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1 Introduction 

Quantitative Precipitation Nowcasting (QPN) is one of the main applications of radar observations. On one hand, one of 
the most used nowcasting algorithms is Lagrangian extrapolation. It shows skill in specifying the timing and location of 
precipitation over short time periods, but shows low skill when using past precipitation trends to predict changes in 
precipitation intensity. On the other hand, Numerical Weather Prediction (NWP) models have roof skill at predicting the 
precise timing and location of precipitation, although they provide useful information about the intensity trends. It is 
therefore to investigate whether this additional information provided by NWP could be used to improve QPN. 

SBMcast (Berenguer et al., 2011) is an ensemble nowcasting algorithm based on Lagrangian extrapolation of recent radar 
observations. It generates a set of future rainfall scenarios (ensemble members) compatible with observations and preserving 
the spatial and temporal structure of the rainfall field according to the String of Beads model (Pegram and Clothier, 2001). 
This study shows the first results obtained with a methodology to constrain the spread of SBMcast ensembles with the 
additional information provided by NWP. 

2 Data used 

Here we use observations collected with the Creu del Vent (CDV) C-band radar of the Meteorological Service of 
Catalonia, SMC, (Figure 1). The raw data have been processed to eliminate the ground clutter and mitigate the effect of 
beam blockage, thereby only considering rainfall echoes. Rainfall calibration is monitored by comparison with the 
observations of the raingauge network available in Catalonia (Spain). The fields used here are the surface reflectivity 
estimates with a spatial resolution of 1 km. 

The NWP forecasts used in this study are those produced with the High Resolution Limited Area Mode (HIRLAM). This 
model generates 48-hour ahead hourly rainfall field forecasts, with a grid resolution of 8km. 

In this study, two case studies have been analyzed to apply the proposed methodology. The first one corresponds to a 
stratiform situation occurred on 15 May 2013 from 10:00 to 21:00 UTC. The second case corresponds to a 
convective/stratiform situation on 07 Septembre 2013 at 09:00 to 15:00 UTC. This event is composed of two distinct parts, 
the first is clearly convective, and it evolved to a stratiform rainfall event towards the end of the period. 

 
Figure 1: Radar locations of Creu del Vent (CDV). The shaded area (160x160 Km2) indicates the analysis domain centered at the radar 

site. 
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3 The ensemble nowcasting technique SBMcast 

The main objective of SBMcast (Berenguer et al., 2011) is the characterization of the uncertainty associated with the 
errors that affect the deterministic forecasts obtained by Lagrangian extrapolation. The main sources of uncertainty that 
affect these forecasts are the following (Germann et al, 2006 and Bowler et al., 2006): 

1. errors due to the growth and dissipation of the precipitation intensity that are not explained by the advection of 
the precipitation field, and  

2. errors induced by the motion field used when performing the extrapolation. On one hand, it uses a single motion 
field throughout the whole forecast when is known that the motion field changes in time. On the other hand, the 
estimation of these fields are not perfect.  

The relative importance of these two uncertainty sources depends mainly on the type of event. In cases of stratiform 
precipitation (where its propagation is systematic and persistent) the growth and decay is well characterized by the rainfall 
field’s advection. Therefore, in those cases the motion field’s errors are the ones affecting most. However, in convective 
cases the opposite is true. But according to Germann et al.. (2006) the overall error is the growth and decay. For this reason, 
SBMcast is mainly focused on to characterize this predominant source of uncertainty.  

SBMcast is based on the assumptions of the statistical model String of Beads Model (Pegram and Clothier, 2001) in the 
terms of the rainfall field’s temporal and spatial structure. This technique is extended by using a probabilistic point of view 
through the use of ensembles with the final goal of preserving the characteristics of the last observation. 

To generate a forecast with SBMcast the following steps are performed: 

1. Computation of the two global variables, Image Mean Flux (IMF), i.e. the average rainfall rate in mm/h, and Wet 
Area Ratio (WAR), i.e. the proportion of the domain where a rainfall rate exceeds a threshold of 1 mm/h. 
Clothier and Pegram (2001) showed how the IMF and the WAR are directly related to the precipitation’s mean 
(µ) and standard deviation (σ), respectively, of a truncated Gaussian distribution.  

2. Simulation in time of IMF and WAR using an order 5 autoregressive model AR(5). Thus, the characterization of 
the growth and decay related with the uncertainty is ensured through the relation of IMF and WAR with the 
precipitation’s µ(t) and σ(t). 

