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Abstract

Human motion prediction in indoor and outdoor scenarios is a key issue

towards human robot interaction and intelligent robot navigation in general.

In the present work, we propose a new human motion intentionality indica-

tor, denominated Bayesian Human Motion Intentionality Prediction (BHMIP),

which is a geometric-based long-term predictor. Two variants of the Bayesian

approach are proposed, the Sliding Window BHMIP and the Time Decay BH-

MIP. The main advantages of the proposed methods are: a simple formulation,

easily scalable, portability to unknown environments with small learning effort,

low computational complexity, and they outperform other state of the art ap-

proaches. The system only requires training to obtain the set of destinations,

which are salient positions people normally walk to, that configure a scene. A

comparison of the BHMIP is done with other well known methods for long-term

prediction using the Edinburgh Informatics Forum pedestrian database and the

Freiburg People Tracker database.
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1. Introduction

The development of social mobile robots that interact with humans and per-

form tasks together in everyday environments for guiding or accompany tasks

[10][9] , either domestic or public spaces, requires the design of new navigation

tools that take into account the human motion intentionality. Similarly, the
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development of more intelligent tracking and surveillance systems boils down

to the development of new tools, for instance, a long-term prediction as pro-

posed in the present paper. We define the term “human intentionality long-term

prediction” as a tool to forecast intentions or motivations that drive human be-

haviors. We specifically use this term whenever a person has the intention to

walk towards a destination, then he/she is in the path to go to a destination

that can be far away from the actual human spatial position.

There are a number of real world applications where motion intentionality

can be applied. For example, human motion scene surveillance, where we can

detect abnormal trajectories making use of prediction information, and thus

identifying all those erratic trajectories; human tracking, to obtain a robust

tracking of human motion; robot navigation in crowded human environments,

in order to adjust robot navigation to be aware of human motion; or social

interaction, to improve the social interaction between robots and humans. All

these issues require prediction information, preferably a long-term prediction.

In general, the analysis of future scenarios is done using short-term predic-

tion, which is a propagation of the current state into a certain time horizon, but

it has several limitations, specially appreciable on more complex environments.

In the present paper we propose a new long-term human motion intentionality

predictor based on geometry criteria, called Bayesian Human Motion Intention-

ality Predictor (BHMIP). The BHMIP has been validated in outdoor urban

environments by using two well-known databases. Furthermore, the proposed

method has been implemented in a real robot experiment, using the Tibi robot

[16], while developing a robot companion task (in Fig 8 is depicted a robot

companion experiment). This concrete robot experiment demonstrated to be

largely enhanced after using prediction information while in general, the use of

forecasting tools like the BHMIP may improve a countless number of robot ap-

plications, specially in urban or outdoor environments. In this work, we assume

that we have a prior knowledge of the scene destinations, which have been ob-

tained through an automatic procedure, for example by clustering the locations

where people enter or leave a location (we will later discuss this issue).

2



2. Related Work

Concerning the wide variety of human motion predictors in the literature,

two major human motion predictors (HMP) groups can be distinguished: a

geometric-based group and a place dependent-based group. For the latter group,

we have to learn the prediction model for each one of the environments where

the HMP is used. The geometric-based group does not always need to learn

the human motion intentionality (HMI) for each specific environment, although

training is also required in one way or another.

Bennewitz et al. [1], propose a place-dependent method in which they an-

alyze a collection of people’s motion behaviors in an indoor environment by a

clustering technique that uses the Expectation-Maximization algorithm. Once

they learn the classes of motion trajectories, they use these primitive trajec-

tories as patterns for human motion trajectory association, and thus, inferring

HMI. One of the main disadvantages of the place-dependent methods, as we

will discuss later, is the lack of flexibility on abnormal observations, that is, all

those erratic trajectories due to a person stopping or changing its destination.

Our algorithm is able to quickly adapt to changes in intentionality and perform

successfully.

Vasquez et al. [17] cluster different motion patterns by a dissimilarity mea-

sure which allows the use of pairwise clustering algorithms in order to group

observed trajectories into patterns. Chen et al. [3] propose a clustering method

and three different prediction strategies based on the quality of the matching.

