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Abstract: The forward search (FS) is a general method of robust data fitting that moves smoothly
from very robust to maximum likelihood estimation. The regression procedures are included in
the MATLAB toolbox FSDA. The work on a SAS version of the FS originates from the need for the
analysis of large datasets expressed by law enforcement services operating in the European Union
that use our SAS software for detecting data anomalies that may point to fraudulent customs returns.
Specific to our SAS implementation, the fsdaSAS package, we describe the approximation used to
provide fast analyses of large datasets using an FS which progresses through the inclusion of batches
of observations, rather than progressing one observation at a time. We do, however, test for outliers
one observation at a time. We demonstrate that our SAS implementation becomes appreciably faster
than the MATLAB version as the sample size increases and is also able to analyse larger datasets.
The series of fits provided by the FS leads to the adaptive data-dependent choice of maximally
efficient robust estimates. This also allows the monitoring of residuals and parameter estimates for
fits of differing robustness levels. We mention that our fsdaSAS also applies the idea of monitoring
to several robust estimators for regression for a range of values of breakdown point or nominal
efficiency, leading to adaptive values for these parameters. We have also provided a variety of plots
linked through brushing. Further programmed analyses include the robust transformations of the
response in regression. Our package also provides the SAS community with methods of monitoring
robust estimators for multivariate data, including multivariate data transformations.

Keywords: approximate analysis; big data; linked plots; monitoring; robust regression

1. Introduction

Data frequently contain outlying observations, which need to be recognised and
perhaps modelled. In regression, recognition can be made difficult when the presence of
several outliers leads to “masking” in which the outliers are not evident from a least squares
fit. Robust methods are therefore necessary. This paper is concerned with the robust
regression modelling of large datasets—our major example contains 44,140 univariate
observations and five explanatory variables. We use the forward search (FS), which
provides a general method of robust data fitting that moves smoothly from very robust
to maximum likelihood estimation. Many robust procedures using the FS are included in
the MATLAB toolbox FSDA [1,2]. The core of the method is a series of fits to the data for
subsets of m observations, with m, incremented in steps of one, going from very small to
being equal to n, the total number of observations. As we show in Section 6, the procedure
becomes appreciably slower as n increases. The performance of the MATLAB version is
further slowed by the language’s handling of large files.

In this paper, we present two enhancements of FS regression for large datasets:
1. The Batch Forward Search. Instead of incrementing the subset used in fitting by

one observation we move from a subset of size m to one of size m + k. In our example, the
batch size k = 10. We use an approximation to test for outliers one observation at a time;
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2. A SAS version of the program, fsdaSAS (https://github.com/UniprJRC/FSDAsas
accessed on 12 March 2021), which takes advantage of the file handling capabilities of SAS
to increase the size of datasets that can be analysed and to decrease computation time for
large problems.

fsdaSAS, including the option of batches, is one result of a much larger project to
provide a SAS version of the FS, which was undertaken in the framework of a European
Union program supporting the Customs Union and Anti-Fraud policies. It originates from
the need for the analysis of large datasets expressed by law enforcement services operating
in the European Union, in particular the EU anti-fraud office. Details of the resulting SAS
version of the FS are in the lengthy technical report by Torti et al. [3], which also contains
technical documentation on the use of the software. Section 7 of the report emphasises
more complex monitoring plots which were not previously available in SAS.

The purposes of the present paper are to introduce a set of SAS programs for robust
data analysis, to provide a description of the batch forward search and to illustrate its
properties on a previously unanalysed large data example.

The next section provides the basic algebra for the FS, which leads to the calculation
of the minimum deletion residuals for the data ordered by closeness to the fitted model.
Section 3 describes the properties of the SAS language that make it suitable for handling
large datasets and Section 4 illustrates the use of our SAS program FSR.sx in the robust
analysis of data on 509 customers at a supermarket in Northern Italy. The batch FS
procedure is introduced in Section 5, which describes the approximations used for fast
analyses of large datasets. Timing comparisons are in Section 6; Figure 8 shows the
considerable advantage of using SAS instead of MATLAB functions for analysing large
datasets. The analysis of a large dataset is in Section 7.

The paper concludes with a discussion of more general topics in monitoring robust
regression which relates to our SAS routines. The FS for regression, moving through
the data and providing a set of fits to increasing numbers of observations, monitors the
changes in parameter estimates and residuals due to the introduction of observations into
the subset of observations used for estimation. We extended monitoring procedures to
several other methods for robust regression. Section 8.1 categorises three methods of robust
regression. We provided methods of monitoring hard trimming estimators (LMS and LTS)
and soft trimming or downweighting estimators (S and MM). Our SAS programs are listed
in Section 8.3. In addition to robust regression, these include routines for robust data
transformation, multivariate analysis and model choice.

There are three appendices. The first two provide the algebra of the distributional
results for the simultaneous tests of outliers over the search. The third complements our
paper with a software survey for robust statistical analyses with our fsdaSAS package.

2. Algebra for the Forward Search

The FS by its nature provides a series of decreasingly robust fits which we monitor
for outliers in order to determine how to increment the subset of observations used in the
fitting.

Examples and a discussion of monitoring using the MATLAB version of FSDA can be
found in Riani et al. [4] and in Appendix C.

The regression model is y = Xβ + ε, where y is the n× 1 vector of responses, X is
an n × p full-rank matrix of known constants (with ith row x>i ), and β is a vector of p
unknown parameters. The independent errors ε are normally distributed with mean 0 and
variance σ2.

