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Abstract— This work presents an optimization strategy that
maximizes the leak locatability performance of water dis-
tribution networks (WDN). The goal is to characterize and
determine a sensor configuration that guarantees a maximum
degree of locatability while the sensor configuration cost satisfies
a budgetary constraint. The method is based on pressure
sensitivity matrix analysis and an exhaustive search strategy.
In order to reduce the size and the complexity of the problem
the present work proposes to combine this methodology with
clustering techniques. The strategy developed in this work is
successfully applied to determine the optimal set of pressure
sensors that should be installed in a district metered area
(DMA) in the Barcelona WDN.

I. INTRODUCTION

Leaks and abnormal situation diagnosis is of great im-
portance for distribution network systems. It represents an
important factor for quality service, in water distribution
networks (WDN). In these systems, it is obvious that only
a limited number of sensors can be installed due to budget
constraints. Since improper selections may seriously hamper
diagnosis performance, the development of sensor placement
strategies has become an important research issue in recent
years. In particular, leaks in WDNs are an issue of great con-
cern for water utilities. Continuous improvements in water
loss management are being applied, and new technologies
are developed to achieve higher levels of efficiency [1].

Ideally, a sensor network should be configured to facilitate
leak detection and maximize diagnosis performance under a
given sensor cost limit.

There are several contributions dedicated to sensor place-
ment in WDNs. Most of the works have addressed the sensor
placement problem regarding contamination monitoring. In
[2] and [3], the problem of sensor placement in a large WDN
is considered in order to detect the malicious introduction of
contaminants. On the other hand, less work has been done
regarding sensor placement for leak location. In [4] a leak
location method based on the pressure measurements and
sensitivity analysis of nodes in a network has been proposed.
In order to maximize the isolability with a reasonable number
of sensors an optimal sensor placement methodology based
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on genetic algorithms has also been proposed. The optimiza-
tion goal consisted in minimizing the size of the larger set
of non-isolable leaks.In [5], a strategy based on isolability
maximization allows one to optimally locate sensors for leak
location based on the structural model of water network. An
efficient branch and bound search strategy was developed
based on a structural network model. A structural model just
considers the relation between variables that exists through
equations, so efficient graph-based methods can be then
applied to solve the sensor placement problem. However,
optimal results can not be guaranteed due to the simplistic
nature of structural representation.

In the present paper, a richer model description is pro-
posed for the sensor placement problem through the fault
sensitivity matrix concept. However, since no efficient branch
and bound search strategy will be possible, a clustering
approach to sensor placement is proposed in this paper. In
[6], clustering techniques were also applied to leak detection
and location, but combined with a structural approach. The
clustering problem has been addressed by researchers in
many contexts and disciplines [7]. It is a mature and active
research area [8] and many efficient clustering algorithms
have been developed in the literature.

The paper is organized as follows: Section II, introduces
the model-based fault diagnosis applied to leak detection and
loaction. The sensor placement problem tackled in this paper
is formally presented in Section III. In Section IV, the sensor
placement methodology is applied to a real DMA network in
Barcelona. Finally, some conclusions and remarks are given
in Section V.

II. FAULT DIAGNOSIS PRINCIPLES

A. Model-based fault diagnosis

Model-based fault diagnosis techniques are applied to
detect and locate leaks in WDNs. In model-based fault
diagnosis [9] a set of residuals are designed based on a
process model. Fault detection and isolation is achieved
through the evaluation of residual expressions under available
measurements. A threshold-based test is usually implemented
in order to cope with noise and model uncertainty effects.
At the absence of faults, all residuals remain below their
given thresholds. Otherwise, when a fault is present the
model is no longer consistent with the observations (known
process variables). Thus, some residuals will exceed their
corresponding thresholds, signalling the occurrence of a
fault.

Residual fault sensitivities are a key issue for fault diag-
nosis. Given a set of m target faults fj ∈ F and a set of n



residuals ri ∈ R, residual fault sensitivities are collected in
the Fault Sensitivity Matrix (FSM), Ω

Ω =

⎛
⎜⎝

∂r1
∂f1

· · · ∂r1
∂fm

...
. . .

...
∂rn
∂f1

· · · ∂rn
∂fm

⎞
⎟⎠ . (1)

A fault can be detected as long as there exists at least
a residual sensitive to it. However, isolating faults requires
more than one residual being sensitive to them. Fault isola-
tion is achieved by matching the evaluated residual vector
pattern to the closest residual fault sensitivity vector pattern
(i.e., FSM column vector).