Using heuristics and geometric criteria, Foka et al. [8] propose a geometric-

based method for human motion prediction that uses human motion intention-

ality in terms of goals. Prediction is done by identifying final destinations based

on the instantaneous tangent angle in combination with a grid-based probability

assignation to all final destinations. It has been used for on-line prediction for

robot navigation in dynamic environments. Our approach belongs to this group

of HMI predictors, but it outperforms the Foka approach. Another geometrical

approach proposed by Ferrer et al. [7] predicts future trajectories by minimizing

the variance of curvature of forecast paths.

A mixed approach, proposed by Ziebart et al. [18] uses both place dependent

and geometric criteria. They use a reward function to generate the optimal paths
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towards a destination. This method can also be used as a modeling of route

preferences as well as for inferring destinations. This method requires intensive

place-dependent training, which is an important drawback for the generalization

of its use as a predictor.

Dee et al. [4] propose a vision-based prediction to infer intentionality, char-

acterized as the combination of obstacles and free space pixels under the field

of view of the person. Liu et al. [11] propose a method for long term prediction

using localization awareness.

3. Problem overview

In this section, we propose a prediction indicator capable of quantifying the

human motion intentionality (HMI) implicit on a trajectory with respect to the

current position and orientation. This intentionality indicator should capture

the probability that a human trajectory reaches a destination point dm, which

is a clear indicator for the inherent intentionality. To achieve this, we define the

variable φnm, which is the angle between the current orientation of the target n

and the vector to the destination point dm, a relative measure of the orientation

with respect to a destination (see Fig. 1 for clarification).

dm

ϕnm(t)

xn(t),θn(t)

Xn(t)

xn(t-1)

Figure 1: The angle φnm is defined as the angle described by the orientation vector of the

target n at time t and the xn(t) → dm vector.

In brief, we present a basic formulation necessary to analyze real trajectories.

Let

Xn(t) = {xn(1),xn(2), . . . ,xn(t)} (1)

be a set of T positions (people detections) where each point xn(t) = [x(t), y(t)]n

is the position at time t of the nth trajectory with respect to the world reference
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frame. Additionally, we define the orientation θ(t)n as a function of the current

position and the previous position, with respect to a global reference frame.

Moreover, we define a set of destination positions D = {d1, d2, . . . , dM},

that represents positions in a scene that persons can go to. The existence of

destinations is a requirement for most of the existing HMI methods. The set of

destinations points must be known in advance, and there are different methods

to compute them. In our case we use a Expectation-Maximization method.

Other works, like [12] and [18], approximate these destinations as short-term

propagations of the current state.

As it can be seen in Fig. 1, φnm(t) is the angle defined by the first derivative

of the current trajectory and the xn(t) → dm vector. By doing this, φnm(t)

becomes a measure relative to a destination, while θ(t) is a global measure of the

target orientation. This difference will allow us to obtain a good characterization

of the human motion intentionality.

Applying the kernel density estimation method [15] to real HMI databases,

we have verified that there exists a high similarity of the φ angle pdf and a

Gaussian function, or a Von Mises distribution if we would want to take into

account the periodicity of the variable.

The scheme depicted in Fig. 2 corresponds to the graphical model that de-

scribes the basis of our algorithm. The relation of the destination dm at time

t is given by the relation of the positions and this structure determines the

calculation of the probabilities used in the next section.

Although it is out of the scope of the present paper, a real implementation

requires some filtering of the detections in order to eliminate noise and outliers.

We will simply take into account that a previous filter exists, in general, but for

the understanding of our approach is not a mandatory to consider it.

4. Bayesian Human Motion Intentionality Predictor

The problem of estimating the best destination is reduced to a sequential

data classification, where the decision of choosing a destination is taken at each

instant of time while the human is walking. Our technique is inspired in a

complete Bayesian framework, in order to classify the motion intentionality. We

will begin our analysis using an infinite window, that takes into account from
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Xn(t)

ϕnm(t)ϕnm(t-1)ϕnm(2)

Xn(t-1)Xn(2)

...

