 there is a rise in the base pressure
reducing the size of the recirculation vortices. This ef-
fect is brough upon by the attachment of the boundary
layer to the cylinder and the delay in its separation. Fi-
nally, for α = 4 and α = 5 a recirculating layer forms
around the cylinder eliminating the base pressure and,
thus, the recirculation region.

The pressure coefficient minimum on the cylinder
surface is also quite affected by the cylinder rotation.
As stated earlier, the flow attached to the cylinder ro-
tates about with it. Fluid velocity on top of the cylin-
der increases as the rotation ratio α does, inducing, by
means of the Bernoulli effect, a drop in pressure. Val-
ues for this parameter are presented in table 3.

Table 4 shows the drag and lift forces relation with
rotation relation α. As the rotation parameter increases
there is a significant increase in the lift force. Prandtl
(1925) stated that the maximum lift in such configu-



Table 4: Force coefficients

α 0 1 2 3 4 5
Drag 1.05 0.90 0.36 0.18 0.25 0.64
Lift 0.00 1.40 4.47 8.93 13.21 16.01

CL/CD 0.00 1.56 12.42 49.61 52.84 25.02

ration is limited to 4π, however, different authors re-
port quite different solutions (Mittal and Kumar 2003).
Present results, although larger than the theoretical
limit proposed by Prandtl (1925), are lower than those
presented by other authors that performed 2D simu-
lations (Stansby and Rainey 2001, Mittal and Kumar
2003). The behavior of the drag coefficient follows a
different trend than the lift coefficient. After reducing
between α = 0 and α = 3, there is a slight increase
in this parameter for α = 4 and α = 5, due to the
shift of stagnation point off of the cylinder, the base
pressure span and location changes, and suppression
of the recirculation vortices. Finally, the ratio Cl/CD

follows two different trends, for α ≤ 3 it follows an
increasing-exponential trend. For α ≥ 4 the trend is
decreasing.
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Figure 4: Power Spectra

Figure 4 shows the power spectra for a point within
the shear layer in each rotation ratio. For α = 0 and
α = 1 energy peaks can be observed for the vortex
shedding frequency (primary frequency) and for the
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Figure 4: Cont. Power Spectra

Table 5: Dominating frequencies (St)
α 0 1 2 3 4 5

Primary 0.209 0.223 - - - 0.046
Secondary 1.83 1.80 - - - 0.067

shear layer frequency (secondary), see table 5. It is
important to note that as rotation ratio increases from
α = 0 to α = 1 both the vortex shedding and Kelvin-
Helmholtz energy peaks decrease in magnitude and
gain bandwidth, indicating that the periodic behavior
that characterizes the vortex shedding phenomenon is
growing weaker. For α = 2, α = 3 and α = 4 no such
peaks can be seen. For α = 5 a twin peak energy surge
is observed, indicating some kind of periodic behavior.
Similar peaks were also observed at this rotation ratio
for lower Reynolds numbers (Stojkovic et al. 2002).

In this work coherent structures are analyzed by
means of the Q-criterion which identifies a vortex
in a region where the second invariant of the veloc-
ity gradient tensor is positive (Q > 0), being Q =
0.5(||Ω2||−||S2||), with ||Ω|| and ||S|| the trace of the
skew-symmetric and symmetric components of ∇u.
Positive values of Q correspond to an area where rota-
tion is greater than strain (Hunt et. al. 1988).

Figure 5 shows the side view of the Q = 3 sur-
faces showing the fundamental change brought upon
by the rotation of the cylinder. Flow topology does
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(a) α = 0

(b) α = 1

Figure 5: Q = 3 isosurfaces.

not change dramatically between α = 0 and α = 1
where the von Kármán vortex street and shear layers
are visible. Additionally, the wake is composed of
larger structures than for greater rotation relations.

For α = 2 the top shear layer ceases to interact
with the bottom one, causing vortex shedding to cease
and the wake is influenced mainly by the flow com-
ing from the bottom of the cylinder. The vortex street

(c) α = 2

(d) α = 3

(e) α = 4

(f) α = 5

Figure 5: Cont. Q = 3 isosurfaces.

structure has been damped down by the decreasing in-
fluence of the shear layers in the wake flow, reaching
the point where it no longer seems to be influenced
by the flow coming from the top of the cylinder. The
wake is now composed of small, independent vortices
that detach in an un-organized fashion from the geom-
etry.