3. Modeling the evolution of the rainfall fields with a second order autoregressive model: 

 

€ 

Xt
*(t + n⋅ Δt) = φ1(t)⋅ Xt

*(t + [n −1]⋅ Δt) + φ2(t)⋅ Xt
*(t + [n − 2]⋅ Δt) + γ (t + n⋅ Δt)  ( 3.1 ) 

where 

€ 

X(t + n⋅ Δt)  is the standardized rainfall field, 

€ 

φ1(t)  and 

€ 

φ2(t)  are the Yule-Walker coefficients and 

€ 

γ(t + n⋅ Δt)  is the noise term with 

€ 

E[γ(t + n⋅ Δt)] = 0 . The latter is correlated in space according to a power –law 
spectrum with exponent . The variance of 

€ 

γ(t + n⋅ Δt)  is: 

 

€ 

Var[γ(t + nΔt)] =
[1+ϕ2(t)][1+ϕ1(t) −ϕ2(t)][1−ϕ1(t) −ϕ2(t)]

[1−ϕ2(t)]
 ( 3.2 ) 

4. Imposing in Lagrangian coordinates the values of 

€ 

IMF(t + n⋅ Δt)  and 

€ 

WAR(t + n⋅ Δt) (described in point 1) to 
the fields obtained in point 2 (see further detail in Pegram and Clothier, 2001). 

4 Methodology 

The goal of this work is to incorporate the additional information about the temporal evolution of the precipitation 
provided by the NWP model into the forecast algorithm SBMcast. This new source of information has been used to improve 
the forecast of the global variables IMF and WAR. For this purpose, the Ensemble Kalman Filter algorithm has been used, 
which allows the combination of the variables simulated with the NWP model, with those obtained by the radar 
observations. 

4.1 Ensemble Kalman Filter 

The Kalman filter provides a rigorous solution to the estimation of the k-th state xk through noisy measurements of y1….yk 
in the case of linear systems. The Ensemble Kalman Filter (EnKf) was proposed by Evensen (1994) as an alternative to the 
solving of non-linear systems traditionally solved with the extended Kalman Filter. EnKF is a sequential data assimilation 
method, using Monte Carlo or ensemble integrations (Burgers et al.,1998). In weather forecasting this method is used in the 
data assimilation system, where the model and observations operators are usually non-linear, the initial states are highly 
uncertain, and there are a large number of measurement.  
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The system can be presented with a discrete-time nonlinear system with dynamics, 

 

€ 

x f
k

= f (x f
k−1
,uk−1) + wk−1 ( 4.1 ) 

and measurements, 

 

€ 

yk = h(xk ) + vk  ( 4.2 ) 

where 

€ 

f (x f
k−1
,uk−1)  is the state transition model, 

€ 

h(xk )  is the observation model and 

€ 

vk ≈ N(0,Rk )  and 

€ 

wk ≈ N(0,Qk ) are stationary zero-mean white noise processes with covariance matrix Rk and Qk, respectively. The 
function

€ 

f (x f
k−1
,uk−1)  explains how the state xk evolves between successive time steps and 

€ 

wk  is added to describe the 

model uncertainties. The observation model 

€ 

h(xk )defines how the state xk is related with the measurement yk. The random 
vector 

€ 

vk  represents the measurement noise, which relates to the uncertainty of the measurement yk.. 

The next step consists basically in representing the statistical error in the forecast step. It is assumed that at time step k, it 
has the ensemble of q forecasts values, 

€ 

xk
f = (xk

f1 ,.....,xk
fq )  with the mean 

€ 

xk
f . Now is possible to obtain the ensemble error 

matrix, in the forecast step (

€ 

Ek
f ) and the measurements (

€ 

Eyk
f ) around the ensemble mean because the state xk is unknown. 

Thus is considered the forecast ensemble mean as the best forecast estimate of the state xk.  

With this, we can obtain the covariance matrices of the error associated with the measurements and the forecast  

 

€ 

Pk
f =

1
q −1

Ek
f (Ek

f )T
,

€ 

Pxyk
f =

1
q −1

Ek
f (Eyk

f )T
,

€ 

Pyyk
f =

1
q −1

Eyk
f (Eyk

f )T
 

( 4.3 ) 

The second step is the analysis steps. To obtain the final state the next equation is applied 

 

€ 

xk
ai = xk

fi +Kk (yk
i − h(xk

fi ))  ( 4.4 ) 

where 

€ 

Kk is the Kalman gain which provides the weight given to the observation with respect to the forecast step. It is 
defined by 

€ 

Kk = Pxyk
f (Pyyk

f )−1  and 

€ 

yk
i  are the perturbed observations. Once we obtain 

€ 

xk
ai , 4.1 is applied iteratively. 