...

dm(t)

Xn(1)

Figure 2: Graphical model of our classifier, called Bayesian Human Motion Intentionality

Predictor.

the first observed position of the trajectory to the current one. We will discuss

later the importance of the observed positions of a trajectory, depending on its

time elapsed since its observation, that is, if more recent observed positions of a

trajectory are more significant to the destination classification than older ones.

The method proposed in this paper, denominated Bayesian Human Motion

Intentionality Prediction (BHMIP), is a geometric-based method which uses a

Bayesian classifier to compute the best prediction to a given destination position,

for each position xn(t) of the trajectory Xn = {xn(1),xn(2), . . . ,xn(t)}. We

model the probability

P (xn(t)|xn(t−1), dm) = N (φ; 0, σ2
φ) (2)

as a Gaussian function. In Fig. 3 is depicted an example of this probability

function to two destinations centered at the position xn(t).

d2

ϕ1

xn(t)

d1

ϕ2

P(xn(t)|d1,xn(t-1))

xn(t-1)

P(xn(t)|d2,xn(t-1))

Figure 3: Different probability functions shifted depending on their respective destinations.
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4.1. Naive BHMIP

The method is simple, it only requires an initial learning of the positions

deployed as destinations.

We formulate the BHMIP in the following manner: if the posterior proba-

bility to a specific destination dm is greater than the posterior probability to go

to another destination dj , that is

d∗ = dm if P (dm|Xn(t)) > P (dj |Xn(t)) ∀m 6= j (3)

for all j = 1, ...,M destinations, then dm will be the best destination d∗ describ-

ing the current human motion intention.

The joint probability P (Xn(t)|dm) can be obtained easily as follows using

the chain rule:

P (Xn(t)|dm) = P (xn(1),xn(2), . . . ,xn(t)|dm)

= P (xn(t)|dm,xn(t−1), . . . ,xn(1)) ·

P (xn(t−1)|dm,xn(t−2), . . . ,xn(1)) ·

...

P (xn(1)|dm) (4)

For each trajectory Xn(t) we have only considered dependence of position in

between consecutive positions as the φnm variable is function of two points at

instants t and t−1. Consequently, the Eq. (4) can be rewritten more compactly

as:

P (Xn(t)|dm) = P (xn(1)|dm)
t∏

τ=2

P (xn(τ)|dm,xn(τ−1)) (5)

Using the Bayes theorem we can compute the posterior probability of the

destination dm, given the current and previous positions of the trajectory Xn(t):

P (dm|Xn(t)) =
P (Xn(t)|dm)P (dm)

P (Xn(t))
(6)

where P (dm) is the prior probability to reach the destination dm. By replacing

Eq. (5) into the Eq. (6), we obtain a compact formulation of the BHMIP.
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4.2. Sliding Window BHMIP

Another unknown arises: what if the intentionality of a person changes in

the middle of a walk? As we are evaluating partial trajectories Xm(t) and

not the full observed trajectory Xm, we don’t know the true final destination.

Inspired by the Sliding Window method [5] for sequential classification, we define

a length or time interval of past positions xn(t), discarding the previous person’s

positions, as a measure of the flexibility to intentionality changes. Thus, the

Eq. 5, is rewritten as:

P (Xn(t)|dm) =
t∏

τ=t−w

P (xn(τ)|dm) (7)

This solution, although its impact is minor on typical trajectories, has proved

to work fine specially in abnormal trajectories, where an unexpected behavior

of a person is observed.

4.3. Time Decay BHMIP

We have incorporated an additional feature in the BHMIP to weight in a

different way the contributions of the past positions to our proposed method.

Intuitively, we believe that the more recent positions observed are more deter-

minant than older ones.