The least squares estimator of β is β̂. Then, the vector of n least squares residuals
is e = y− ŷ = y− Xβ̂ = (I − H)y, where H = X(X>X)−1X> is the "hat" matrix, with
diagonal elements hi and off-diagonal elements hij. The residual mean square estimator of
σ2 is s2 = e>e/(n− p) = ∑n

i=1 e2
i /(n− p).

The FS fits subsets of observations of size m to the data, with m0 ≤ m ≤ n. Let S∗(m)
be the subset of size m found by the FS, for which the matrix of regressors is X(m). Least

https://github.com/UniprJRC/FSDAsas
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squares on this subset of observations yields parameter estimates β̂(m) and s2(m), the
mean square estimate of σ2 on m− p degrees of freedom. Residuals can be calculated for
all observations including those not in S∗(m). The n resulting least squares residuals are
ei(m) = yi − x>i β̂(m). The search moves forward with the augmented subset S∗(m + 1)
consisting of the observations with the m + 1 smallest absolute values of ei(m). In the batch
algorithm of Section 5, which is a main topic of this paper, we explore the properties of a
faster algorithm in which we move forward by including k > 1 observations.

To start, we can take m0 as small as p + 1 and search over subsets of m0 observations
to find the subset that yields the LMS estimate of β. Rules for determining the value of
m0 are discussed in Section 4. However, this initial estimator is not important, provided
masking is broken. Our computational experience for regression is that randomly selected
starting subsets also yield indistinguishable results over the last one third of the search,
unless there is a large number of structured outliers.

To test for outliers, the deletion residual is calculated for the n−m observations not in
S∗(m). These residuals, which form the maximum likelihood tests for the outlyingness of
individual observations, are:

ri(m) =
yi − x>i β̂(m)√

s2(m){1 + hi(m)}
=

ei(m)√
s2(m){1 + hi(m)}

, (1)

where the leverage hi(m) = x>i {X(m)>X(m)}−1xi. Let the observation nearest to those
forming S∗(m) be imin where:

imin = arg min
i/∈S∗(m)

|ri(m)|.

To test whether observation imin is an outlier, we use the absolute value of the mini-
mum deletion residual:

rmin(m) =
eimin(m)√

s2(m){1 + himin(m)}
, (2)

as a pointwise test statistic. If the absolute value of (2) is too large, the observation imin is
considered a potential outlier, as well as are all other observations not in S∗(m).

The test statistic (2) is the (m + 1)st ordered value of the absolute deletion residuals.
We can therefore use distributional results to obtain envelopes for our plots. The argument
parallels that of Riani et al. [5] where envelopes were required for the Mahalanobis distances
arising in applying the FS to multivariate data. The details are in Appendix A. We, however,
require a samplewise probability for the false detection of outliers, that is over all values of
m in the search which are monitored for outliers. The algorithm in Appendix A is designed
to have a samplewise size of 1%.

We need to base the detection of outliers on envelopes from a sample that is small
enough to be free of outliers. To use the envelopes in the FS for outlier detection, we
accordingly propose a two-stage process. In the first stage, we run a search on the data,
monitoring the bounds for all n observations until we obtain a “signal” indicating that
observation m†, and therefore succeeding observations, may be outliers, because the value
of the statistic lies beyond our simultaneous threshold. In the second part, we superimpose
envelopes for values of n from this point until the first time we introduce an observation that
we recognise as an outlier. In our definition of the detection rule, we use the nomenclature
rmin(m, n∗) to denote that we are comparing the value of rmin(m) with envelopes from
a sample of size n∗. With an informative signal, we start superimposing 99% envelopes
taking n∗ = m† − 1, m†, m† + 1, . . . until an outlier is indicated by the rule in Appendix B.
Let this value be m+. We then obtain the best parameter estimates by using the sample size
of m+ − 1. The automatic use of m = m+ − 1 is programmed in our SAS routines.

In the batch FS procedure introduced in Section 5, the search moves in steps of
m + k(k > 1) rather than in steps of 1. Testing for outliers then uses the approximation
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to the ordered deletion residuals based on the estimated parameters from a set of m
observations to order the next k deletion residuals to be tested as outliers.

3. Why SAS?

SAS is widely used by large commercial and public organisations, such as customs
and national tax agencies as well as banking and insurance companies, for its ability to
handle large datasets and relatively complicated calculations. The use of SAS obviates the
need for powerful dedicated workstations to perform intensive calculations. Our programs
thus make computationally intensive robust statistical analyses available in environments
where it would otherwise be economically infeasible. Unfortunately, compared with the R
environment and with MATLAB open toolboxes, the standard SAS distribution is lacking
in robust methods for data analysis. These issues are discussed in detail in Section 7 of the
work by Torti et al. [3].

As an example, the FS monitors the properties of the fitted model over a series of
subsets of increasing size. The FSDA package also includes methods for monitoring the
fits of other methods of robust regression: for hard trimming, the number of trimmed
observations can be varied from approximately n/2 to n whereas, for M-estimation, the
properties of the fitted model can be monitored for a set of values of asymptotic efficiency
or breakdown point. Often monitoring is of various forms of residuals, but score tests are
monitored for the Box–Cox transformation and its extensions [6]. Our package provides the
SAS community with methods of monitoring regression estimators and their multivariate
counterparts, as in the MATLAB FSDA, and also a full set of methods for the FS. Further
details of methods of robust regression, as well as of monitoring, are in Section 8.