4.2 Application of the ensemble Kaman filter algorithm 

The Ensemble Kalman Filter formalism described above has been applied with the goal of improving the forecasts of the 
SBMcast global variables IMF and WAR. The goal is to incorporate the rainfall field information that NWP models can 
provide. Such models are interesting, because they are capable of generating forecasts for periods of time much longer than 
those obtained through the extrapolation of the radar rainfall fields.  

In this work the state variable xk, which we attempt to forecast is defined as the bivariate variable 

 

€ 

xk =
IMFR

*

WARR
*

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ( 4.5 ) 

where IMFR
* y el WARR

* are the two normalized global variables obtained from radar observations (R) of the rainfall field.  

The noisy measurements yk are defined as: 

 

€ 

yk =
IMFM

*

WARM
*

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ( 4.6 ) 

where the IMFM
* and WARM

* have been obtained from forecasts obtained from the NWP model (M). The covariance 
matrices Rk and Qk and the transition model 

€ 

f (x f
k−1
,uk−1)  were obtained through the long-term analysis of the events 

throughout the year 2013 and the first part of 2014. Since we work with normalized variables, the observation model 
corresponds to the identity matrix: 

 

€ 

h(xk ) =
1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (xk )  ( 4.7 ) 
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5 Results 

The quality of the forecasts realized by SBMcast largely depends on its capacity to correctly estimate the global variables 
IMF and WAR. Figure 2 shows an example of the evolution of the simulated and observed WAR, for the event of 15 May 
2013. In Figures 2a and 2b the comparison between the observations (black line) and the probabilistic forecasts using the 
AR(5) model and the EnKf, respectively, are displayed. For this purpose we only show the values between the 10%-90% 
percentiles corresponding to the 30, 60, and 90 minute-ahead forecasts. In both cases the confidence interval covers the 
observed WAR values most of the time. However, the spread obtained with the AR(5) model is much larger than in the EnKf 
case. 

In Figures 2c and 2d the deterministic component of both previously mentioned forecasts is shown. It can be seen that 
with the AR(5) model underestimate the observed WAR. It is most visible for the 90 minute ahead forecast. In the case of 
the forecast using EnKf it can be seen that mainly in the central part of the episode the deterministic forecast is almost 
perfect independently of the lead time of the forecast. Towards the end of the episode, the NWP starts being more imprecise. 
For this reasons the forecasts are more similar to the ones provided by the AR(5) mode. 

Figure 3 shows an example of the rainfall field forecasted for lead times up to 1h with the different SBMcast versions. 
These versions correspond to different ways to estimate the IMF and WAR. In SBMcast OBS and SBMcast NWP we have 
directly imposed the observations and the simulation of the EnKf, respectively. The right column displays the results of the 
deterministic algorithm Lagrangian Persistence. In the center columns a member of the ensemble with the different 
configurations of the SBMcast is depicted, this fact can be compared with the observations in the left column. It can be seen 
that while with the Lagrangian persistence the intensity remains constant along the forecasts, the members of the 
probabilistic nowcasting evolve in time. 

 

 
Figure 2: Evolution of the WAR during the event of 15 May 2013. In all panels, the solid black line corresponds to the values computed 

with the observations. The shaded areas correspond to the ensemble of simulated values (50 members) between the 10% and 90% 
percentiles for the 30,60,90 minutes ahead predictions. a) Results obtained with the AR(5) model originally used in SBMcast, b) results 
obtained with the EnKf, c) deterministic component of the WAR forecasted with an AR(5) model, and d) Deterministic component of the 

WAR forecasted with the EnKf. 
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Figure 3:Evolution of the precipitation field as forecasted with the tested nowcasting techniques for the event of 15/05/2013 at 15:00 UTC. 

From left to right: observed reflectivity fields, one member of the different configurations of SBMcast, deterministic forecast by 
Lagrangian Persistence. The lead times are shown in white on each panel. 
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The performance of the probabilistic forecast quality has been assessed by means of two probabilistic skill scores widely 
used in the literature. They are defined as a function of the lead time. 

(1) The Conditional Square Root of Ranked probability (CSRR) is defined as: 

 

  

€ 

CSRR(τ ) =
1

Ω
t0+τ
( max −  min )

[P(t0 +τ,x,) − Pʹ′(t0 +τ,x,)]2ddx
 min

 max

∫
Ω

∫
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

2

 ( 5.1 ) 

where 

€ 

Ω
t0+τ

is the size of the observed precipitation domain,   

€ 

P(t0 +τ,x,)  is the probabilistic forecast and 

  

€ 

Pʹ′(t0 +τ,x,)  is the observation for each threshold   

€ 

 . For perfect forecast the CSRR is zero. 

