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1. INTRODUCTION 
 
      Distributed parameter modeling is required to accurately consider space variations, which are 
important regarding the performance and durability of the Proton Exchange Membrane Fuel Cells 
(PEMFC) [1-3]. However, the number of differential and algebraic equations (DAE) obtained from 
the discretization of a set of partial differential equations (PDE) is very large, and this not only slows 
down the numerical simulations, but also complicates the design of online model-based controllers.  
      The inclusion of complex DAE models within model-based control schemes requires a previous 
simplification. A method to simplify complex models consists of reducing the order while preserving 
the relationship between certain input and output variables, determined from the control objectives. 
These Model Order Reduction (MOR) techniques have been extended to DAE systems [4]. 
      This work focuses on obtaining an order reduced model, from a PEMFC anode gas channel PDE 
model, which incorporates the effects of distributed parameters that are relevant for the proper 
functioning and performance of PEMFC. The original model is an in-house MATLAB® code, 
flexible enough to manipulate the underlying model equations and apply MOR techniques. The 
obtained order-reduced model is suitable to perform numerical simulations and design efficient 
controllers for the original nonlinear PDE model.	
  

 
2. DESCRIPTION OF THE SYSTEM 

 
The case study is the anode gas channel of a single PEM fuel cell (Fig. 1). The length of the channel 
is 0.4 m. A 10-segment grid has been considered to study spatial variations of hydrogen and water 
concentrations, flow velocity, channel pressure and temperature. The inputs to the system are 
hydrogen and water inlet flows, and the selected outputs for future control purposes are 
concentrations of each species at the end of the channel. All variables are indicated in Fig. 1. 
 
 

                
Figure 1: Single PEMFC anode gas channel 

 
 
3. ANODE GAS CHANNEL MODEL EQUATIONS 
 
In the following equations, k denotes segment number (k = 1…MZ, MZ = 10 in this case) and i refers 
to gas components (i = H2, H2O). The total number of states is 30, which is the number of 
differential equations, and there are 30 algebraic variables and corresponding relations. The 
complete discretization process was presented in [5], which led to the following discretized 
equations. The general mass conservation equation for component i and segment k is: 
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where !z  is the segment size, !  is the channel height and !ni,k is the flow rate of component i from 
segment k to the Membrane Electrode Assembly (MEA). The !ni,k values are set from a current 
density profile assumed. The boundary condition remains an algebraic equation as follows      
 
                                                                 v0 t( )ci,0 t( ) = !ni,in                                                                  (2)  
 
      This algebraic equation is used to calculate concentrations in the first segment of the gas channel. 
Calculation of flow velocity, using forward differencing is: 
 

                                                                   vk = !K
pk+1 ! pk
"z

                                                              (3) 

 
considering a boundary condition for the end segment 
 

                                                                vMZ = !K
pamb ! pMZ

"z
                                                            (4) 

 
where pamb is the ambient pressure. The ideal gas law gives the pressure in the gas channel 
 
                                                                    pk = RTk ci,k

i
!                                                                  (5) 

 
Accumulation of internal energy!u  in the gas channel is 
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where h is gas enthalpy,!  is the heat conductivity coefficient and !1 is the heat transfer coefficient. 
      The corresponding boundary equations are TMZ+1 = T0 = T

amb = 298.15 K . Temperature in the gas 
channel is given by the thermodynamic relation 
 
                                                               !u( )k + pk = ci,khi,k Tk( )

i
!                                                      (7) 

 
4. MODEL ORDER REDUCTION 
 
The method used to reduce the order of the case study nonlinear DAE model requires linearizing the 
original DAE model around an equilibrium point of interest, then computing the corresponding 
controllability and observability functions. The final step is finding an appropriate model realization 
that reveals which states of the original system can be truncated without considerably affecting the 
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original input-output behavior [6]. Consider a nonlinear DAE model, as the one presented in the 
previous section 

                                                                   