The idea of monitoring an estimator for various values of its key parameters has
shown great potential in data analysis, but the method can be time and space consuming,
as the statistics of interest have to be computed and stored many times. This is particularly
true for the FS that, for monitoring statistics at each subset size, requires approximately
n2 elements to store regression residuals or Mahalanobis distances for a dataset of size n.
This means, for example, that almost 1 gigabyte of RAM would be necessary to store a
structure for n = 11,000 observations (each numeric variable typically requires 8 bytes).
SAS is known for its superior capacity in treating such large datasets. There are several
ingredients behind this capacity improvement:

1. When the data are at the limit of the physical memory, caching strategies become cru-
cial to avoid the deterioration of performance. Unlike other statistical environments
that only run in memory and crash when a dataset is too large to be loaded, SAS uses
file-swapping to handle out-of-memory problems. The swapping is very efficient,
as the SAS procedures are optimised to limit the number of files created within a
procedure, avoiding unnecessary swapping steps;

2. File records are stored sequentially, in such a way that processing happens one record
at a time. Then, the SAS data step reads through the data only one time and applies
all the commands to each line of data of interest. In this way, the data movements are
drastically limited and the processing time is reduced;

3. A data step only reads the data that it needs in the memory and leaves out the data
that it does not need in the source;

4. Furthermore, data are indexed to allow for faster retrieval from datasets;
5. Finally, in regression and other predictive modelling methods, multi-threading is

applied whenever this is appropriate for the analysis.

These good nominal properties seem confirmed by the computing time assessments
presented in the next section, showing that our SAS implementation of robust regression
tools outperforms the MATLAB counterpart for datasets with more than 1000 units (see
Figure 8). We used a separate package based on the IML language (SAS/IML Studio)
to realise in SAS a number of FSDA functions requiring advanced graphical output and
interactivity. See Section 8 for a summary.
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4. FS Analysis of the Transformed Loyalty Card Data

The example in this section serves to illustrate the SAS version of the FS with a set of
data sufficiently small not to require the batch search. The data [7] are 509 observations
on the behaviour of customers with loyalty cards from a supermarket chain in Northern
Italy. The data are themselves a random sample from a larger database. The sample of
509 observations is part of the FSDA toolbox for MATLAB. The response is the amount, in
euros, spent at the shop over six months and the explanatory variables are: x1, the number
of visits to the supermarket in the six-month period; x2, the age of the customer and, x3,
the number of members of the customer’s family. The data are loaded in SAS IML with the
commands reported in Figure 1.

/* SAS working library and data matrix creation */
libname lib "C:\FSDA\data\regression";
use ("lib.loyalty");
read all var {’x1’ ’x2’ ’x3’} into x[colname=colnx];
read all var ’y’ into y[colname=colny];
close ("lib.loyalty");
/* Add constant variable to the data for model with intercept */
x = x || j(nrow(x),1,1);

Figure 1. Example of the SAS IML Studio code which uploads the loyalty card data in SAS IML.

Atkinson and Riani [7] show that the Box–Cox transformation can achieve approxi-
mate normality for the response and Perrotta et al. [1] recommend a value of 0.4 for the
transformation parameter λ. We work with this value throughout this section.

The starting point of the FS can be set by specifying initial_obs_input as a vector
of integers taking values in [1, n], which specify the position of the units to be included in
the subset. The length m0 of this vector should be at least p + 1. If initial_obs_input is
not specified, a starting vector of size p + 1 is estimated using LMS.

The tests described in Equations (1) and (2) start at step m = init. The default value
for init is:

init =

{
p + 1 (n < 40)

min[3 ∗ p + 1, floor{0.5 ∗ (n + p + 1)}] (n ≥ 40).
(3)

Figure 2 shows, in the top panel, a forward plot of absolute minimum deletion
residuals for observations not in the subset used in fitting. Figure 3 shows a zoom of
this plot, starting from m = 480. In addition to the residuals, the plot includes a series
of pointwise percentage levels for the residuals (at 1%, 50%, 99%. 99.9%, 99.99% and
99.999%) found by the order statistic arguments of Appendix A. Several large residuals
occur towards the end of the search. These are identified by the automatic procedure
including the resuperimposition of envelopes described in Appendix B. In all, 18 outliers
(plotted as red squares in the online .pdf version) are identified. These form the last
observations to enter the subset in the search. The upper panels of the figures, especially
Figure 3, show that, at the very end of the search, the trajectory of residuals returns inside
the envelopes, the result of masking. As a consequence, the outliers would not be detected
by the deletion of single observations from the fit to all n observations. Because of the aspect
ratio of the plot, the dramatic decrease in the absolute values of the scaled residuals is less
evident in the lower panel of Figure 3 than in that of Figure 2. Both panels show, not only
the effect of masking, but also that of “swamping", in which non-outlying observations are
made to appear as outliers towards the end of the search, due to the inclusion of outlying
observations in the subset used for parameter estimation.
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CALL FSR(‘‘lib.loyalty’’, {’x1’ ’x2’ ’x3’}, "y", "CLASSIFY mdrplot")
transform_original_data = 0.4 ;
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CALL FSR("lib.loyalty", {’x1’ ’x2’ ’x3’}, "y", "CLASSIFY RESFWDPLOT")
transform_original_data = 0.4 ;

Figure 2. Loyalty card data: monitoring plots for the transformed data with λ = 0.4. The top panel shows the absolute
values of minimum deletion residuals among observations not in the subset; the last part of the curve, corresponding to the
18 identified outliers, is automatically highlighted in red (in the online .pdf version). The bottom panel shows the scaled
residuals, with the trajectories corresponding to the 18 detected outliers automatically represented in red (in the online .pdf
version). The box under each panel contains the SAS code used to generate the plot.