Based on the Sliding Window BHMIP approach, we propose a variation that

makes use of a non-constant window that degrades as a function of time:

P (Xn(t)|dm) =

t∏

τ=t−w

P (xn(τ)|dm)g(t−τ) (8)

The domain of the function g(t−τ) is the elapsed time since the observation

xn(τ) took place and it is positive by definition. The output of the g function

is in the interval [1, 0], being 1 for the current position, the higher weighted

probability, and 0 for the most distant in time. For this reason, we propose to

use the exponential function,

g(t) = e−
t

σw (9)

that satisfies all the above mentioned requirements. The performance of the

Time Decay approach (BHMIP-D) will be discussed in the following section.
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5. Experiments

We have used two different databases to validate the results presented in

this paper. The Edinburgh Informatics Forum Pedestrian database [14] is a

set of human trajectories at the Informatics Forum, the main building of the

School of Informatics at the University of Edinburgh (see Fig. 4 left). The

data covers several months of observations which have resulted in about 1000

observed trajectories each working day, and at present has more than 92.000

observed trajectories. The sample rate is 9 positions per second. A set of eight

final destinations are identified.

The Freiburg People Tracker [13] ground truth consists of a set of 162 person

tracks at the city center (see Fig. 4 right), resulting in more than 10000 manually

labeled positions in order to validate their multi hypothesis people tracker. The

sample rate is approximately 50 positions per second.

A total of 1280 trajectories from the Edinburgh database were studied, each

trajectory consisting of an average of 100 positions. The trajectories are divided

into two sets, one set for training and the other for testing. As the Freiburg

database has less person tracks available, 30% of the trajectories were used

for training purposes and 70% of the trajectories were used for testing, each

trajectory consisting of an average of 500 positions.

5.1. BHMIP parameter learning

One of the main advantages of the geometrical, or place-independent meth-

ods for prediction is that a set of primitive trajectories is not required. However,

they are not excluded from training: the set of destinations requires to be defined

somehow. One simple solution might be a manual setting of the trajectories into

salient positions such as stairs, elevators, doors, etc.. The solution adopted in

this work, altought, has been a clusterization of positions into destinations.

A general view of the Edinburgh Informatics Forum is depicted in Fig. 4

left. The scene is taken from a camera fixed at 23m above the floor. For

the purpose of the present paper, 8 final destinations dm have been estimated

using the Expectation-Maximization algorithm [2] of the starting and ending

positions of each trajectory. Some of these final destinations coincide with

entry/exit points. The same procedure has been carried out for the Freiburg
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database (Fig. 4 right), where all the initial and final points of each trajectory

are depicted and the clusterization of the destinations is shown, as well as the

covariances on those positions.

D1 D2 D3 D4

D5D6D7

D8

−5 0 5 10 15 20 25 30 35
−25

−20

−15
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0

5

10

15
clustering

Figure 4: On the left, the map of the Edinburgh Informatics Forum. Eight different destina-

tions are drawn as red circles. On the right, the Freiburg database environment, where are

shown the clusters of the destinations. In both cases a EM algorithm has been used to obtain

the destinations.

As discussed in Sec. 4, the two BHMIP methods proposed make use of past

information. The width w and σw of the window are parameters of the system,

and the performance of the predictor depends on these values.
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Figure 5: Performance versus the parameter w and σw (in seconds), using the Edinburgh and

the Freiburg database.

We have evaluated the accuracy of prediction by doing the following: we

provide an observation of the trajectory corresponding to the interval [0, t] from

the beginning t = 0 to the current time t. We incrementally augment the current
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time t until it reaches the end of the trajectory t = T . For every observation

provided of a given trajectory, we calculate the most likely destination according

to each method and then check if the prediction is or not correct. Fig. 5 draws

the performance of each method depending on the value w and σw (the window

width), which is measured in seconds.

For the Edinburgh database results, there is a clear optimum for the Sliding

Window BHMIP at w = 0.444s and for the Time Decay BHMIP at σw = 0.5s.

The results for the Freiburg database are not clear, the best performance is for

w = 1.5s, however the performance presents an almost flat behavior for w > 2s.

For this reason, we have chosen a time width w and σw roughly around 0.5s for

both databases, which corresponds to the reaction time of the system to make

good predictions.