B. Leak detection and location

The FSM can be obtained by convenient manipulation of
model equations as long as fault effects are included in them
[10]. Alternatively, it can be obtained by sensitivity analysis
through simulation [4]. The latter approach is used in the
present paper. Just primary residuals are regarded. Primary
residuals are obtained by comparing each actual pressure
measurement pi to the corresponding estimated value in the
fault free case p̂i0

ri = pi − p̂i0 (2)

A model of the WDN is used by a simulation engine
to produce the estimated node pressure. An approximate
procedure to obtain the FSM involves using as well the
simulator to estimate pressure measurements p̂ij for every
node i under fault condition fj

Ω =

⎛
⎜⎝
p̂11 − p̂10 · · · p̂1m − p̂10

...
. . .

...
p̂n1 − p̂n0 · · · p̂nm − p̂n0

⎞
⎟⎠ . (3)

Thus, every FSM column corresponds to an estimation
of the residual vector in every leak condition. The same
nominal leak magnitude is assumed in all simulations. This
leak magnitude is not considered in the FSM since it has a
scaling factor roll.

Sometimes a binary version of the FSM is used in the
leak location procedure [4]. Then, leak location is achieved
by looking for the smallest Hamming distance between FSM
columns and the binarized actual residual vector. This and
several other alternative leak location methods are compared
in [11].

In the present paper, a projection based method is con-
sidered. Let r = [r1 · · · rn]T be the actual residual vector
corresponding to all pressure measurement points, and ω •j
be the column of Ω corresponding to leak j. Then, leak
location is achieved by solving the problem

argmax
j

ωT
•j · r

‖ω•j‖‖r‖ , (4)

where ‖v‖ stands for the Euclidean norm of vector v.
Thus, the biggest normalized projection of the actual residual
vector on the fault sensitivity space is sought.

The quality of a leak diagnosis system can be determined
through the evaluation of leak detectability and locatability
properties.

Definition 1 (Detectable leak set). Given a set of residuals
ri ∈ R, a set of leaks fj ∈ F and the corresponding leak
(fault) sensitivity matrix Ω, the set of detectable leaks FD

is defined as

FD = {fj ∈ F : ∃ri ∈ R : |ωij | ≥ ε}, (5)

where ε is a threshold to account for noise and model
uncertainty.

Definition 2 (Leak locatability index). Given a set of resid-
uals ri ∈ R, a set of leaks fj ∈ F and the corresponding
leak (fault) sensitivity matrix Ω, the leak locatability index
I is defined as

I =
∑

(fk,fl)∈F

1− ωT
•k · ω•l

‖ω•k‖‖ω•l‖ , (6)

where F = {(fk, fl) ∈ F× F : k < l}.

Following the leak location criteria defined in Eq. (4), the
leak locatability index aggregates the normalized projection
degree between the residual fault sensitivity vectors for all
combinations of two faults. Since a minimal normalized
projection is desired, the greater the index is, the better it
is.

In order to better evaluate the leak locatability capacity of
a diagnosis system the following definition is provided.

Definition 3 (Uniform projection angle). Given a set of leaks
fj ∈ F and a leak locatability index I , the uniform projection
angle ᾱ, is defined as

ᾱ = arccos(1− I(|F|
2

) ), (7)

where, |A| stands for the cardinality of set A.

ᾱ provides a reference value for the angle between any pair
of fault sensitivity vectors in the FSM, assuming a uniform
contribution to the leak locatability index. ᾱ will be later
used when comparing different sensor placement solutions.

III. SENSOR PLACEMENT METHODOLOGY

A. Problem statement

Usually, the sensor placement problem is presented as an
optimization problem where the cheaper sensor configuration
fulfilling some given diagnosis specifications is sought [12],
[13]. Nevertheless, a baseline budget is usually assigned
to instrumentation by water distribution companies which
constraints the cost of the sought sensor configuration. Thus,
in the water distribution domain, companies are not interested
in achieving a given diagnosis performance but in the best
diagnosis performance that can be reached by installing a
specific number of sensors that satisfy the budget constraint.