The plots in Figures 2–5 were produced by brushing, i.e., selecting the observations
of interest from the top panel of Figure 2 and highlighting them in all others. The bottom
panels of the two figures show that the values of the scaled residuals are very stable until
the outliers enter and that the outliers all have negative residuals.
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CALL FSR("lib.loyalty", {’x1’ ’x2’ ’x3’}, "y", "CLASSIFY mdrplot")
transform_original_data = 0.4 init=480;
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CALL FSR("lib.loyalty", {’x1’ ’x2’ ’x3’}, "y", "CLASSIFY RESFWDPLOT")
transform_original_data = 0.4 init = 480;

Figure 3. Loyalty card data with λ = 0.4: zoom of Figure 2 monitoring the last 30 observations. Absolute values of minimum
deletion residuals among observations not in the subset and envelopes for the full 509 observations. Lower panel: scaled
residuals, with the trajectories corresponding to the 18 detected outliers in red.

The observations we found are outlying in an interesting way, especially for the values
of x1. Figure 4 shows the scatterplots of y against the three explanatory variables, with
brushing used to highlight the outlying observations in red (in the online .pdf version).
The first panel is of y against x1. The FS identified a subset of individuals, most of whom
are behaving in a strikingly different way from the majority of the population. They appear
to form a group who spends less than would be expected from the frequency of their visits.
This is an example where it might be worth following the suggestion in the first sentence of
this paper and finding a model for this identified subset of observations. The scatterplots
for x2 and x3, on the other hand, do not show any distinct pattern of outliers. In the last
panel, we present a plot, suggested by one referee, of the fitted values on the horizontal
axis and the response on the vertical axis. This plot shows a slightly clearer separation of
outliers than the plot of response against x1 in the first panel. In the general case, where
outlyingness may depend upon several explanatory variables, this plot may carry much
more information than scatter plots against individual explanatory variables.
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CALL FSR("lib.loyalty", {’x1’ ’x2’ ’x3’}, "y", "CLASSIFY scatter")
transform_original_data = 0.4 ;

Figure 4. Loyalty card data: scatterplots of transformed data when λ = 0.4, with the 18 outliers
detected plotted as red crosses (in the online .pdf version). Last panel: a plot, suggested by a referee,
of the fitted values on the horizontal axis and the response on the vertical axis. The box under the
figure contains the SAS code used to generate the scatterplots.
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CALL FSR("lib.loyalty", {’x1’ ’x2’ ’x3’}, "y", "CLASSIFY BETA_PLOT")
transform_original_data = 0.4 ;

Figure 5. Loyalty card data: monitoring of the estimated beta coefficients on transformed data when
λ = 0.4, with the part of the trajectory corresponding to the 18 detected outliers highlighted in red (in
the online .pdf version). The box under the figure contains the SAS code used to generate the plots.
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The effect of the 18 outliers on inference can be seen in Figure 5, which gives the
forward plots of the four parameter estimates, again with brushing used to plot the
outlying observations in red (in the online .pdf version). The upper left panel, for β̂1, is
the most dramatic. As the outliers are introduced, the estimate decreases rapidly in a
seemingly linear manner. This behaviour reflects the position of the outliers in Figure 4, all
of which lie below the general linear structure: their inclusion causes β̂1 to decrease. The
outliers also have effects on the other three parameter estimates (the lower right panel is
for the estimate of the intercept β0). Although the effects for these three parameters are
appreciable, they do not take any of the estimates outside the range of values which was
found before the inclusion of outliers. The group of outlying customers, who are spending
less than would be expected, which does not agree with the model for the majority of the
data, will be important in any further modelling.

A SAS analysis using our FS routines that confirms this transformation is in Section 10
of Torti et al. [3]. The robust procedure monitors the approximate score statistic for the
transformation parameter introduced by Atkinson [8] and incorporated in the FS by Riani
and Atkinson [9]. Distributional results can be found in Atkinson and Riani [10]. The MAT-
LAB version of FS for the extended Yeo–Johnson transformation, in which the responses
may be either positive or negative, is described by Atkinson et al. [6].

The left-hand panel of Figure 4 suggests that the outliers might be modelled separately.
Another example in which outliers can be distinctly modelled is in data on fraud in seafood
pricing, in which the FS analysis of Atkinson et al. [11] shows that the price of imports
from one country into the European Union is consistently under reported, leading to tax
evasion. The evidence for the existence of this fraud is strengthened by fitting a separate
model to the subset of observations.

5. The FS Batch Procedure

Our fsdaSAS contains a new FS strategy that increases the possibility of treating large
datasets. The idea is to reduce the size of the output tables and the amount of memory
required through a batch updating procedure.

The standard FS algorithm in Section 2 produces a sequence of n−m0 subsets with
the corresponding model parameters and relevant test statistics, typically used to test the
presence of outliers. The initial subset size m0 can be as small as p + 1, the minimum
number of observations necessary to provide a fit to the data. In the standard algorithm,
the subset size m0 ≤ m ≤ n is increased by one unit at a time and only the minimum value
of the test statistics among the observations outside the subset is retained.