5.2. BHMIP testing

In this subsection, we analyze the proposed methods, the Sliding Window

Bayesian Human Motion Intentionality Predictor (Sec. 4.2) and the Time Decay

BHMIP (Sec. 4.3). The w and σw parameters are the ones obtained previously.

In addition, a comparison with other methods is shown. We will stress on the

advantages of our approach with respect to the state of the art methods.

A comparison with other approaches is difficult since no other methods use

destination points as they have been defined in this paper. The geometrical-

based method we have implemented for comparison is the approach proposed

by Foka et al. [8]. Originally, this method treats all the cells on a grid map,

corresponding to obstacles, as possible destinations and computes the best cell

as the destination a person aims to. One limitation of the method appears when

the destination is not an obstacle. For this reason, we have made the following

modifications in the method: the interesting cells of the map are translated

into the same destination points defined in our approach, and by doing this, we

are not constraining the position of the destinations to grid cells. The other

implemented method is the approach proposed by Bennewitz et al. [1] as one

of the most representative prediction methods of the place-dependent group.

A set of primitives is obtained for both databases applying the Expectation-

Maximization algorithm. With the purpose of comparing with the BHMIP,

we have assumed a correct prediction if the corresponding primitive associated
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to the current trajectory finishes at the desired destination. We have used a

different sampling rate for the two databases, however the four methods use the

same sampling rate when testing each database.
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Figure 6: On the left, performance of the algorithm against other state of the art methods,

using the Edinburgh database. On the right, the performance on the Freiburg database. The

horizontal axis is the percentage of time to complete the trajectories, where T is the total

time to complete the trajectories.

A comparison of the results, for the four methods, is shown in Fig. 6. The

figure on the left shows the performance in the Edinburgh database. The geo-

metrical methods (BHMIP-SW, BHMIP-D and Adapted Foka) present a better

performance at early stages of the evaluation than the place-dependent (Ben-

newitz), although at long observations it outperforms the geometrical, scoring

almost 84% of success rate.

In Fig. 6 right is depicted the performance using the Freiburg database. As

can be seen, the Bennewitz method could not obtain such a good performance

after short observations (t small), but it improves the accuracy after considering

longer observations, same as before. However, the performance of the place-

dependent varied for each scenario. At the Freiburg city center (right), where 5

destinations and 20 primitive trajectories are clearly defined, the method obtains

almost 90% of accuracy when the complete trajectory is considered and a mean

of 68.47% (See Table 1). On the other hand, the performance obtained for the

complete trajectory at the Edinburgh scenario (which consists of 8 destinations

and more than 50 primitive trajectories) is 84% but its average performance is

under 62.07%. The reason for such a performance at the Edinburgh Forum is

due to the fact that the trajectories are in an open area with less structural

12



constraints, therefore more unexpected trajectories might occur. Nevertheless

a fully observed trajectory can’t be considered as a prediction problem but a

classification problem and thus, full trajectory observations are not so relevant.

Considering the previous reasoning, the BHMIP is a method well suited

for real-time prediction. It can provide rapidly an accurate prediction of peo-

ple trajectories. Also, the geometrical-based methods are more indicated in

open scenarios, where prediction is done in areas consisting of many destination

points.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trajectory observed [0,1]

P
er

fo
rm

an
ce

 

 

BHMIP−SW
BHMIP−D
Adapted Foka
Bennewitz

Figure 7: On the left, performance of the algorithm using a selected set of abnormal trajec-

tories in the Edinburgh database. On the right, an example of an abnormal trajectory, where

a change in the destinations occurs in the middle of the path.

Observing the behavior of the human trajectories, we have seen that there are

people that walk from an origin to a destination without stopping, maintaining

a constant speed. Other people stop one or several times and change their

velocity. There are also people that modify their trajectory several times and

then stop in some places before reaching their destination. All these abnormal

cases are specially interesting since they represent a challenge for any prediction

method. That is the reason why we have selected a set of specially challenging

trajectories to classify. An example of an abnormal trajectory can be seen in

Fig. 7 right. All these trajectories have in common that they are abnormal and

predominantly appear changes in intentionality.

