
                             Elsevier Editorial System(tm) for Journal of Hydrology 
                                  Manuscript Draft 
 
 
Manuscript Number: HYDROL16807R1 
 
Title: An inverse method to retrieve 3D radar reflectivity composites  
 
Article Type: Research Paper 
 
Keywords: Weather radar; Radar network; Rain; Composite; Path attenuation; Quantitative 
Precipitation Estimation 
 
Corresponding Author: Dr. Jordi Roca-Sancho, Ph.D. 
 
Corresponding Author's Institution: Universitat Politècnica de Catalunya 
 
First Author: Jordi Roca-Sancho, Ph.D. 
 
Order of Authors: Jordi Roca-Sancho, Ph.D.; Marc Berenguer, PhD; Daniel Sempere-Torres, PhD 
 
Abstract: Dense radar networks offer the possibility of getting better Quantitative Precipitation 
Estimates (QPE) than those obtained with individual radars, as they allow increasing the coverage and 
improving quality of rainfall estimates in overlapping areas. Well-known sources of error such as 
attenuation by intense rainfall or errors associated with range can be mitigated through radar 
composites. Many compositing techniques are devoted to operational uses and do not exploit all the 
information that the network is providing. In this work an inverse method to obtain high-resolution 
radar reflectivity composites is presented. The method uses a model of radar sampling of the 
atmosphere that accounts for path attenuation and radar measurement geometry. 
Two significantly different rainfall situations are used to show detailed results of the proposed inverse 
method in comparison to other existing methodologies. A quantitative evaluation is carried out in a 
12h-event using two independent sources of information: a radar not involved in the composition 
process and a raingauge network. The proposed inverse method shows better performance in 
retrieving high reflectivity values and reproducing variability at convective scales than existing 
methods. 
 
 
 
 



 1 

 1 

 2 

 3 

 4 

 5 

An inverse method to retrieve 3D radar reflectivity 6 

composites 7 

 8 

Jordi Roca-Sancho*, Marc Berenguer, Daniel Sempere-Torres 9 

Centre de Recerca Aplicada en Hidrometeorologia, Universitat Politècnica de Catalunya, Barcelona (Spain). 10 

 11 

Submitted to Journal of Hydrology 

June 29, 2014 

 12 

 13 

 14 

 15 

 16 

*Corresponding author: 17 
Jordi Roca-Sancho 18 
E-mail address: jordi.roca(at)crahi.upc.edu 19 
Phone number: +34616064983 20 
Postal Address: 21 
Centre de Recerca Aplicada en Hidrometeorologia-Universitat Politècnica de Catalunya. 22 
Jordi Girona, 1-3, Edifici ParcUPC-K2M, S104 23 
Barcelona E08034 24 
Spain. 25 

*Revised Manuscript with no changes marked
Click here to view linked References



 2 

Abstract 26 

Dense radar networks offer the possibility of getting better Quantitative Precipitation 27 

Estimates (QPE) than those obtained with individual radars, as they allow increasing the 28 

coverage and improving quality of rainfall estimates in overlapping areas. Well-known sources of 29 

error such as attenuation by intense rainfall or errors associated with range can be mitigated 30 

through radar composites. Many compositing techniques are devoted to operational uses and do 31 

not exploit all the information that the network is providing. In this work an inverse method to 32 

obtain high-resolution radar reflectivity composites is presented. The method uses a model of 33 

radar sampling of the atmosphere that accounts for path attenuation and radar measurement 34 

geometry. 35 

Two significantly different rainfall situations are used to show detailed results of the 36 

proposed inverse method in comparison to other existing methodologies. A quantitative 37 

evaluation is carried out in a 12h-event using two independent sources of information: a radar 38 

not involved in the composition process and a raingauge network. The proposed inverse method 39 

shows better performance in retrieving high reflectivity values and reproducing variability at 40 

convective scales than existing methods. 41 

 42 

KEYWORDS: Weather radar; Radar network; Rain; Composite; Path attenuation; 43 

Quantitative Precipitation Estimation 44 
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1. Introduction 46 

Quantitative Precipitation Estimation (QPE) has been one of the main applications of 47 

weather radars since its early stages. Sources of error in radar rainfall estimation have been 48 

identified (e.g. Zawadzki, 1984) and many efforts have been devoted to analyze and mitigate 49 

them (see a review of the state of the art in Villarini and Krajewski, 2010). However, and in spite 50 

of the recent progress in radar data correction algorithms and better knowledge on the physics 51 

underlying the radar measurement process, there is still room for improvement. 52 

 Together with advancements in QPE schemes based on individual radars, the number of 53 

radars deployed around the world is increasing. This fact results in networks with larger coverage 54 

and areas where multiple observations are available. In these areas, sources of errors such as 55 

beam blockage, path attenuation by rain or errors associated with distance can be mitigated 56 

(Chandrasekar and Lim, 2008). Frequently, rainfall estimates from radar networks are obtained in 57 

composites built by picking the estimate from one of the radars at each grid point. This selection 58 

is done with criteria such as the maximum value (as an attempt to compensate for strong 59 

attenuation or beam blockage) or the observation from the closest radar (which considers the 60 

distance to the radar as the main error-driving factor). Other options presented in the literature 61 

are the criterion of minimum distance to the surface (Michelson et al., 2000) or the combination 62 

of the available observations based on quality indices (Fornasiero et al., 2006; Peura and 63 

Koistinen, 2007), which require a definition of a priori quality descriptors of each observation. 64 

Similarly, Zhang et al. (2005) proposed a distance-weighted mean for constructing three-65 

dimensional reflectivity composites. Also, other recent advancements impose temporal continuity 66 

between the composites as an additional constraint (Langston et al., 2007; Peura, 2010). 67 

In this work, we propose an alternative compositing technique accounting for the sources of 68 

error in radar observations. The method uses a model that simulates how a radar measures the 69 

precipitation field. Such a model is constructed for each radar of the network using the radar 70 
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equation (see e.g. Doviak and Zrnic, 1992). Following the concept of an inverse method (Menke, 71 

1989), the proposed method retrieves the most realistic field given the observations of the radars 72 

of the network. The simulation model used here accounts for the effects of beam broadening and 73 

path attenuation by intense rain which is of particular interest in European networks, where 74 

single polarization radars at attenuating wavelengths are numerous (e.g. Tabary et al., 2009). 75 

Furthermore, we have evaluated the proposed inverse method for constructing high-76 

resolution 3D composites and compared it with the technique proposed by Zhang et al. (2005) 77 

based on a distance-weighted mean. The high density of the radar network in the Barcelona area 78 

is an appropriate environment for a systematic evaluation of the results using independent 79 

information: provided that the region is covered with observations from three radars, we have 80 

obtained a 3D reflectivity composite with the observations of two radars, and we have then 81 

compared the results with the observations of the third radar, not involved in the composition. 82 

On the other side, the analyzed compositing techniques have been evaluated in terms of rain 83 

accumulations by comparison with raingauge measurements. 84 

This paper is organized as follows: The region of interest and case studies are presented in 85 

Section 2.1 together with the radar data used. Section 2.2 introduces two existing compositing 86 

techniques used as reference. The proposed methodology is presented in Section 3. The 87 

consistency of the inverse method is analyzed in Section 4. Section 5 includes a comparison of 88 

the results against observations of an independent radar while in Section 6 a raingauge network is 89 

used for evaluation. Section 7 summarizes the conclusions and includes further discussion. 90 