The batch version of the algorithm instead fits to a subset every at k > 1 steps. The
value of k is set by the user through the input parameter fs_steps. The computational time
depends on k, the dimension m0 of the initial subset (by default p + 1), and on the value of
m at which testing for outliers starts, determined by the input parameter init, given by (3).
The effect of the batches is to decrease computational time, with a slight loss in the accuracy
of parameter estimation when outliers are present. To be clear, our procedure is distinct
from the batch FS introduced by Cerioli and Riani [12] in the analysis of spatial data. Their
batches of neighbouring observations provided parameter estimates for determining the
order of the inclusion of subsets in the FS.

Let Mb be the set of values mb of m at which the model is fitted, with cardinality
nb. The search starts with m = m0, so thatMb = [m0, m0 + k, m0 + 2k, ..., n− 1]. For each
subset of size mb ∈ Mb, the search sequentially calculates the estimate β̂(mb) and orders
the n−mb deletion residuals for the observations not in the subset. The k smallest values
of these test statistics define a subset Sb(mk) of k observations. For mb < init, mb is
augmented by the k data points Sb(mk), and a new estimate of β is found and the search
continues. However, if mb ≥ init, the data points in Sb(mk) are assigned in order of
ascending values of absolute deletion residual to the succeeding k steps in order to obtain a
complete vector of minimum test statistics (2) to be compared with the envelopes. These
k statistics are based on the estimate β̂(mb). If there is no signal in the search, the subset
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mb is, as before, augmented by the k units of Sb(mk) and the model is refitted. If there is a
signal at unit k∗ ∈ Sb(mk), we have a signal at the step corresponding to the subset size
m† = mk + k∗. We now leave the batch search and use the resuperimposition procedure of
Section 2 to calculate envelopes for outlier detection, moving forward one observation at a
time.

If the effect of re-estimation and resuperimposition is ignored, the number of estimates
β̂(mb) in the batch FS is at most nb = roof[(n − m0)/k], but may be less if the search
terminates early due to an indication of the presence of outliers. The number of tests for
outliers is n− init− 1. For a large n, this will usually be approximately n/2, depending
on the value chosen for init. Although the number of estimates is reduced, we have an
mdr vector of length between n/2 and n and also a matrix of test statistics of dimension w×
(n−m0) for all the w quantiles of the envelopes; the signal detection phase of the algorithm
is identical to the standard FS one. Of course, this vector is an approximation to that
which would be found by evaluating each of the k steps individually. The approximation
reduces the number of fits to at most nb while still applying the signal detection, envelope
superimposition and signal validation phases described in Appendix B at each of the
n − init− 1 FS steps. Finally, we note that the time required by the standard FS also
depends on the values of m0 and init. The saving in the batch FS comes from a reduced
number of steps for parameter estimation and ordering of the deletion residuals. We now
examine the gains and losses of the procedure.

If the data are contaminated and k is too large, the approach may not be accurate
enough to detect the outliers, giving rise to biased estimates. The problem can be investi-
gated by monitoring the statistical properties of the batch algorithm for increasing k. We
conducted such an exploratory assessment using artificial data.

We generated the data using MixSim [13] in the MATLAB implementation of the FSDA
toolbox ([14], Section 3); the functions used were MixSimreg.m and simdataset.m. MixSim
allows the generation of data from a mixture of linear models on the basis of an average
overlap measure ω̄ pre-specified by the user. We generated a dominant linear component
containing 95% of the data (blue dots in Figure 6) and a 5% “contaminating” one (black
stars) with a small average overlap (ω̄ = 0.01). The generating regression model is without
intercept, with two random slopes from a uniform distribution between tan

(
π
6
)
=
√

3
3

and tan
(

π
3
)
=
√

3, and independent variables from a uniform distribution in the interval
[0, 1]. Each slope is equally likely to be that of the dominant component. We took the
error variances in the two components to be equal when the specification of the value of ω̄,
together with the values of the slopes, defines the error variance for each sample. We also
added the additional uniform contamination of 3% of the above data (red crosses) over the
rectangle defined by the ranges of the dependent and independent variables. The plots in
Figure 6 are examples of two datasets with 4750 + 250 + 150 units.
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Figure 6. Two artificial datasets generated with MixSim for the assessment: 4750 observations
from the dominant linear component (blue dots) + 250 observations from a contaminating linear
component (black stars) + 150 observations from uniform contamination (red crosses.)
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The boxplots of Figure 7 show the bias for the slope and intercept obtained from 500
such datasets with 5150 observations each, for k ∈ {1, 5, 10, 15, 20, 40, 60, 80, 100}. The bias
here is simply the difference between the estimated and real slopes, the latter referring to
the dominant generating component.
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Figure 7. Top panel: boxplots showing, for different values of k (the fs_step parameter, on the x
axis), the bias and dispersion of the estimated slopes and intercepts (respectively from left to right
for each k). The estimates are obtained from 500 simulated datasets of 5150 observations; Bottom
panel: percentage of estimated values lying outside the boxplot whiskers for slope (blue asterisks)
and intercept (black circles).

The upper panel of the figure shows that the median bias for both the slopes and
intercepts are virtually zero. The dispersion of the estimates for the slopes and intercept
remain both stable and quite small even for values of k approaching 100 (note that the
boxplot whiskers are in [−0.01, 0.01]). However, the variability of the estimates outside the
whiskers rapidly increases as k approaches 100. The fact that the bottom and top edges of
the boxes seem to become smaller for increasing k may be interpreted as a reduced capacity
of the batch FS to capture the fine grained structure of the data when k is too large.