F1 !x1, x1, x2,u( ) = 0
F2 x1, x2,u( ) = 0

y! h x1, x2,u( ) = 0
                                                             (8) 

 
where x1 ∈ d  is the state vector, x2 ∈ a are algebraic variables, u ∈ r are the control inputs, and 
y ∈ q are the outputs. Assuming that this DAE model has an underlying ODE description, 
 

                                                                     
!x1 = L x1, x2,u( )
x2 =R x1,u( )

                                                             (9) 

it follows that 

                                                                 
!x1 = L x1,R x1,u( ),u( )
y = h(x1,R x1,u( ),u)

                                                       (10) 

       
4.1 COMPUTATION OF THE CONTROLLABILITY FUNCTION 
 
The controllability function Lc(x1,0) measures the minimal amount of energy in the control signal u, 
required to reach a specific state x. It is defined as the solution to the optimal control problem [4]: 
 

Lc x1,0( ) =min
u .( )

Jc  

                                                   s.t. 

                                                                

!x1 = L x1, x2,u( )
x2 = R x1,u( )

x1 0( ) = x1,0 !"x

0 = lim
t#$%

x1(t)

                                                             (11) 

 
where Jc is a measure of the control signal energy 
 

                                                                   Jc =
1
2

u t( )T u t( )dt
!"

0

#                                                       (12) 

 
      Due to the original model complexity, a local solution of the controllability function is 
computed, valid in a neighborhood of a specific equilibrium point. The result expressed as a 
convergent power series expansion up to some desired order is 
 

                                                             Lc x1( ) = 1
2
x1
TGcx1 + Lch x1( )                                                   (13) 

 
where Gc is a positive definite matrix, which is the inverse of the controllability Gramian, and Lch(x1) 
contains terms of order three or higher. In this case study, Lch x1( )  = 0. Therefore, the controllability 
function is approximated by a quadratic form that corresponds to a linear approximation of the 
original nonlinear model around a desired equilibrium point (section 4.3). The Gc matrix is derived 
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from solving the Lyapunov equation 
                                                              GcA+ A

TGc +GcBB
TGc = 0                                                  (14) 

 
where A and B are the resulting state and input matrices of the previously linearized DAE system. 
 
4.2 COMPUTATION OF THE OBSERVABILITY FUNCTION 
 
The observability function measures the energy in the output signal for certain initial state 
conditions. It is defined as 

                                                           

Lo x1 0( )( ) = 1
2

y t( )T
0

!

" y t( )dt

x1 0( ) = x1,0 #$x

u t( ) = 0,    0 % t <!

                                                 (15) 

 
      Considering a DAE model in the form of (8), the goal is to find Lo(x1) as a convergent power 
series on some neighborhood of x1 = 0, up to a desired order 
 

                                                            Lo x1( ) = 1
2
x1
TGox1 + Loh x1( )                                                    (16) 

 
where Go is the observability Gramian (positive definite matrix) computed by solving the following 
Lyapunov equation 
 
                                                               GoA+ A

TGo +C
TC = 0                                                         (17) 

 
and A and C are the resulting state and output matrices of the linearized DAE system. The 
observability function is approximated by a quadratic form as well, which corresponds to a linear 
approximation of the original nonlinear model. 
 
4.3 COMPUTATION OF AN APPROPRIATE COORDINATE CHANGE 
 
Once the controllability and observability functions are computed up to order two in this case study 
 

                                                                  Lc x1( ) = 1
2
x1
TGcx1                                                             (18) 