2. Setup of the experiment 91 

2.1. Data used 92 

The radar data used in this study were recorded with three C-band Doppler radars in the 93 

vicinity of Barcelona, Spain. Hereafter, we will refer to them as LMI, CDV and BAR radars, and 94 
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their locations are, respectively, the summit of La Miranda, the Creu del Vent hill, and the Puig 95 

d’Agulles hill near Barcelona (see Figure 1). LMI and CDV radars belong to the Meteorological 96 

Service of Catalonia (SMC), and the BAR radar is part of the network of the Spanish Agency of 97 

Meteorology (AEMET). The distance between LMI and CDV radars is 72 km, while the BAR 98 

radar is, respectively, 90 and 45 km away from them. The main characteristics of these three 99 

radars are summarized in Table 1. 100 

The self-consistency of the developed methodology has been analyzed over two reflectivity 101 

volume scans taken during two different events. The first case corresponds to a convective 102 

situation that occurred during 17 and 18 September 2009, especially interesting for the presence 103 

of convective cells in the area covered by the two radars (a large number of lightning discharges 104 

were measured with the SMC sensors in the area on 17 September 2009 between 1800 UTC and 105 

2100 UTC; SMC, 2009). The selected volume scans correspond to 2006 UTC September 2009. 106 

The second case is a mainly stratiform event occurred between 4 and 6 February 2010; the 107 

selected volume scans were recorded on 4 February 2010 at 1430 UTC. 108 

The evaluation of the inverse method has been carried out with radar data that were 109 

recorded on 2 November 2008 between 0000 and 1200 UTC. During this event, SMC reported 110 

“abundant rainfall” (SMC, 2009) and the occurrence of damaging winds of convective origin [an 111 

F2 tornado and a microburst was described by Bech et al. (2011)]. LMI and CDV radars have 112 

been used to generate the composites, while BAR radar observations have served as an 113 

independent source of information for the evaluation. 114 

Ground clutter has been removed from all radar data using the techniques of Berenguer et 115 

al. (2006) and Sánchez-Diezma (2001) and the effect of beam blockage has been reduced using 116 

the technique of Delrieu et al. (1995). This guarantees the use of non-contaminated reflectivity 117 

measurements (i.e. only associated with meteorological targets). Radar data have also been 118 

adjusted by comparison with the records of a raingauge network to partially compensate for  119 
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radar calibration offsets (similarly as Delrieu et al., 2005). The comparison is done in terms of 120 

total event rainfall accumulations –using the Marshall-Palmer Z-R relationship (Marshall and 121 

Palmer, 1948). The comparison has been done near the radars and avoiding the areas most 122 

affected by attenuation. Finally, further refinement has been performed by comparing reflectivity 123 

distributions among the radars to avoid possible calibration differences. 124 

Time differences among the PPIs of a volume scan have been partially compensated; the 125 

motion field of each elevation has been estimated and the corresponding reflectivity field has 126 

been shifted to a common time reference using the Lagrangian extrapolation technique of 127 

Berenguer et al. (2011) in polar coordinates. This has also permitted to synchronize the 128 

observations of the three radars at each time step. 129 

Reflectivity retrievals are obtained in a 74.5 km x 74.5 km x 7 km domain and with a grid 130 

spacing of 500 meters in the horizontal and 250 meters in the vertical. This resolution is a 131 

compromise between the necessary representation of the atmosphere for the simulation model 132 

and the computational cost. The area covered by this grid includes both LMI and CDV radar 133 

locations (see Figure 1). For the evaluation using the independent BAR radar, the domain has 134 

been extended 20 km to the East to include this radar. 135 

2.2. Existing 3D compositing schemes 136 

A number of radar composite techniques can be found in the literature, many of them 137 

generating 2D mosaics. We compare the results of the proposed methodology with two 3D 138 

compositing methods: (M1) the maximum value technique, widely used in operational systems, 139 

and (M2) a distance-weighted mean of the multiple observations at a point, as proposed by 140 

Zhang et al. (2005) after studying different possibilities for a 3D mosaic with the Weather 141 

Surveillance Radar-1988 Doppler (WSR-88D) network. 142 
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2.2.1. M1: MAXIMUM VALUE TECHNIQUE 143 

In a first step, observations of both LMI and CDV radars are converted from polar 144 

coordinates to the 3D Cartesian grid introduced in Section 2.1. Such a conversion is done by 145 

picking the nearest neighbor observation, which preserves extreme values and small-scale 146 

variability (as discussed by Trapp and Doswell, 2000). Then, in each point of the grid, the two 147 

reflectivity values corresponding to the converted observations of the two radars are compared; 148 

and the maximum reflectivity value is assigned to the grid point. This process is illustrated in 149 

Figure 2. 150 

2.2.2. M2: DISTANCE-WEIGHTED MEAN 151 

Zhang et al. (2005) proposed a 3D compositing scheme for the WSR-88D network with the 152 

aim to fulfill the requirements of realistic representation of convective-scale features of rainfall at 153 

a low computational cost. They studied four interpolation approaches to remap polar radar data 154 

to Cartesian coordinates and found that for convective storms vertical interpolation provides the 155 

most physically-realistic mosaic, while for widespread precipitation an additional horizontal 156 

interpolation scheme was the best compromise. To compose measurements from several radars 157 

at each grid point they finally chose a distance-weighted mean. 158 

3. Methodology 159 

The concept of using two or more radars to improve reflectivity estimates has been studied 160 

in the past. Testud and Amayenc (1989) and Kabèche and Testud (1995) proposed a variational 161 

method to estimate specific attenuation and reflectivity using two radars pointing to the same 162 

precipitation volumes. Srivastava and Tian (1996) found an analytical solution to retrieve the 163 

specific attenuation field using also two radars. Focused to the application in networked radar 164 

environments (with two or more radars), Chandrasekar and Lim (2008) proposed a different 165 

iterative method to retrieve reflectivity and specific attenuation for the X-band radar network of 166 
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CASA (Center for Collaborative Adaptive Sensing of the Atmosphere). On the other hand, 167 

Andrieu and Creutin (1995) proposed an inverse method to obtain vertical profiles of reflectivity 168 

accounting for the radar beam broadening and the power distribution within the beam for single 169 

radar measurements. 170 

Similarly, we propose here an inverse method to retrieve reflectivity composites using a 171 

model of the radar sampling of the atmosphere and constrained to the observations from the 172 

different radars of a network. 173 

3.1. Formulation of the inverse method 174 

The inverse method is based on the minimization of a cost function that penalizes 175 

discrepancies between the actual observations at a given time and the simulations of the radar 176 

sampling performed over the retrieved field for that time. We define the cost function for 2 177 

radars (LMI and CDV) as: 178 

𝐽(𝑧,a) = ฮ𝑑𝐵[𝑍௅ெூ] − 𝑑𝐵ൣ𝑍෨௠,௅ெூ(𝑧,a)൧ฮ
ଶ
+ ฮ𝑑𝐵[𝑍஼஽௏] − 𝑑𝐵ൣ𝑍෨௠,஼஽௏(𝑧,a)൧ฮ

ଶ
 (1) 

Where  is the retrieved high-resolution 3D reflectivity field,  are parameters determining 179 

the relationship between specific attenuation (𝑘) and non-attenuated reflectivity (𝑧) as a function 180 

of position (see the details in Section 3.3), 𝑍௟ is the volumetric reflectivity scan observed with the 181 

𝑙 = [𝐿𝑀𝐼, 𝐶𝐷𝑉] radar, 𝑍෨௠,௟(𝑧,a) is the simulated volumetric reflectivity scan for the 𝑙 =182 