For α = 3 shear layers are no longer visible, in
place is now a recirculating layer around the surface.
This structure now influences the wake formation and
its flow configuration. The disappearance of the top
recirculation vortex in the wake plays a fundamental
role in the changes seen in wake topology. As α in-
creases from α = 0 to α = 3 this structure shrinks,
from a symmetrical two vortex configuration in α = 0
to a asymmetrical single vortex configuration in α = 3
where the top vortex has disappeared and the bottom
vortex is very small in comparison to those present in
smaller α. For α = 3 and α = 4 the wake is thin-
ner than for the other rotation ratios, coinciding with
where the drag coefficient is at its lowest.

For α = 4 the stronger, recirculating layer around
the cylinder and the dissapperance of the recirculation
vortices further shrinks the wake structures and causes



the near wake to grow in the crossflow direction. Fur-
thermore, this effect is amplified when the rotation ra-
tio increases to α = 5.

4 Conclusions

• The primary effect of rotation is seen on the shear
layer. Rotation bends this structure behind the
cylinder until, for higher rotation ratios, it turns
into a recirculating layer. When this structure is
affected consequences are seen through out the
wake, leading to the conclusion that this is the
most important structure in this flow geometry.
Top shear layer is most affected by rotation, caus-
ing the symmetry to be broken. Additionally,
flow structures, wake topology and force coeffi-
cients show a different trend for α ≤ 3 than for
α ≥ 4.

• Vortex shedding was observed for rotation rates
α = 0 and α = 1, additionally, for low rota-
tion rates flow dynamics do not vary much. Key
characteristics, e.g. shear layers and vortex shed-
ding, are still present. Shear layer instability is
reduced, which in turn reduce the overall instabil-
ity in the flow; the top shear layer still exists and
is able to interact with its counter part from the
bottom, and thus, maintaining the vortex shed-
ding. This phenomenon disappears for larger α;
a value of α ≈ 1.9 is documented as the limit-
ing rotation ratio for vortex shedding. For α > 2
flow dynamics change substantially, as the flow
characteristics mentioned before change.

• The pressure distribution shifts due to the rota-
tion of the cylinder. The pressure drop on top in-
creases non-linearly with rotation ratio α, keep-
ing the absolute minimum in pressure in this part.
As the top shear layer is weakened it no longer
interacts with the bottom shear layer causing the
base pressure to rise as well, however, between
α = 3 and α = 4 this parameter stops its increas-
ing trend and decreases for α = 5.

• Prandtl’s limit for lift coefficient, 4π, was ex-
ceeded in the present work, however, lift results
from the present investigation are lower than 2D
results published by different authors and lower
than the lift coefficient predicted by the poten-
tial flow theory (2πα). Drag coefficient, after re-
ducing between α = 0 and α = 3 increases for
α = 4 and α = 5 due to the change in flow con-
figuration, the shift in the stagnation point and
pressure coefficient distribution in the cylinder
surface.
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C. D., Oliva, A. (2013), Low-frequency variations in the
wake of a circular cylinder at Re=3900. Phys. of fluids
vol 25 (8), 085109.
Mittal, S., Kumar, B. (2003), Flow past a rotating cylinder.
J. Fluid. Mech. Vol 476 pp 303-334.
Mittal, S. (2004), Three-Dimensional Instabilities in flos
past a rotating cylinder. J. of applied Mech. Vol 71, pp
89-95.
Norberg, C., (1994). An experimental investigation of the
flow around a circular cylinder: influence of aspect ratio.
J. of Fluid. Mech. Vol. 258.
Prandtl, L. (1925). The Magnus effect and windpowered
ships. Die Naturwissenchadten 6, 94-108.
Prandtl, L. (1926). Application of the Magnus effect to the
wind propulsion of ships. Technicalmemorandums, Na-
tional advisory comittee for aeronautics 367.
Rao, A. Leontini, J. Thompson, M. C. and Hourigana K.
(2013), Three-dimensionality in the wake of a rotating
cylinder in a uniform flow. J. Fluid Mech.Vol 717, pp
1-29.
Rodrı́guez, I., Borrell, R., Lehmkuhl, O., Pérez-Segarra,
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