The stability of the batch procedure can also be appreciated by looking, in the bottom
panel of the figure, at the number of estimated slope and intercept parameters outside the
boxplot whiskers: up to k = 10, there is no appreciable increase with respect to the standard
FS with k = 1; between k = 10 and k = 20, the increase is still contained to 5%; then, the
number of poor estimates rapidly increases to exceed 10%. Finally, there is no evidence of
major failure of the batch FS to reject outliers, which would be shown by occasional very
large values of bias.

6. Timing Comparisons

We now describe the results of an assessment of the computational benefit of the new
batch FS approach available only in SAS, in comparison with the standard SAS and FSDA
MATLAB implementations. We tested the functions on a workstation with a CPU 2 x Xeon
E5-262v4 (2.6GHz 4cores), two 32 GB DDR4 2400 ECC RAMs, and a Disk SSD of 512GB,
equipped with MATLAB R2020a and SAS 9.4.

Figure 8 shows the elapsed time needed for analysing the simulated datasets of
different sizes (from 30 to 100,000), when fitting one explanatory variable. The results
are split into three panels for small (n = 30, . . ., 1000), medium (n =2000, . . . , 15,000)
and large data sizes (n = 20,000,. . ., 100,000). The bottom-right panel gives the ratio
between the time required by the MATLAB implementation and the two SAS ones. For
small samples, the FSDA MATLAB implementation (orange squares) is faster than the
standard SAS implementation (blue diamonds), but there is a crossing point at a sample
size between n = 800 and n = 900 where the latter starts to perform better. The advantage
of using the SAS function increases for larger sample sizes. For example, in a sample of
50,000 observations SAS was about 7 times faster. The batch option in SAS (red circles),
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with k = 10, is even faster: 12 times faster in a sample of 50,000 observations; note that
in Figure 8, the batch results are reported only for n ≥ 20,000. For smaller values, the
reduction in computation time is unlikely to be important, even though Figure 7 shows
that for k = 10 there is a negligible increase in the variability of the parameter estimates
from the use of the batch procedure.
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Figure 8. Execution time of our SAS (Version R9.4) and MATLAB (R2020a) implementations of
the FSR function; for SAS, the comparison is also with the batch version of FSR (with k = 10). The
assessment covers data with one explanatory variable and size ranging from 30 to 100,000. Results
are split into three panels for small, medium and large data sizes. The last, bottom-right, panel gives
the ratio between the time required by the MATLAB implementation and the two SAS ones. The
associated table reports the time in seconds for selected sample sizes.

The bottom-left panel shows that the standard SAS and FSDA MATLAB implementa-
tions crash (because of memory limits) when the sample sizes exceed 50,000 observations.
Only the SAS batch algorithm seems to cope with larger datasets (n = 100,000 in the figure),
which however, requires about 3.5 h to terminate.

Finally, by interpolating the time values in the three cases with a quadratic curve—the
time complexity for producing n statistics for n steps is expected to beO(n2)—we found the
following approximate coefficients for the quadratic terms: 1.23× 10−5 for the MATLAB
implementation, 1.98× 10−6 for the SAS standard implementation, 7.17× 10−7 for the SAS
batch implementation (the last one fitted on all n values, not reported in the Figure). This
ranking might be used to extrapolate the computational performances of the three FSR
implementations for n values not considered here, on hardware configurations that can
cope with larger data structures.
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7. Balance Sheet Data—A Large dataset

We now compare the results of the FS analyses of a large dataset with and without
the use of batches. The data come from balance sheet information on limited liability
companies in Italy. The variables are:

y profitability, calculated as return over sales;
x1 labour share; the ratio of labour cost to value added;
x2 the ratio of tangible fixed assets to value added;
x3 the ratio of intangible assets to total assets;
x4 the ratio of industrial equipment to total assets;
x5 the firm’s interest burden; the ratio of the firm’s total assets to net capital.

There are 44,140 observations derived from a larger set; observations with zero values
of any of the explanatory variables have been omitted, as have the few with negative
responses. Corbellini et al. [15] studied the labour share in a related dataset of more than
thirty thousand firms over a time span of ten years using robust multivariate regression
techniques and the monotonic version of the ACE transformation [16] allowing the trans-
formation of both positive and negative responses. Atkinson et al. [6] analysed a subset of
1405 observations including 407 with negative responses, to illustrate the properties of the
extended Yeo–Johnson transformation which is a combination of two Box–Cox transforma-
tions. For the positive observations, they found the square root transformation, which we
also use in our analysis.

The aim of the data analysis was to explain the profitability by regression on the five
explanatory variables. The forward plot of the minimum deletion residuals from both
searches is similar in form to Figure 2, but with less extreme outliers at the end of the
search; 145 outliers are detected with the standard FS, 161 with the batch FS with k = 10.

The effect of the 161 outliers on inference can be seen in Table 1 which presents the
values of the t-statistics for the six parameters of the model arising from the three different
fits. Column 2 of the table shows the least squares results for the full data and the third
column the MATLAB FSDA results. In going from the second to the third column the 145
observations identified as outliers have been deleted. As a result, all t-statistics increase in
value (apart from a slight decrease in that for x4). There are also increases in the F statistic
for regression and in the values of R2. Deleting the outliers has made it possible to extract
more information from the data. In going from the third column to the fourth, a further 16
observations have been deleted, which were labelled as outliers by the batch search which
also found the 145 outliers determined by FSDA. The effect on the statistics in Table 1 is a
small further improvement in four out of seven statistics. These changes are practically
negligible, as might be excepted with such a large set of data.