[𝐿𝑀𝐼, 𝐶𝐷𝑉] radar, 𝑑𝐵[∙] is the operator 10 log(∙) and ฮ𝑑𝐵[𝑍௟] − 𝑑𝐵ൣ𝑍෨௠,௟(𝑧,a)൧ฮ stands for 183 

the Euclidean distance between observed and simulated reflectivity volumes in logarithmic units 184 

(𝑑𝐵𝑍). Hereafter, we will refer to 𝑧 as the retrieved reflectivity field or the composite obtained with 185 

the inverse method, and to 𝑑𝐵[𝑍௟], and 𝑑𝐵ൣ𝑍෨௠,௟(𝑧,a)൧ as, respectively, the observation and the 186 

simulation over the 𝑧 field of the corresponding radar 𝑙 = [𝐿𝑀𝐼, 𝐶𝐷𝑉]. 187 

z a



 9 

3.2. Simulation of the radar sampling of the atmosphere 188 

 Simulations are carried out using a model that reproduces the radar sampling of the 189 

atmosphere considering the characteristics of each radar (location, beam width, pulse length, 190 

scanning strategy, etc.), power distribution within the radar beam, and path attenuation by 191 

precipitation. Similar simulations were used by Sánchez-Diezma (2001), Bellon et al. (2005) or 192 

Berenguer and Zawadzki (2008; 2009) to analyze the errors associated with range. 193 

Given a 3D reflectivity field, a complete volume scan is simulated with the model for each 194 

radar. The simulation model is based on the radar equation and the propagation of the radar 195 

beams is assumed to follow the 4/3-effective Earth radius model (Doviak and Zrnic, 1992). For a 196 

given elevation and azimuth, Equation 2 expresses the reflectivity simulated at range 𝑟, 𝑍෨௠(𝑧, 𝑟), 197 

as a function of the high-resolution 3D reflectivity field 𝑧: 198 

𝑍෨௠(𝑧, 𝑟) = 𝑍෨(𝑧, 𝑟) ∙ 𝑒ቂି଴.ସ଺∫ ௄෩(௭,a,௥)ௗ௦ೝ
బ ቃ 

𝑍෨(𝑧, 𝑟) =
∫ |𝑊|ଶ𝑓ସ𝑧  𝑑𝑉௏(௥)

∫ |𝑊|ଶ𝑓ସ  𝑑𝑉௏(௥)

 

(2) 

Where 𝑍෨(𝑧, 𝑟) is the intrinsic (unattenuated) reflectivity in mm6m-3 at range 𝑟 (smoothed 199 

according to the power distribution within the beam), 𝐾෩(𝑧,a, 𝑟) is the specific attenuation in 200 

dB/km at range 𝑟 (including the effect of the power distribution within the beam; see Section 3.3 201 

for the description of the attenuation model), 𝑉(𝑟) is the radar sampling volume at range 𝑟, |𝑊|ଶ 202 

and 𝑓ସ determine the power distribution within the sampling volume; |𝑊|ଶdescribes the power 203 

distribution in range -in this model the function proposed by Doviak and Zrnic (1992) is used- 204 

and 𝑓ସ varies with the angle from the center of the beam (and is approximated with a Gaussian 205 

function). 206 
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Equation 2 considers the effect of the power distribution within the beam, the effect of 207 

beam broadening, and path attenuation by precipitation. Each radar measurement is actually 208 

obtained as the average of several pulses, and averaged to the final product resolution (1 km). 209 

3.3. Attenuation model 210 

The attenuation model is based in the assumption of a k-Z power law relationship (𝑘 = 𝛼 ∙211 

𝑍ఉ). The model used here accounts for some spatial variability of the factor 𝛼 of the k-Z 212 

relationship according to Equation 3. Consequently, the k-Z relationship becomes 𝑘(𝑥, 𝑦, ℎ) =213 

𝛼(𝑥, 𝑦, ℎ) ∙ 𝑧(𝑥, 𝑦, ℎ)ఉబ, where the parameter 𝛽଴ has been adjusted to k and Z for a sample of Z 214 

values assuming a Marshall-Palmer drop size distribution (Marshall and Palmer, 1948). 215 

𝛼(a) = (𝑎ଵ𝑥 + 𝑎ଶ𝑦 + 𝑎ଷℎ + 𝑎ସ)ଶ (3) 
 

Note that the parameters a = (𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ) are control variables of the cost function, as 216 

one can see in Equation 1; that is, they are optimized through the minimization instead of being 217 

fixed a priori. The square on the right side of Equation 3 guarantees positive attenuation. Finally, 218 

Equation 4 presents the equation for 𝐾෩(𝑧,a, 𝑟), the specific attenuation smoothed with the power 219 

distribution of the beam: 220 

𝐾෩(𝑧,a, 𝑟) =
∫ |𝑊|ଶ𝑓ସ𝛼(a)𝑧  ఉబ𝑑𝑉௏(௥)

∫ |𝑊|ଶ𝑓  ସ  𝑑𝑉௏(௥)

 (4) 

3.4. Application of the inverse method 221 

The cost function (Equation 1) is minimized iteratively with the Conjugate Gradient method 222 

(see e.g. Press et al., 1992) to retrieve the 3D composite. A first guess of the composite is needed 223 

to initialize the minimization, as well as a first guess for the parameters a determining the k-Z 224 

relationship. We have used as a first guess the composite obtained with the M2 technique 225 

described in Section 2.2. As a first guess for the parameters  a we have used those corresponding 226 
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to a uniform k-Z relationship 𝑘 = 𝛼଴ ∙ 𝑍ఉబ for a Marshall-Palmer drop size distribution (see 227 

Section 3.3), that is, 𝑎ଵ = 𝑎ଶ = 𝑎ଷ = 0 and 𝑎ସ = ඥ𝛼଴ (according to Equation 3). 228 

4. Consistency of the inverse method in two case studies 229 

The proposed inverse method has been applied for the first two rainfall cases presented in 230 

Section 2.1. In this section, the retrieved fields are compared against those obtained with the two 231 

methods described in Section 2.2 (M1 and M2). 232 

4.1. Case of 2006 UTC 17 September 2009 233 

The retrieved 3D reflectivity field [𝑧 in Equation 1] for this convective case is presented in 234 

Figure 3. Figures 3a and 3b show that a good part of the domain is affected by precipitation, 235 

including several convective cells embedded within widespread precipitation. The cell labeled as 236 

A is an example of strong and deep convection near the LMI radar, while cell B is the largest of 237 

the smaller cells around the CDV radar. Features with lower reflectivity values can be seen in the 238 

southeastern portion of the domain. Several areas with no rain in the 2 km-CAPPI (Figure 3a) 239 

show some reflectivity values between 25 and 35 dBZ in the 3 km-CAPPI (Figure 3b), indicating 240 

overhanging precipitation (also visible in Figure 3c, near point P’ and Figure 3d near point Q’). 241 

Vertical cross sections (Figures 3c and 3d) show the vertical development of convective cells A 242 

and B (cell A reaches 6 km in height and cell B up to 5 km).  243 

The 2-km CAPPIs obtained with the methods M1 and M2 are shown in Figures 4a and 4b. 244 

Both fields show features similar to those observed in the composite obtained with the inverse 245 

method (Figure 3a) but both are clearly smoother. Because the resolution of the observation grid 246 

(1km x 1°) is lower than the grid spacing of the composites, the M1 and M2 composites 247 