Let S be the candidate pressure sensor set and mp the
number of pressure sensors that will be installed in the
system. Then, the problem can be roughly stated as the



choice of a configuration of mp pressure sensors in S such
that the diagnosis performance is maximized. This diagnosis
performance depends on the set of sensors installed in the
network S ⊆ S and it will be stated in terms of the detectable
leak set and the leak locatability index, i.e., FD(S) and I(S).

To solve the sensor placement problem, a network model is
also required. The leak sensitivity matrix Ω corresponding
to the complete set of candidate sensors is assumed to be
previously computed following the methodology described in
Section II-B. Hence, the sensor placement for leak diagnosis
can be formally stated as follows:

GIVEN a candidate sensor set S, a leak sensitivity matrix
Ω, a leak set F, and the number mp of pressure
sensors to be installed.

FIND the mp-pressure sensor configuration S ⊆ S such
that:

1) all leaks in F are detectable, FD(S) = F, and
2) the leak locatability index is maximized, i.e.

I(S) ≥ I(S�) for any S� ⊆ S such that
|S�| = mp.

This optimization problem can not be solved by efficient
branch and bound search strategies. Thus, a suboptimal
search algorithm based on clustering techniques will be
applied. However, in order to alleviate the suboptimality
drawback of clustering techniques a two-step hybrid method-
ology that combines them with an exhaustive search is
proposed:

Step 1 Clustering techniques are applied to reduce the
initial set of candidate sensors S to S′, such that
next step is tractable. Step 1 will be described in
detail in next section.

Step 2 An exhaustive search is applied to the reduced
candidate sensor set S′. This search implies that
the diagnosis performance must be evaluated

(|S′|
mp

)
times. The most time demanding test concerns the
evaluation of the leak locatability index for every
pair of leaks which involves computing

(|F|
2

)
times

the normalized projection of the leak sensitivity
vectors. Thus, in all, an exhaustive search is of
exponential complexity, but an optimal solution is
guaranteed.

B. Clustering approach

Given a set of objects X = {x1, x2, · · · , xne} clustering
consists in partitioning the ne observations into � sets C =
{C1, C2, · · · , C�} (� ≤ ne) in such a way that objects in
the same group (called cluster) are more similar (in some
sense) to each other than those in other groups (clusters). For
example, k-means clustering algorithm [14] minimizes the
within-cluster sum of distances by solving the optimization
problem

argmin
C

�∑
i=1

∑
xj∈Ci

d (xj ,μi) (8)

where d is a distance and μi is the centroid of cluster Ci (i.e.
it is the mean of observations in Ci according to metric d).

Problem (8) is nonconvex and obtaining the solution is NP-
hard, but there are efficient heuristic algorithms that converge
quickly to a local optimum. K-means belongs to closed data
sets methods, which do not allow overlapping of clusters.
This is a drawback when some similar data points originating
from different classes cannot be correctly classified into a
specific class because of the limitation of the probabilistic
framework. This is more precisely due to its inability to
make a clear distinction between the full lack of knowledge
and the full knowledge of the equiprobable cases. In this
sense, some clustering techniques have been developed in the
belief functions framework [15]. They provide the centroids
of the � clusters and the degree of membership of every
element to every cluster pli(Ck). pli(Ck) represents the
plausibility (or the possibility) that object xi belongs to
cluster Ck . One of these algorithms is the Evidential c-means
(ECM) [16], which also provides a validity index allowing
the determination of the proper number of clusters. A hard
partition can be easily obtained by assigning each object to
the cluster with highest plausibility i.e

g(i) = argmax {pli(C1), · · · , pli(C�)} i = 1, · · · , ne (9)

where g is the vector that contains the cluster membership
of the ne elements.

In this paper, a reduction in the number of candidate
sensors is proposed by grouping the ne initial sensors into �
clusters applying the ECM algorithm. Then N representative
sensors will be selected for each cluster, setting up the new
candidate sensor set of N� elements (N� ≤ ne). The number
of groups � will be determined by means of a study of
the evolution of the validity index provided by the ECM
algorithm for different number of groups. Finally, the number
N (N ≥ 1 ) will be given by

N =
⌈nr

�

⌉
(10)

where nr is the expected cardinality of the reduced candidate
sensor set and � 	 denotes the nearest integer in the direction
of positive infinity.