Table 1. Balance sheet data: summary properties of regression for least squares computed on all data
(column 2), for a standard FS (column 3) and SAS batch with k = 10 (column 4).

Least Squares on All Data Standard FS Batch FS k = 10

Number of units 44,140 43,995 43,979
Error d.f. ν 44,134 43,989 43,973

tν values
Intercept 377.0 383.5 383.9

x1 −249.3 −253.9 −254.2
x2 −47.4 −48.5 −48.5
x3 −10.2 −10.4 −10.3
x4 −5.0 −4.9 −5.0
x5 −15.2 −15.5 −15.5

F5,ν for regression
×104 1.274 1.322 1.325

R2 0.591 0.601 0.600
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The results in the table for the batch analysis are complemented by the forward plots of
the six parameter estimates in Figure 9, with the outlying observations plotted in red (in the
online .pdf version). Since the batch search moves forward in batches of ten observations,
the values are only plotted in steps of ten, when β̂ j(mb) is evaluated for each member
ofMb. The first three panels (those for the intercept, β1 and β2) reveal that the deleted
observations were continuing trends in the parameter estimates that showed over the last
1000 observations. On the other hand, the other three panels, for statistically less significant
variables, show that the outliers were altering the parameter estimates in a less systematic
manner.
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Figure 9. SAS batch analysis of balance sheet data: monitoring of estimated beta coefficients on
transformed data, starting from 41, 000 units with the part of the trajectory corresponding to the
161 detected outliers, highlighted in red (in the on-line .pdf version).

that the deleted observations were continuing trends in the parameter estimates that418

showed over the last 1,000 observations. On the other hand, the other three panels, for419

statistically less significant variables, show that the outliers were altering the parameter420

estimates in a less systematic manner.421

Figure 9, together with the results in Table 1, show that the SAS batch FS leads422

to similar inferential results to those of the implementation of the Matlab FS in FSDA.423

Section 5 shows typical time savings from using our SAS program and the further saving424

from working with batches. The major statistical difference is that, in this example,425

the batch FS marks a few more observations as outlying than does the standard search.426

This occurs because the batches of k values of the mdr are all calculated from the same427

parameter estimates, thus producing values more extreme than those when k = 1 and428

the parameers are re-estimated for each deletion residual.429

Our overall conclusion, from these and other data analyses, is that the SAS batch430

forward search allows faster analysis of large data sets and the analysis of larger data431

sets than other forward search algorithms. We have also demonstrated that the value432

k = 10 has a negligible effect on the results of statistical analyses for sample sizes where433

the batch procedure yields a significant reduction in computational time.434

Figure 9. SAS batch analysis of balance sheet data: monitoring of estimated beta coefficients on
transformed data, starting from 41, 000 units with the part of the trajectory corresponding to the 161
detected outliers, highlighted in red (in the online .pdf version).

Figure 9, together with the results in Table 1, show that the SAS batch FS leads to
similar inferential results to those of the implementation of the MATLAB FS in FSDA.
Section 6 shows typical time savings from using our SAS program and further saving from
working with batches. The major statistical difference is that, in this example, the batch
FS marks a few more observations as outlying than the standard search does. This occurs
because the batches of k values of the mdr are all calculated from the same parameter
estimates, thus producing values more extreme than those when k = 1 and the parameters
are re-estimated for each deletion residual.
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Our overall conclusion, from these and other data analyses, is that the SAS batch
forward search allows faster analysis of large datasets and the analysis of larger datasets
than other forward search algorithms. We have also demonstrated that the value k = 10
has a negligible effect on the results of statistical analyses for sample sizes where the batch
procedure yields a significant reduction in computational time.

8. Discussion and Extensions

The main emphasis in our paper is on the SAS version of the FS for regression and
its extension to the batch FS for large datasets. We now consider other contributions of
fsdaSAS for data analysis. We start with a comparison of methods of robust regression,
before moving on to the monitoring methods we have made available and their application
to a number of aspects of multivariate analysis and to model choice.

8.1. Three Classes of Estimator for Robust Regression

It is helpful to divide methods of robust regression into three classes.

1. Hard (0,1) trimming: In least trimmed squares (LTS: [17,18]) the amount of trimming
is determined by the choice of the trimming parameter h, [n/2] + [(p+ 1)/2] ≤ h ≤ n,
which is specified in advance. The LTS estimate is intended to minimise the sum
of squares of the residuals of h observations. For LS, h = n. We also monitor a
generalisation of least median of squares (LMS, [18]) in which the estimate of the
parameters minimises the median of h squared residuals.

2. Adaptive hard trimming: In the FS, the observations are again hard trimmed, but the
value of h is determined by the data, being found adaptively by the search. (See [19,20]
for regression, [21] for a general survey of the FS, with discussion, and [22] for results
on consistency).