(obtained directly by from the observed reflectivity values) are smoother than the retrieval from 248 

the inverse method. In addition, in the M2 case linear interpolations involved in the method (see 249 

Section 2.2) contribute also to this fact. As expected, higher values can be seen all over the 250 
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domain in the M1 composite over the entire domain. In particular, in the area located north of 251 

cell A, all values obtained with the M2 technique are obviously lower. In this area, values from 252 

CDV radar are higher than the LMI values because observations from LMI radar are strongly 253 

attenuated by intense rainfall near the radar; consequently, the M1 composite (based on choosing 254 

the maximum value) is dominated by CDV values, while the M2 composite (built depending on 255 

the distance) is influenced by values from both radars. 256 

In the vertical cross sections showed in Figures 4c and 4d, we can see that the representation 257 

of cell A is smoother than that obtained with the inverse method, and that method M2 produces 258 

reflectivity values clearly lower (mainly because of the large attenuation of the observations of 259 

LMI radar). 260 

CAPPIs and vertical cross sections of the inverse method retrieval (Figure 3) show certain 261 

level of noise at small scales, with no clear physical meaning, and probably an effect of the 262 

numerical minimization. For example, we can see some scattered strong reflectivity around 2 km 263 

altitude (Figure 3c and 3d). In the 3 km-CAPPI (Figure 3b), ring-shaped artifacts are visible in the 264 

upper levels. This is because at this height observations are less dense and most of these grid 265 

points are far from radar measurements. The ring shape patterns appear in the intersection areas 266 

of the different PPIs (as can be checked with the thin lines represented in Figure 4). 267 

Figure 5a shows the first PPI of actual observations recorded with the LMI radar (i.e. the 268 

term 𝑑𝐵[𝑍௅ெூ] in Equation 1). The field has in general lower intensities than the retrieved 269 

Cartesian field (𝑧) at similar heights in Figure 3 (for instance, we can roughly identify cell B in 270 

Figure 5a). The main reason is the effect of path attenuation due to the strong convective cell 271 

near the LMI radar (present in the retrieval of Figure 3a). Similarly, this cell near the LMI radar is 272 

no apparent in CDV observations (Figure 6a) because of the effect of path attenuation due to cell 273 

A. Though, in general, CDV observations (Figure 6a) resemble more the fields at constant height 274 

of Figure 3 and one can clearly identify cells A and B. 275 
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As explained in previous sections, the retrieved composites are expected to mitigate the 276 

effects of known sources of error affecting the observations of individual radars. Consequently, 277 

the retrieved mosaics cannot be directly compared with individual radar scans, where the effect of 278 

errors such as beam broadening or path attenuation cannot be neglected. The way we have 279 

chosen to address this aspect has been simulating the observations of each radar using the model 280 

of Equations 2-4 to reflect the impact of the errors affecting individual radar observations. Once 281 

a composite has been generated, a complete volumetric scan is simulated for each radar, 282 

obtaining how radars would observe the obtained composite according to our model. Then the 283 

simulations are compared against the actual observations. 284 

Thus, to qualitatively assess the consistency of the proposed method, Figure 5d shows 285 

simulated observations for the LMI radar corresponding to the 0.6º-PPI. These simulations have 286 

been obtained by applying the observation operator for the LMI radar 𝑑𝐵ൣ𝑍෨௠,௅ெூ(∙)൧ over the 287 

retrieved reflectivity field (𝑧) using the simulation procedure described in Sections 3.2 and 3.3. 288 

Simulations have similarly been obtained over the composites generated with the compositing 289 

techniques M1 and M2 (Figures 5b and 5c, respectively). Visual comparison of Figures 5a and 5d 290 

shows remarkable resemblance between observations and simulations for the LMI radar. 291 

Simulations computed with the radar operator 𝑑𝐵ൣ𝑍෨௠,௅ெூ(∙)൧ over the M1-composite (Figure 292 

5b) or over the M2 composite (Figure 5c) show clear discrepancies with respect to observations. 293 

Similar results have been obtained for the CDV radar (shown in Figure 6). It is worth noting the 294 

following features in Figures 5 and 6: 295 

x The attenuation corridor in LMI observations (C in Figure 5a), is well reproduced in 296 

the simulations performed over the retrieved field (Figure 5d). 297 

x Convective cells labeled as A and B in CDV observations (Figure 6a) show lower 298 

values in simulations performed over the M1 composite (Figure 6b). In the 299 

simulation over the M2 composite (Figure 6c) reflectivities are even weaker. On the 300 



 14 

other hand, convective cells A and B are quite well reproduced in the simulation over 301 

the retrieved field (Figure 6d). Observed extreme values in A are not fully retrieved 302 

perhaps due to the presence of hail, not considered in the simulation model. 303 

x Figure 6c shows that M2 significantly underestimates reflectivities in the region 304 

labeled as D, replicating the attenuation corridor C in LMI radar (Figure 5a). This is 305 

due to the fact that M2 composites are based on a distance-weighted average, giving 306 

more weight in this area to the attenuated LMI observations (closer to the LMI 307 

radar). It should be noted that this method is designed for an S-band radar network 308 

in which path attenuation in rain is not as significant as at C-band. 309 

The resemblance between the simulations performed on the retrieved field and the 310 

observations at the elevation of 0.6º confirms the compatibility of the retrieval with actual 311 

observations from both radars as intended. That is, according to our observation model 312 

expressed as the observation operator 𝑑𝐵ൣ𝑍෨௠,௟(∙)൧ (see Equations 1 and 2), the composite 313 

retrieved with the numerical minimization is actually a good representation of the observed 314 

rainfall field. 315 

Scores of correlation, bias and root mean squared error (RMSE) are used to assess the 316 

similarity between the observations and the simulations performed over the mosaics. 317 

Observations cannot be directly compared with reflectivity composites because of the effects of 318 

sources of error as path attenuation of beam broadening. Simulations over the obtained 319 

composites include such effects according to our observation model and its similarity with 320 

observations can be used as an indicator of the compatibility of the composited fields with 321 

observations. 322 

The left part of Table 2 shows that better results have been obtained with the proposed 323 

inverse method than with the M1 and M2 techniques with the only exception of the bias for 324 

CDV in comparison with the M1 technique. The inverse method is based on the minimization of 325 
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the cost function, which is the total of the squared errors, and this is directly related with the 326 

RMSE of both radars. Thus the improvement in the RMSE basically reflects the consistency of 327 

the method. 328 

On the other hand, it is worth noting that the retrieved 3D field is implicitly corrected for 329 

path attenuation which is included in the simulation procedure [see Equations 2, 3 and 4]. 330 

Equations 3 and 4 allow us to simulate path attenuation and use it to correct attenuated 331 

observations. An example of such corrected observations is shown in Figure 7 together with the 332 

simulated path integrated attenuation (PIA) fields. Once corrected for attenuation, the 333 

observations of the two radars (Figures 7a and 7b) show more resemblance with each other; that 334 

is, path attenuation explains a good part of the differences between the observed fields (Figures 335 

5a and 6a). Figures 7c and 7d show that the simulated PIA reaches values up to 30 dB for the 336 

LMI radar and up to 20 dB for the CDV radar. 337 

The remaining differences between the observations of the two radars can, at least in part, be 338 

explained by the differences in height of observations and beam broadening. The clearest 339 

difference is in the region labeled as E, where LMI simulations show a region of intense 340 

reflectivity (Figure 7a) that has no correspondence in the first PPI of CDV (Figure 7b). This 341 

strong reflectivity values are only detected in high elevations (not shown) meaning that intense 342 

rainfall does not reach the ground at this particular time. 343 

4.2. Case of 1430 UTC 4 February 2010 344 

The composite obtained for this case is shown in Figure 8. The 1.5-km and 2-km CAPPIs 345 