In this case, the criterion used for determining the simili-
tude between elements (sensors) is the sensitivity pattern of
their primary residuals to faults. In particular, according to
the procedure described in Section II, this is provided by
every row i of the fault sensitivity matrix Ω defined in Eq.
(1). So, choosing xj=

ωj•
‖ωj•‖ , j = 1, ..., ne (where ωj• is the j

row vector of matrix Ω, xj the normalized vector of ω j• and
ne the number of rows of Ω i.e. ne = n) and applying the
ECM algorithm defined in [16], a set of � clusters defined by
their centroids μi (i = 1, . . . , �) and the plausibility matrix
Π (n × �) that contains the membership degree of every
element to every cluster are obtained

Π =

⎛
⎜⎝

pl1(C1) · · · pl1(C�)
...

. . .
...

plne(C1) · · · plne(C�)

⎞
⎟⎠ (11)



The groups of sensors with a similar fault sensitivity
pattern can be obtained by means of (9). Once the elements
xj (sensors) have been grouped into � clusters, the most N
representative sensors of every cluster Ci can be chosen as
the ones that have the maximum plausibility.

IV. APPLICATION TO A WDN

A. DMA case study

The sensor placement methodology is applied to a DMA
located in Barcelona area (see Fig. 1) with 883 nodes and 927
pipes. The network consists of 311 nodes with demand (RM
type), 60 terminal nodes with no demand (EC type), 48 nodes
hydrants without demand (HI type) and 448 dummy nodes
without demand (XX type). Only dummy nodes can have
leaks. Thus, since there are 448 dummy nodes (XX type)
in the network, there are 448 potential leaks to be detected
and isolated. The network has two inflow inputs modeled as
reservoir nodes.

The total inflow is distributed using a constant coefficient
in each consumption node according to the total demand
which is estimated using demand patterns.

Fig. 1. Case study network map

This work focuses on the placement of pressure moni-
toring points as they are more frequently used than flow
rate sensors. Collecting pressure data is cheaper and easier,
and the pressure transducers give instantaneous readings
whereas most flow meters do not react instantaneously to
flow changes [17]. Therefore, only pressure sensors will
be considered in the sensor placement problem. In order
to reduce the problem complexity, a subset of pressures is
chosen as candidate variables to be measured. This subset
consists of pressures at nodes of RM type. There exist
311 pressures that can be measured at these nodes, which
represent the candidate sensor set. It is also assumed that
there is no sensor already installed in the network before
solving the sensor placement problem.

B. DMA network model

A fault sensitivity matrix has been obtained using
the EPANET hydraulic simulator. Leaks are simulated in
EPANET through the corresponding emitter coefficient,
which is designed to model fire hydrants/sprinklers, and it
can be adapted to provide the desired leak magnitude in the
network, according to the equation:

EC = Q/PPext (12)

where EC is the emitter coefficient, Q is the flow rate,
P is the fluid pressure and Pext is the pressure exponent.
EPANET permits the value of the Emitter Coefficient to be
specified for individual leak sites, but the pressure exponent
can be only specified for the entire network. Data of node
pressures are obtained from extensive simulations of normal
and leak scenarios.

Given a set of boundary conditions (such as water de-
mands) EPANET software has been firstly used to estimate
the steady-state pressure at the 311 RM type nodes. Next,
448 leaks have been simulated in the XX type nodes and the
steady-state pressure has been estimated again in the 311
RM type nodes. Finally, a fault sensitivity matrix has been
obtained as the pressure difference between the fault free
case and each faulty situation, according to the procedure
described in Section 2. Although the fault sensitivity matrix
depends on the leakage size, the properties are robust against
this uncertainty. In this case, the leak sensitivity matrix has
been computed for a leak magnitude of 6.3 lps (liters per
second).

C. Sensor placement analysis

Assume that the water distribution company has assigned
a baseline budget for investment on instrumentation that
just makes it possible to install 5 pressure sensors. Hence,
5 pressure sensors should be chosen out of 311 such that
all leaks are detectable and the leak locatability index is
maximized. Recall from Section III-A that an exhaustive
search is of exponential complexity. So, clustering techniques
will be applied to set up a reduced set of 25 candidate
pressure sensors. With this new setup, complexity will be
reduced (3115 )/(255 )

≈ 440000 times, which seems reasonably
promising.