(2) Brier Score is defined as: 

 

€ 

Brier(τ ) =
1
n

[ f t (x,y,t +τ) − p(x,y, t +τ )]
x,y,t
∑

2
 ( 5.2 ) 

where 

€ 

p(x,y,t +τ)  is the observed probability and

€ 

ft (x,y, t +τ )  is the forecast probability at time t for a 
location (x,y) and with a lead time

€ 

τ . It has been obtained for a threshold of 1 mm/h. For perfect forecast the 

Brier score is 0. 

With the aim of performing a more exhaustive analysis of the results, the previous results are compared with two other 
nowcasting algorithms: (i) the deterministic version of Lagrangian extrapolation, and (ii) the local Lagrangian probabilistic 
algorithm; it generates forecasts for the probability distribution of a given point in the field, examining the spatial variability 
of the precipitation field, in Lagrangian coordinates. Germann and Zawadzki (2004) compared four different probabilistic 
methods and found that this method to have the best performance.  

In the comparison of Figure 4, we have also included a modified version of SBMcast (SBMcast-OBS). In this, we have 
directly imposed the observations of IMF and WAR a posteriori. This allows us to quantify the impact of using the best 
possible forecasts of the global variables IMF and WAR, Therefore, it is possible to detect the best possible result by only 
modifying this part of the algorithm.  

Figures 4 and 5 show the skill scores for the two considered events. We can observe that, for the 40-50 minute ahead and 
longer-term forecasts, the inclusion of the additional information of the NWP model to SBMcast (SBMcast-NWP) improves 
the results compared with the original SMBcast configuration. In the case stratiform rainfall (15 May 2013) it can be seen 
that the Local Lagrangian behaves similarly as SBMcast-OBS for all rainfall thresholds (CSRR). However, in terms of the 
Brier Score obtained for the same event, the Local Lagrangian clearly performs better. In the event of the 07 September 
2013, partially convective, it can be seen that for lead times larger than 60 minutes SBMcast-OBS obtains a better 
performance than the Local Lagrangian. Looking closely at the CSRR and Brier score figures, it can be seen that the 
SBMcast-NWP curve falls between the original SBMcast and SBMcast-OBS curves for both cases. 

 
Figure 4: Average CSRR (left) and Brier score (right) for the event of 15 May 2013 for the different nowcasting algorithms. 
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Figure 5: Average CSRR (left) and Brier score (right) for the event of 7 September 2013 for the different nowcasting algorithms. 

 

6 Conclusions 

The contribution of this work lies in the improvement of the SBMcast algorithm by adapting it to the inclusion of external 
data with the aim of improving the state of the art forecasts. For this purpose we have used rainfall fields generated with the 
NWP model HIRLAM. The proposed algorithm to integrate these data is the Ensemble Kalman Filter.  

The results show that the integration of the additional information to simulate the global variables IMF and WAR helps 
improving the rainfall field forecasts. Only in the shorter term forecasts the proposed method (SBMcast-NWP) behaves 
similarly to the original SBMcast; while for lead times beyond 30 minutes it clearly shows a better performance. The small 
difference in performance for shorter term forecasts is due to the fact that the additional NWP information does not provide a 
significant contribution with respect to the past observations. At around 30 minute ahead forecast the additional information 
becomes valuable. In the case of the simulations obtained with the Ensemble Kalman Filter the forecasts have a smaller 
spread compared with the observations obtained with the AR(5) for the considered events. 

Moreover, as the CSRR figures show, the exact forecast of the IMF and the WAR allows for an improvement in the 
forecasts, leading to results comparable with those of the Local Lagrangian, an outperforming this method in the case of 
convective events. The performance of the deterministic forecasts in both events is worse than the performance of the 
probabilistic algorithms. This difference is more marked in the convective events where the rainfall growth and decay is the 
major source of error. 

Finally, it is worth mentioning that, in general, the best results are obtained with the Local Lagrangan algorithm. This 
allows benefits from larger sampling sizes to generate the probabilistic nowcasts as the lead time increases. The result is 
smoother probabilistic nowcasts that minimize the errors in the pdfs. In comparison, the main advantage of SBMcast 
nowcasts is that they respect the space and time structure of the precipitation fields.  
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