(Figures 8a and 8b) show a uniform precipitation field, characteristic of a widespread situation. 346 

The 2-km CAPPI shows higher reflectivity values than at 1.5 km because it approximately 347 

corresponds to the height of the bright band peak. This can be confirmed with vertical cross 348 

sections of the retrieved field (Figures 8c and 8d) and their mean VPR. 349 
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Simulations over the retrieved field reproduce remarkably well the observations, as shown in 350 

Figure 9 for the LMI and CDV radars. In particular, the traces of the bright band are well defined 351 

for both radars. The main difference is that for both radars the simulations are slightly smoother 352 

than observations. 353 

The scores presented in right part of Table 2 are presented to assess the compatibility of the 354 

composites obtained with the different techniques (M1, M2 and the inverse method) with the 355 

observations. In all cases, the scores of the composite obtained with the inverse method are 356 

better for both radars. 357 

In this case the path-integrated attenuation (PIA) does not exceed 4 dB in the rain region 358 

(not shown) because of the moderate reflectivity values, and no attenuation is considered in the 359 

snow region. In the melting snow region reflectivity values are considered as if were due to rain, 360 

which results in higher PIA values. Few studies in the literature focus on the attenuation in 361 

melting snow; among those, Bellon et al. (1997) found that the attenuation in the melting layer is 362 

3-5 times the attenuation obtained as if the reflectivity values in the melting layer were due to rain 363 

with an X-band radar at vertical incidence. If that was applicable for low-elevation C-band 364 

measurements, our approach would underestimate the attenuation in the melting layer. 365 

Results presented so far show the consistency of the inverse method at retrieving a 366 

reflectivity field that is the most compatible with actual observations and the radar model, by 367 

comparison with the observations of the radars involved in the composites. However, a proper 368 

evaluation of the generated retrievals requires the use of independent information. The following 369 

sections are, thus, devoted to the evaluation of the retrievals using two independent sources of 370 

information: a third radar and a raingauge network. 371 

5. Comparison with the observations of an independent radar 372 

A quantitative evaluation of the composites is presented in this Section for an intense rainfall 373 

event. Three-dimensional reflectivity composites have been retrieved using LMI and CDV 374 
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volume scans between 0000 and 1200 UTC of 2 November 2008. Every 30 minutes a composite 375 

has been obtained with the M2 technique. This composite has been used as a first guess in the 376 

iterative minimization of the inverse method (as introduced in Section 3.4). The proposed inverse 377 

method is compared here against the M2 technique since the M1 methods had worse results in 378 

the consistency analysis (see Table 2). The evaluation of the composites is based on the 379 

comparison with the observations of the BAR radar, not used in the production of the mosaics. 380 

Simulations of BAR observations have been computed over all composites and the similarity 381 

between observations and simulations is quantified to assess the quality of the generated 382 

composites. 383 

5.1. Case of 0330 UTC 2 November 2008 384 

This example corresponds to the volume scans recorded on 2 November 2008 at 0330 UTC. 385 

Figure 10 shows the reflectivity field at 2 and 3 km in height, and vertical cross sections of the 386 

composite obtained with the inverse method using LMI and CDV radar observations. 387 

We can see that, at this time step, a good part of the domain is covered with rainfall and that 388 

there are several embedded convective cells (Figures 10a and 10b). For instance, in the region 389 

labeled as A, there is a convective cell with high values of reflectivity (up to 66 dBZ), that extends 390 

to the north with zones of intense rainfall, but with less high values and lower vertical 391 

development (Figure 10c). In Figure 10d, one can see the vertical development of the cell labeled 392 

as B. 393 

To analyze the performance of the compositing techniques, we compare actual BAR 394 

observations with the BAR simulations performed over the retrieved composite using the model 395 

that reproduces the radar sampling of the atmosphere (see Sections 3.2 and 3.3). Since BAR polar 396 

observations are affected by path attenuation and beam broadening, it is necessary to simulate 397 

these phenomena on the retrieved Cartesian composites to guarantee that we are comparing 398 

values of the same nature (similarly as done in section 4). We can also carry out this comparison 399 
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with the radars involved in the composition (LMI and CDV), as a way to confirm the consistency 400 

of the method shown in previous sections. 401 

Observations and simulations for the first elevation of the BAR radar are shown in Figure 402 

11. There is a region in the southeast not included in the comparison domain (shaded area in 403 

observation and gray area in simulations); it corresponds to observations of the BAR radar where 404 

the simulation is not possible due to the lack of observations from the other two radars. In this 405 

region BAR observations are lower in height than the LMI and CDV coverage [note that the 406 

BAR radar is located at a lower altitude (663 m) than LMI and CDV radars (910 m and 825 m, 407 

respectively)]. 408 

We can see that in the M2 simulation (Figure 11b), the convective cell B takes lower values 409 

than observed (Figure 11a), and the same happens in the attenuation corridor behind; in the 410 

simulation over the composite obtained with the inverse method, both the cell and the 411 

attenuation corridor resemble more the observed ones. Thus, there is a qualitative improvement 412 

in the BAR simulations derived from the inverse method composite. 413 

To quantify the similarity between observations and simulations, the left part of Table 3 414 

shows the values of correlation, bias and root mean squared error (RMSE) for the first elevation 415 

of the BAR radar, i.e. for the fields showed above (Figure 5). The results of the evaluation using 416 

the observations of the BAR radar as reference are quite similar for both techniques in terms of 417 

the obtained scores; the inverse method has only slightly better results than the M2 technique 418 

despite of the qualitative improvement shown in Figure 5. The right part of Table 3 presents the 419 

values of the same scores calculated using all the PPIs of the BAR radar, and we can also see 420 

similar results for both techniques. 421 

5.2. Scores 422 

Bias, correlation and RMSE computed from the comparison between observations and 423 

simulations for the BAR radar have been calculated for all the composites in the evaluation 424 



 19 

period. Top panels of Figure 12 show the evolution of the bias in the period for the three radars 425 

and both compositing techniques (M2 and the inverse method). The bias for the BAR radar 426 

(Figure 12c) is quite similar for both techniques in most of the cases, and in some of them the 427 

bias is better for the inverse method than for the M2 technique. Note that the composite 428 

retrieved at a given time step only uses information from this particular time step; so the scores 429 

of consecutive time steps are unrelated except for that original observations are consecutive. The 430 

values of the RMSE for the BAR radar (Figure 12f) are again very similar for both techniques but 431 

in some cases we obtain slightly worse results with the inverse method. In Figure 12i we can see 432 

that the correlation between observations and simulations is quite high in all cases. Similarly as 433 

for the RMSE, for the independent radar BAR, the M2 technique produces equal or better 434 

correlation values than the inverse method. 435 

Summarizing, the results of Figure 12 show a small gain of the inverse method in the bias, 436 

but in terms of RMSE and correlation, the results are very similar as the M2 technique. For the 437 

radars involved in the composites (LMI and CDV), the scores of the inverse method are better, 438 

confirming the consistency of the method. In some time steps, as 0100 UTC, the minimization 439 

process of the inverse method found a minimum near the first guess (which is the M2-440 

composite) and so the difference between the scores of both techniques is very small. 441 