                                                                  Lo x1( ) = 1
2
x1
TGox1                                                             (19) 

 
a linear change of coordinates is used to simultaneously diagonalize Gc

!1 and Go as 
 
                                                        ! =Gc

"1 =Go = diag !1,! 2,…,! n( ) ,                                           (20) 
 
where !1 !! 2 !…!! n > 0  [4]. These ! i  values (i = 1,…,n) are denoted Hankel singular values 
and !1  is the Hankel norm of the system. A representation where the two Gramians are equal and 
diagonal is called balanced. A small ! i  means the amount of control energy required to reach the 
state z = 0,…, 0, zi, 0,…, 0( )  is large, while the output energy generated by the same state is small ( z  
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being the new set of states). Computing this balanced realization requires performing Cholesky 
factorizations of the Gramians: 
 
                                                             Gc = XX

T ,       Go =YY
T ,                                                       (21) 

 
X > 0 and Y > 0. Then, the singular value decomposition (SVD) of YTX is computed 
 
                                                                     Y TX =U!VT                                                                 (22) 
 
where U and V are orthogonal. Finally 
 
                                                              ! = diag !1,! 2,…,! n( )                                                         (23) 
 
The balancing transformation is given by 
 
                                                     T = XV!"1/2 ,  with  T !1 = "!1/2UTY T                                             (24)  
 
The balanced realization is given by the linear system 
 
                                                        !A = T !1AT,      !B = T !1B,     !C =CT                                             (25) 
and 
                                                                         ! = !Gc

"1 = !Go                                                              (26) 
 
4.4 TRUNCATION 
 
The reduced model is obtained finding a major gap between two Hankel singular values, i.e., if 
! k >>! k+1 for some k. The last zk+1 to zn states of the balanced realization are left out without 
considerably affecting the input-output behavior, compared to the original system [4]. Recalling the 
original DAE model of (10), the balanced realization can be expressed as 
 

                                                                     
!z = L̂ za, zb,u( )
y = ĥ za, zb,u( )

                                                               (27) 

 
where z = za, zb( )  is the new set of states divided into two subsets determined by the Hankel singular 
values. The reduced order model would be 
 

                                                                     
!za = L̂ za, 0,u( )
y = h za, 0,u( )

                                                              (28) 

 
5. SIMULATION RESULTS 
 
In order to test the reduced-model behavior, step and sinusoidal input-output responses from the 
original model, linearized model (full order) and reduced model were simulated and compared. Fig. 
2 (a) shows the response of output 1 (hydrogen concentration at the end of the channel) to unitary 
step changes (both inputs) at time 1. Fig. 2 (b) shows the response of output 2 (water concentration 
at the end of the channel) to unitary step changes (both inputs) at time 1. Fig. 2 (a) shows the 
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response of both outputs to a sinusoidal input type at the hydrogen inlet flow. Fig. 2 (d) is the plot of 
Hankel singular values, which is important in order to decide how many states will be left out to 
reduce the order of the original model. This figure shows that approximately 5 states out of 30 are 
necessary. 
 

 
                                               (a)                                                                                           (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                   
                                                                  (c)                                                                                       (d) 

 
Figure 2: (a) Step change at time t = 1s (Hydrogen Output)  (b) Step change at time t = 1s (Water Output) (c) Sinusoidal input (both 

outputs) (d) Hankel Singular Values 
 
 
6. CONCLUSIONS AND ONGOING RESEARCH 
 
Promising results have been found by applying an order reduction technique to a complex distributed 
parameter model of a PEM Fuel Cell Anode Gas Channel. The methodology consists of finding the 
controllability and observability functions of the original nonlinear model, computing a change of 
coordinates to obtain a balanced realization that reveals the important states, and truncating less 
important states to approximate the original model. For the analyzed case study, a quadratic form of 
the controllability and observability functions has been used. Results have shown that reducing the 
order of the distributed parameter model from 30 states down to 5 states gives a very good 
approximation. 
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      An interesting next step is to study the range of operating conditions (around the equilibrium) for 
which the reduced model is valid. In this moment, this model reduction technique is being applied to 
reduce an entire single PEMFC distributed parameter 1+1D model of approximately 100 states. The 
goal is to obtain an order-reduced model appropriate to design model-based controllers for PEM 
Fuel Cells. 
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