The results are shown in Fig. 7 left. All the methods fail to determine

initially the correct destination. It is not surprising since we have set the

dataset to contain trajectories with changes in destinations and other abnor-

malities. Nonetheless, the geometrical approaches behave in general better at
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Table 1: Overall performance of the prediction methods using different databases.

Edinburgh Freiburg “Abnormal”

BHMIP-SW 70.81% 71.59% 49.00%

BHMIP-D 71.10% 72.74% 54.29%

Adapted Foka 68.22% 61.93% 47.00%

Bennewitz 62.07% 68.47% 29.29%

late stages of the intentionality prediction. They are capable of quickly recover

from changes in destinations while the place-dependent approach presents more

problems to adapt.

Table 1 shows a summary of the overall performances of the evaluated meth-

ods, each percentage is the mean of the performance of every experiment carried

out before. Furthermore, we can observe that both BHMIP methods present

a better performance in all situations, being the BHMIP-D slightly better and

more adaptable to abnormal trajectories than the Sliding Window BHMIP.

5.3. Experiments in a robotic task

The main motivation to develop the BHMIP is, of course, a direct application

to robotic tasks. More concretely, the presented work was developed as a key

tool for a robot companion experiment [6]. The main task of the robot in

this experiment is accompanying a person. The robot companion predicts the

human target’s destination and uses this information to anticipate where the

human will be and positioning the robot in the best place. In addition, the

companion task is carried out successfully under the presence of obstacles and

moving persons (see Fig. 8). We have implemented a people detector based on

laser information and a particle filter for the person tracking system. Under the

framework of the robot companion task, we observed that the consideration of

human motion prediction enhances the performance of the method: a set of 45

real-life experiments with different volunteers have been carried out and each

participant filled out a questionnaire. The measurement was a simple rating

on a Likert scale between 1 to 7. For the evaluation score, repeated ANOVA

measurements were conducted. Three different scores were examined: “Robot’s
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Intelligence”, “Human-Like Motion” and “Level of confidence”. For each score

examined, the average of the results showed an increase of 38.89%, 52.78% and

43.9% respectively, compared to not using the prediction information, while

accompanying the volunteer.

Figure 8: Example of a real robot experiment: Left image corresponds to the robot camera. On

center image Dabo is accompanying a person to her desired goal while navigating in a crowded

environment. The right image corresponds to the robot GUI, built on ROS architecture. Green

cylinders correspond to persons’ detections and the orange cylinder corresponds to the target

to be accompanied.

Real trajectories are subject to disturbances, as a part of the real world

settings. The BHMIP handled correctly most of the uncertainties and quickly

adapted to changes in intentionality.

We have presented just a simple example where the human prediction en-

hances a certain utility, but the use of forecasting tools like the BHMIP may

improve a countless number of robot applications, specially in urban or outdoor

environments.

6. Conclusions and Future Work

In the present paper we have presented a novel and accurate human motion

intentionality indicator, denominated Bayesian Human Motion Intentionality

Prediction (BHMIP), which is a geometric-based long-term predictor. We have

proposed two variants of the algorithm: the BHMIP-SW (sliding window) and

the BHMIP-D (time decay). The performance of both is successful, but the

BHMIP-D behaves better under challenging trajectories, as demonstrated in

the abnormal database.

We have presented a simple formulation, a low computational complexity

and it outperforms other state of the art approaches. The system requires
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minimal training, since it is place independent and only the set of the scene

destinations must be obtained, although it might be obtained using geometrical

or manual methods as well.

A comparison of the BHMIP is done with other well known methods for

long-time prediction using the Edinburgh Informatics Forum pedestrian and the

Freiburg People Tracker databases. Additionally, experiments in a real scenario

are carried out including a set of volunteers walking in the presence of a mobile

two-wheeled robot, to validate the overall performance of the BHMIP.

In the future work we will obtain a propagation model of the predicted hu-

man motion in order to complete the forecast information that can be extracted

from persons’ observations.
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