5.3. Reflectivity distributions 442 

The reflectivity distributions corresponding to the first elevation for the entire evaluation 443 

period are shown in top panels of Figure 13. The distribution of reflectivity values obtained with 444 

the inverse method for the BAR radar is very similar to the one obtained from observations while 445 

the M2 technique underestimates the frequency of high values (greater than 40 dBZ). 446 
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5.4. Scale analysis 447 

In this Section, the radially-averaged Fourier spectra of the reflectivity fields are used to 448 

assess how the simulations over the mosaics obtained with the different techniques reproduce the 449 

spatial variability of observations [as done, for instance, by Pegram et al. (2011)]. To highlight the 450 

discrepancies between the spectra of observations and simulations, bottom panels of Figure 13 451 

shows the ratio between the mean spectra of the simulated and observed reflectivity fields. For 452 

the BAR radar, the representation of scales between 2 and 10 km is less underestimated with the 453 

inverse method; and the contribution of smaller scales (less than 2 km) is overestimated in the 454 

inverse method simulations, while it is underestimated in the M2 simulations. 455 

If we focus on the scales of convective storms, between 2 and 20 km [corresponding to the 456 

meso-J scale following the classification of Orlanski (1975)], we can see that the inverse method 457 

reproduces the contribution of those scales better than the M2 technique. 458 

6. Comparison with raingauges 459 

This Section presents an evaluation of compositing techniques in terms of accumulated rain. 460 

The 2-km CAPPI of the composites has been used as an estimation of rainfall at ground every 6 461 

minutes. The reflectivity fields have been transformed into rain-rate and accumulated for the 462 

analyzed 12 hours period assuming that between one time step and the next one the precipitation 463 

fields moves at constant velocity and that rain intensity varies linearly (as in Fabry et al. 1994). 464 

Estimated values at raingauge locations have been compared against the actual raingauge 465 

observations. The same comparison has been carried out using the 2-km CAPPIs of individual 466 

radars (LMI and CDV). These raingauges belong to the networks of the Catalan Water Agency 467 

(ACA) and SMC and their records are routinely quality controlled. 468 

Figure 14 shows the accumulation maps obtained from the different mosaics and individual 469 

radars. An almost South-North band of values above 35 mm can be seen in accumulations, 470 

indicating the location of strong convective cells in the analyzed period. 471 
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In Figure 15 we can see that the estimates from individual radars (first row) show a good 472 

agreement with the low values registered with raingauges, while high values have been 473 

underestimated probably because of the significant path attenuation observed in individual PPIs. 474 

The composites obtained with the M1 technique results in a general overestimation except for 475 

the extreme values (Figure 15 second row, left panel). Contrarily, the comparison of the M2-476 

composite against raingauges shows a general underestimation for values greater than 40 mm 477 

resulting in a bias higher than obtained for individual radars (see Figure 15, second row, right 478 

panel). The scatterplot for the inverse method (Figure 15, third row) shows better results than 479 

M1 and M2. There is a good agreement in the low values as found for individual radars (instead 480 

of the overestimation obtained for M1), and a general improvement with respect to the M2 481 

technique, especially in the reproduction of the high values. The bias (and to a lesser extent the 482 

RMSE) has been reduced in comparison with the rest of the techniques. 483 

7. Conclusions and discussion 484 

A methodology for obtaining 3D reflectivity composites using measurements from several 485 

radars is presented. The proposed inverse method is based on retrieving the 3D Cartesian 486 

reflectivity field most compatible with the available radar observations assuming the models for 487 

the radar sampling of the atmosphere and path attenuation (Sections 3.2 and 3.3). The retrieved 488 

fields reproduce coherent features such as the vertical development of convective cells or the 489 

reflectivity enhancement of the bright band, as shown for two significantly different examples. 490 

The compatibility of the composites with actual observations has been assessed through a 491 

simulation model of the radar sampling of the atmosphere. From the retrieved composite,, a 492 

complete volumetric scan is simulated for each radar, considering how radars would observe it 493 

according to our model. Then the simulations are compared against the actual observations. In 494 

the observation-simulation comparison for the radars involved in the composition process (LMI 495 

and CDV), the inverse method gets better results for the evaluation period in terms of scores, 496 
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reflectivity distribution and scale analysis, confirming the consistency of the method. Note that 497 

while the cost function minimized by the inverse method (total of squared differences) is directly 498 

related with the RMSE, the relationship of this function with correlation, bias, reflectivity 499 

distribution or the Fourier spectra is more indirect (so better results in these aspects could be 500 

more relevant). 501 

A quantitative evaluation involving two independent sources of information, a radar and a 502 

raingauge network, has been carried out to compare the inverse method against an existing 503 

technique based on a distance-weighted mean (M2). The raingauge network in the area provides 504 

direct measurements of rainfall at ground level, while independent radar observations allow us to 505 

evaluate the 3D reflectivity composites. 506 

The comparison of the retrieved mosaics with actual radar observations requires the 507 

simulation of radar observations using the radar sampling model. This allows us to account for 508 

the errors affecting radar PPIs. The analyzed techniques obtain similar results when comparing 509 

the BAR observations and simulations in terms of bias, correlation and RMSE. However, the 510 

analysis of the distribution of reflectivity values shows that the M2 technique underestimates 511 

systematically the presence of high values, while the inverse method tends to better reproduce the 512 

upper tail of the distribution. In the scale analysis the inverse method reproduces the 513 

contribution of the scales between 2 and 20 km better than the M2 technique; with respect to the 514 

smaller scales, the fields obtained with the inverse method are too noisy, while the M2 fields tend 515 

to be too smooth (which is not surprising, as the technique is based on a distance-weighted 516 

mean). It is worth noting that the smoothness of M2 fields contributes to the good results in 517 

terms of RMSE for this technique, while the inverse method obtains similar RMSE values while 518 

reproducing better the variability of the field and capturing better the high reflectivity values. 519 

On the other side, values of accumulated rainfall obtained with the different compositing 520 

techniques have been compared against the available raingauge records. The combined use of 521 
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observations from two different radars with the inverse method is shown to be better than each 522 

of these radars separately. The inverse method accumulation also compares better with raingauge 523 

amounts than both M1 and M2 techniques. The M1 technique overestimates most of the 524 

raingauge values while the M2 technique suffers from general underestimation. 525 

The method proposed in this work implicitly corrects for attenuation. The simulation 526 

procedure accounts for attenuation and is inverted using network information as a constraint to 527 

avoid the instabilities of the attenuation correction by intense rainfall. This is a feature that the 528 

M2 technique does not have (it was originally designed for S-band radars). It allows the inverse 529 

method to capture better the high reflectivity values as we see in the reflectivity distributions and 530 

in the comparison with raingauge measurements. This fact, together with the better reproduction 531 

of the scales associated with convective cells, show the advancement of the inverse method with 532 

respect to the M2 technique. 533 

The temporal localization of the reflectivity measurements is a source of error in the 534 

composition of observations from different radars. The time spent in the radar scanning of the 535 

atmosphere is relevant when constructing a high-resolution composite assigned to a particular 536 

instant. It is also relevant that two different radars will rarely take measurements at the same 537 

location at the same time [Lakshmanan et al. (2006) and Langston et al. (2007) consider this fact 538 

in a weighted mean approach, giving greater weights to the more recent measurements]. Here we 539 

have tried to partially compensate for these temporal differences by shifting the observations 540 

with the estimated motion fields. The inverse method is more susceptible to be affected by these 541 

synchronization errors and their propagation in the simulations than the M2 technique, thanks to 542 

the smoothing effect of M2. 543 

The problem of retrieving reflectivities along the path of a radar beam from attenuated 544 

values is known to be underdetermined and very sensitive to small errors [see e.g. Hitschfeld and 545 