In order to reduce the number of candidate pressure
sensors from 311 to nr = 25, clustering techniques have
been applied to the data set (311 normalized rows of the
sensitivity matrix Ω) as described in Section III-B. First,
ECM clustering algorithm [16] has been used to classify the
data set in different numbers of clusters and the evolution
of the validity index with the number of clusters has been
studied. From this study, it has been concluded that 5 is a
proper number of clusters. The algorithm takes 30 seconds in
the classification procedure to obtain 5 clusters. In order to
verify the validity of the solution provided by the clustering
algorithm, it has been run 500 times. Fig. 2 depicts the
histogram of the sensors chosen as centroids in the 500 runs.
Remark that some sensors are almost chosen in 200 out of



500 runs while other sensors are never chosen. Despite the
clusters are different for each run, the leak locatability index
(6), computed choosing the closest 5 sensors to the � = 5
cluster centroids, varies less than 2% (see Fig. 3). Therefore,
the result obtained in a single run of the ECM algorithm
could be already considered meaningful.

Fig. 2. Sensor centroids histogram

Fig. 3. Evolution of the locatability Index

With the plausibility matrix (11), obtained from the clus-
tering algorithm, a hard partition has been obtained by
assigning each element to its highest plausibility cluster
applying Eq. (9). Fig. 5 depicts in different colors the 5
different network node clusters, where the closest node to
the centroid have been highlighted in every cluster. Finally,
the most N representative sensors of every cluster have been
chosen as was proposed in Section III-B with N = 5 given
by Eq. (10).

The reduced set S′ with |S′| = N × � = 25 candidate
pressure sensor places suggested by the clustering approach
is displayed in Fig. 5 as blue circled nodes. The exhaustive

Fig. 4. Clustering results

search is next applied to solve the sensor placement problem,
providing the set of 5 pressure sensor places signaled as red
starred nodes in the same figure. Installing these pressure
sensors, all 448 leaks are detectable and the leak locatability
index amounts to 35631.96. According to Eq. (7), its cor-
responding uniform projection angle is 49.9 o, which seems
reasonably good.

Fig. 5. DMA network sensor placement results

The exhaustive search approach provides an optimal result.
However, due to its computational complexity just a reduced
candidate pressure sensor set must be provided. Thus, the
optimality of this result over the set of 311 original candidate
pressure sensors relies on the performance of the clustering
algorithm.

The closest node to each class centroid determined by
the clustering procedure could be taken as an alternative
solution to the sensor placement problem. This solution also
guarantees full leak detectability, and the leak locatability
index amounts to 31953.49, which corresponds to a uniform



projection angle of 47.1o. Remark that this angle is very close
to the one corresponding to the exhaustive search solution.
Thus, according to these results, the clustering approach
fails to provide the optimal solution, but results are suffi-
ciently satisfactory. The advantage of applying a clustering
technique is that complex problems can be addressed in
reasonable time. ECM takes 30 seconds to provide a result
for the full candidate sensor set, whereas the exhaustive
search takes more than 3 hours to get a solution for the
reduced candidate sensor set.

V. CONCLUSIONS

The sensor placement problem in WDNs has been ad-
dressed in this paper. A distribution network usually de-
scribes a mesh topology involving hundreds of intercon-
nected nodes whose behavior follows nonlinear physical
laws. Such complexity requires the development of tools
applicable to large-scale systems.

This work presents an optimal sensor placement strat-
egy based on pressure sensitivity matrix analysis and an
exhaustive search strategy that maximizes some diagnosis
specifications. In order to reduce the size and the complexity
of the problem, the present work proposes to combine this
methodology with clustering techniques.

A first contribution of the paper is the definition of the leak
locatability index as a diagnsosis performance measure. This
index aggregates the normalized projection degree between
the residual fault sensitivity vectors for all fault pairs. The
goal is to characterize and determine a sensor set that
guarantees a maximum degree of leak locatability while a
budgetary constraint is satisfied. As a second contribution, to
overcome the complexity of the sensor placement problem,
the number of candidate sensors is reduced applying cluster-
ing techniques such that it can be tackled through exhaustive
evaluation.

The strategy developed is successfully applied to a DMA
of the Barcelona WDN. One the one hand, the results show
that these combined techniques manage to solve the sensor
placement problem in a reasonable time, which otherwise
would not be possible. On the other hand, a quick solution of
the sensor placement problem, close to the global optimum,
can be directly obtained from clustering analysis.
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