Bordan (1954), Haddad et al. (1995) or Berne and Uijlenhoet (2006)]. In our approach, the use of 546 
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multiple observations is chosen to constrain the inversion of the problem and to reduce the 547 

degrees of freedom. However, it needs to be noticed that, whereas in the lower parts of the 548 

domain (well covered with the lower PPIs from both radars) the problem is now better 549 

constrained, the regions near the top of the domain are still sparsely sampled, and the problem is 550 

clearly underdetermined. Similarly, the proposed methodology would suffer from 551 

underdetermination in larger domains where only measurements of one radar are available. These 552 

facts restrict its applicability to overlapping regions in dense radar networks, and the extension to 553 

areas with single-radar observation would need to use other methods. 554 

At the present stage, the high computational cost of the method is a limitation for its 555 

application in real-time over large domains covered with dense radar networks. Therefore, the 556 

selection of the grid spacing needs to balance factors such as the number of unknowns (which 557 

determines the number of degrees of freedom of the problem) and the computational cost, but 558 

should enable realistic simulation of the radar sampling of the atmosphere (which requires a 559 

relatively dense grid). Thus, the grid spacing of 500 x 500 x 250 m3 has been chosen as a 560 

compromise between these factors given the range resolution of observations (1 km). 561 

The inverse method approach provides a flexible framework that allows further 562 

improvements in the 3D reflectivity retrieval such as: 563 

x The cost function is chosen here as a simple approach to quantify the discrepancies 564 

between simulations and observations. In particular, the quality of each observation 565 

is equally weighted, neglecting the differences in the quality of the observations (e.g. 566 

its well known dependence with range) and the spatial correlation of observation 567 

errors [see e.g. Vignal et al. (2003) or Berenguer and Zawadzki (2008)]. In this sense, 568 

the cost function allows including the information of the estimated observation error 569 

covariance matrices, which would make the solution optimal in a least squares sense 570 

[see e.g. Kalnay (2003)]. 571 
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x The methodology can be easily generalized to any number of available radars by 572 

simply extending the cost function with additional terms. 573 

x The retrieved fields show too much variability for small scales. This fact could be 574 

mitigated by extending the formulation of the cost function. The smoothness of the 575 

retrieved composites can be imposed adding a smoothing constraint in the cost 576 

function, as proposed by Ebtehaj and Foufoula-Georgiou (2012). An example of this 577 

is the term J2 in Laroche and Zawadzki (1995) applied to the retrieval of wind fields. 578 

x The attenuation model is based on a simple parameterization of the factor  of the 579 

k-Z relationship to allow for some spatial variation of this relationship. Although this 580 

model only accounts for part of the real variability of the drop size distribution, the 581 

inverse method is ready to introduce further refinements in the attenuation model, 582 

for instance to distinguish different precipitation regions (convective or stratiform 583 

rain, snow…) based on original observations. In addition, in dual-polarization radars, 584 

the use of observations of differential phase, )DP could be an interesting alternative 585 

to further constrain the retrieval by minimizing the departures from the relationships 586 

between )DP and the PIA (e.g. Park et al., 2005; Cao et al., 2013). 587 

x With the results presented here, it seems advisable to work on a hybrid technique 588 

that uses the inverse method in certain regions (specially those affected by high 589 

reflectivity values and/or significant path attenuation) and the M2 technique 590 

elsewhere. In this manner, we would benefit from (i) the strengths of the inverse 591 

method where its contribution is more evident, and (ii) a reduction of the 592 

computational cost using the M2 method, while maintain a good performance as 593 

guaranteed by its low RMSE in the areas not affected by severe attenuation. 594 

The performance of the proposed technique has been demonstrated in this paper for a single 595 

12-hour event. A comprehensive evaluation over a larger number of events would be necessary 596 
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to make the findings presented here more conclusive. Finally, the formulation of the inverse 597 

method calls for a sensitivity analysis using a known 3D reflectivity field (either synthetic or 598 

based on simulations –for example, obtained with a high-resolution NWP model-). One can 599 

simulate the observations from different radars and then apply the inverse method for 600 

verification [similarly to what is done by Chandrasekar and Lim (2008)]. The fact of knowing the 601 

initial reflectivity field would allow us to study the effect of the number of radars, or different 602 

perturbations of the simulations. 603 
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Figure 1. Illustration of radar locations and domain. Locations of La Miranda (LMI) radar, Creu 

del Vent (CDV) radar and Barcelona (BAR) radar are shown in a topographical map of NE Spain 

(near the city of Barcelona). Distances between radars are indicated. A square indicates the area 

covered by the 3D domain in which the composites are carried out. The dashed line indicated the 

extension of the domain needed to include the BAR radar. 

Figure 2. Example of reflectivity composite with the maximum value technique. Vertical cross 

section of the reflectivity field obtained by the nearest neighbor algorithm for LMI (a) and CDV 

(b) radar observations for the 17 September 2009 2006 UTC. Thin lines represent the path of the 

center of the radar beam for each radar. Same vertical cross section of the reflectivity composite 

with the maximum value technique (c). Paths of the beams of both radars are represented in the 

latter. White means no rain. Gray areas correspond to regions without radar observations (in 

altitudes below 1 km) or without retrieved values (in higher altitudes). In region labeled as A the 

field obtained by the maximum value technique is dominated by the CDV radar, while in region 

labeled as B LMI radar is dominant. 

Figure 3. CAPPIs (Constant Altitude Plan Position Indicator) and vertical cross sections of the 

3D reflectivity composite retrieved with the inverse method from radar observations measured at 

2006 UTC on 17 September 2009. The CAPPIs correspond to heights of 2 and 3 km [(a) and (b) 

respectively] and vertical cross sections (c,d) are indicated in the CAPPIs with straight lines, line 

P-P’ for x=17 km (c) and line Q-Q’ for y=38.50 km (f). The thin lines on the panels correspond 

to the path of the radar ray for each elevation. Gray areas correspond to regions without radar 

observations (in altitudes below 1 km) or without retrieved values (in higher altitudes). A and B 

indicate two intense convective cells (see the text for further detail). 

Figure 4. CAPPIs of the 3D reflectivity composite retrieved with the M1 (a) and the M2 

technique (b) from radar observations measured at 2006 UTC on 17 September 2009 with the 

LMI and CDV radars. Vertical cross sections at x = 17 km of the M1 and M2 mosaics are shown 

in (c) and (d) respectively. The thin lines on the panels correspond to the path of the radar ray for 

each elevation. Gray areas correspond to regions without radar observations (in altitudes below 1 

km) or without retrieved values (in higher altitudes). A and B indicate two intense convective 

cells. 

Figure 5. Reflectivity field of the 0.6º elevation observed with the LMI radar on 17 September 

2009 at 2006 UTC (a) and reflectivity fields corresponding to the simulation of the 0.6º elevation 

for the LMI radar over the fields obtained with the technique M1 (b), M2 (c) and the inverse 

method (d). LMI radar location is indicated with a star. White means no rain. Shaded areas in the 

Figure captions
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observation and gray areas in simulations are not included in the domain. Coordinate axis 

indicate Easting (x) and Northing (y) distance to the radar. Region C shows an attenuation 

corridor (a) that is quite better reproduced in (d) than in (b) or (c). 

Figure 6. Reflectivity field observed with the CDV radar at 0.6º elevation on 17 September 2009 

at 2006 UTC (a) and reflectivity fields corresponding to simulated observations at the same 

elevation over the composites obtained with the techniques M1 (b), M2 (c) and the inverse 

method (d). CDV radar location is indicated with a white star. Shaded areas in the observation 

and gray areas in the simulation are regions not included in the domain. Labels A and B indicate 

convective cells (see text for further detail). Label D shows underestimation due to the effect of 

the attenuation corridor in the LMI observation on the distance-weighted composite. 

Figure 7. Example of observations corrected for attenuation. (a) Reflectivity field corresponding 

to the 0.6º elevation of the LMI radar. (b) Reflectivity field corresponding to the 0.6º of the CDV 

radar. (c,d) PIA fields corresponding to the reflectivity fields (a) and (b) respectively. Radar 

locations are indicated with white stars. White means no rain. Gray areas are not included in the 

domain. Coordinate axis indicate Easting (x) and Northing (y) distance to the radar. 

Figure 8. CAPPIs and vertical cross sections of the 3D reflectivity composite retrieved with the 

inverse method from radar observations measured at 1430 UTC on 4 February 2010. The 

CAPPIs correspond to heights of 1.5 and 2 km [(a) and (b) respectively] and lines P-P’ and Q-Q’ 

indicate the vertical cross sections shown in (c) for x=20 km and (d) for y=50 km respectively. 

On the right of the vertical cross sections is the mean vertical profile of relectivity (VPR) of the 

corresponding vertical cross section, that is, for each height the mean reflectivity value of the 

cross section is represented. The thin lines on the panels correspond to the path of the center of 

the radar beam for each elevation. White means no rain. Gray areas correspond to regions 

without radar observations (in altitudes below 1 km) or without retrieved values (in higher 

altitudes). 

Figure 9. Reflectivity fields recorded with the LMI radar (a) and CDV radar (b) on 4 February 

2010 at 1430 UTC corresponding to elevations of 3º and 4º respectively. Reflectivity fields 

corresponding to simulations over the composite retrieved with the inverse method for the same 

radar and elevations are shown in (c) and (d). Location of radars is indicated with a star. White 

means no rain. Shaded areas in the observations and gray areas in the simulations are not 

included in the domain. 

Figure 10. CAPPIs (Constant Altitude Plan Position Indicator) and vertical cross sections of the 

3D reflectivity composite obtained with the inverse method using observations recorded with the 
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LMI and CDV radars the 2 November 2008 at 0330 UTC. The CAPPIs correspond to the 

heights of 2 and 3 km [(a) and (b) respectively] and the vertical cross sections are indicated in the 

CAPPIs with straight lines, line P-P’ for x = 17 km (c) and line Q-Q’ for y = 38 km (d). The thin 

lines represent the path of the radar beam for each elevation. The grey areas correspond to 

regions without radar observations (in altitudes below 1 km) o without retrieved values (in higher 

altitudes). A and B indicate two intense convective cells (see text for further detail). 

Figure 11. Reflectivity field of the 0.5º elevation observed with the BAR radar on 2 November 

2008 at 0330 UTC (a) and reflectivity fields corresponding to the simulation of the 0.5º elevation 

for the BAR radar over the fields obtained with the technique M2 (b) and the inverse method (d). 

BAR radar location is indicated with a star. White means no rain. Shaded areas in the observation 

and gray areas in simulations are not included in the domain. 

Figure 12. Bias, correlation and RMSE (top to bottom) between observations and simulations 

over composites along the evaluation period for each compositing technique (M2 black line, 

inverse method red line) and for each radar (from left to right: CDV, LMI, BAR). 

Figure 13. Top panels: Reflectivity distributions of the first elevation of the radar observations 

(black lines; from left to right: CDV, LMI, BAR) together with the reflectivity distribution of the 

corresponding simulations over the composites obtained with the M2 technique (blue lines) and 

with the inverse method (red lines). The used sample is the whole evaluation period (0000 UTC – 

1200 UTC 2 November 2008). Bottom panels: Ratios of the mean 1D Fourier spectra of the 

reflectivity fields (observation, simulation derived from M2 technique and simulation derived 

from the inverse method) respect the mean 1D Fourier spectra of the observations over the 

evaluation period (black, blue and red lines respectively). The fields corresponding to the first 

elevation of each radar (from left to right: CDV, LMI, BAR) are used. The ratio between the 

average variance of the fields and the average variance of the observed fields is also shown. 

Figure 14. Rain accumulation fields obtained with individual radars (first row) and three 

compositing techniques (second and third rows). Raingauge values are indicated in circles filled 

using the same color scale. 

Figure 15. Scatterplots of the 12h-rain accumulation values obtained with individual radars (first 

row) and three compositing techniques (second and third rows) against raingauge values. The 

thin line is the 1:1 line indicating the position of identical values in raingauges and composites. 
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Name La Miranda (LMI) Creu del Vent (CDV) Barcelona (BAR) 

Wavelenght  5.3 cm 5.3 cm 5.3 cm 
Pulse length 5 Ps 5 Ps 2 Ps 

Beam width (3-dB) 1.1º 1.1º 0.9º 
Azimuthal 
resolution 1º 1º 0.8º 

Radial resolution 1 km 1 km 1 km 
Maximum range 130 km 150 km 120 km 

Number of 
elevations 16 16 19 

Lowest elevation 0.6º 0.6º 0.5º 
Height 910 m 825 m 663 m 

Temporal 
resolution 6 min 6 min 10 min 

Table 1. Main characteristics of the three C-band radars used in this study. 

Table 1
Click here to download Table: table1.docx
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2006 UTC 17 September 2009  1430 UTC 4 February 2010 

 Correlation Bias 

[dB] 

RMSE 

[dB] 

 Correlation Bias 

[dB] 

RMSE 

[dB] 

 LMI Radar  LMI Radar 

M1 0.91 1.92 6.33 M1 0.94 0.94 2.76 

M2 0.95 0.31 4.45 M2 0.93 -0.96 3.22 

Inverse 
method 0.98 0.05 3.00 Inverse 

method 0.97 -0.11 1.91 

 CDV Radar  CDV Radar 

M1 0.95 0.14 4.31 M1 0.89 4.53 5.70 

M2 0.96 -2.11 4.57 M2 0.95 0.81 2.49 

Inverse 
method 0.98 -0.39 2.72 Inverse 

method 0.98 0.01 1.58 

 

Table 1. Scores of performance of different compositing techniques (M1, M2 and inverse 

method). Correlation, bias and root mean squared error (RMSE) between simulations and 

observations have been computed using all elevations. On the left the case of 17 September 2009 

at 2006 UTC is assessed and the right side correspond to the case of 1430 UTC 4 February 2010. 

Top rows show the statistics for the LMI radar and bottom rows for the CDV radar. 

 

Table 2
Click here to download Table: table2.docx
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2 November 2008 0330 UTC 

First elevation  All elevations 
 Correlation Bias 

[dB] 
RMSE 
[dB] 

 Correlatio
n 

Bias 
[dB] 

RMSE 
[dB] 

M2 0.94 -0.21 5.28 M2 0.93 0.10 4.61 
Inverse 
method 0.95 0.06 4.71 Inverse 

method 0.94 0.13 4.45 

Table 1. Scores of performance of the two compositing techniques (M2 and inverse method). 

Correlation, bias and root mean squared error (RMSE) between simulations and observations 

have been computed using only the first elevation (left-hand side) and all elevations (right-hand 

side) of the BAR radar. These values correspond to the case of 0330 UTC 2 November 2008. 

Table 3
Click here to download Table: table3.docx
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