3. Soft trimming (downweighting): M estimation and derived methods. The intention is
that observations near the centre of the distribution retain their value, but the ρ func-
tion ensures that increasingly remote observations have a weight that decreases with
distance from the centre. SAS provides the ROBUSTREG procedure where the choice of
downweighting estimators includes S [23] and MM estimation [24] independently of
the ρ function (Andrews, Bisquare, Cauchy, Fair, Hampel, Huber, Logistic, Median,
Talworth, Welsch). Our contribution is the monitoring of these estimators and also of
LTS and LMS (as described in the section below).
Many of the algorithms for finding these estimators start from very small subsets
of data, typically of size p or p + 1, before moving on to the use of larger subsets.
Hawkins and Olive [25] argue that, to avoid inconsistent estimators, these larger
subsets need to increase in size with n. Cerioli et al. [22] prove the consistency of
the FS. In addition to developing the analysis of consistency, Olive [26] discusses
the approximate nature of the estimators from subset procedures and analyses the
computational complexity of the exact solutions to some of these robust estimation
problems.

8.2. Monitoring and Graphics

The series of fits provided by the FS is combined with an automatic procedure for
outlier detection that leads to the adaptive data-dependent choice of highly efficient robust
estimates. It also allows monitoring of residuals and parameter estimates for fits of differing
robustness. Linking plots of such quantities, combined with brushing, provides a set of
powerful tools for understanding the properties of data including anomalous structures
and data points. Our SAS package extends this idea of monitoring to several traditional
robust estimators of regression for a range of values of their key parameters (maximum
possible breakdown or nominal efficiency). We again obtain data-adaptive values for
these parameters and provide a variety of plots linked through brushing. Examples in
Torti et al. [3] are for S estimation and for least median of squares (LMS) and least trimmed
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squares (LTS) regression. These two forms of monitoring are currently only available in
our SAS toolbox.

We monitor using either the theoretical breakdown point (bdp) or the efficiency of the
estimators. For LTS and LMS, we vary the trimming proportion α from 0.5 to 0. Then, the
theoretical bdp is α, which is zero for no trimming. However, the efficiency decreases as α
increases. It is not possible to have an estimator which simultaneously has maximum bdp
and 100% efficiency. We now outline the results showing that a similar restriction applies
to soft trimming estimators.

Rousseeuw and Leroy [27] (p. 139) give conditions to be obeyed by the symmetric
function ρ. One is that there should be a c > 0 such that ρ is strictly increasing on [0, c]
and constant on [c, ∞). We monitor S estimators by looking over a grid of values of bdp.
The breakdown point of the S-estimator tends to bdp when n→ ∞. As c increases, fewer
observations are downweighted, so that the estimates of the parameters approach those
for least squares and bdp → 0. Riani et al. [28] shows that the choice of the value of c
determines both the bdp and efficiency of the estimator, although the exact values depend
upon the specific ρ function. The dependence of both bdp and efficiency on the value of
c again means that, as for hard trimming, it is impossible to have an estimator with high
values of both asymptotic properties. Riani et al. [28] (Section 3.1) give computationally
efficient calculations for finding the value of c for Tukey’s bisquare once the value of bdp is
specified. For MM estimators, we instead monitor efficiency. The calculations to find c for
given efficiency are given in their Section 3.2. Riani et al. [29] shows plots exhibiting the
relationship between bdp and efficiency for five ρ functions. A much fuller discussion of
monitoring robust regression is [4], including examples of S, MM, LMS and LTS analyses
using the FSDA.

For estimators other than the FS, monitoring takes the form of inspecting, either
visually or automatically using correlation measures, the monitoring plots of scaled resid-
uals, such as that in Figure 2, to determine where the pattern of residuals changes. For
multivariate data, [30] monitor the values of Mahalanobis distances. As a result adaptive
values of trimming parameters or bdp can be found which, for a particular dataset, yield
the most efficient robust parameter estimates. Since the standard distribution of SAS does
not provide graphical interactivity for exploratory data analysis and satisfactory graphical
output, we used a separate package based on the IML language (SAS/IML Studio) to realise
in SAS a number of FSDA functions requiring advanced graphical output and interactivity.

8.3. Programs

The programs we provided in SAS/IML Studio are being protected under the Euro-
pean Union Public License and are therefore open source and GPL compatible. We have
here had only space to exhibit a few of these programs, which are further discussed in Torti
et al. [3]. They include:

• FSR.sx and FSM.sx, which implement the FS approach to detect outliers, respectively,
in regression and in multivariate data;

• FSRfan.sx and FSMfan.sx for identifying the best transformation parameter for the
Box–Cox transformation in regression and multivariate analysis ([31], Chapter 4);

• Monitoring.sx for monitoring a number of traditional robust multivariate and re-
gression estimators (S, MM, LTS and LMS), already present in SAS, for specific choices of
breakdown point or efficiency. Riani et al. [4] introduced the monitoring of regression
estimators detailed in Section 8.2, however, in the FSDA toolbox, only for S and MM
estimators (and the FS) in MATLAB. The extension to the monitoring of LTS and LMS
is a particularly powerful new feature and a novelty in the statistical literature.

We also modified the standard LTS and LMS IML functions by introducing the small
sample correction factor of Pison [32] and by increasing the range of values of the trimming
parameter h in LTS.

Further developments which there is no space to describe here include:
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• FSM.sx, the multivariate counterparts of FSR, and FSMfan.sx for multivariate trans-
formations;

• FSRms.sx for choosing the best model in regression. This function implements the
procedure of Riani and Atkinson [33] which combines Mallows’ Cp [34] with the flexi-
ble trimming of the FS to yield an information rich plot “The Generalized Candlestick
Plot" revealing the effect of outliers on model choice;

• FSRMultipleStart.sx and FSMmultiplestart.sx for identifying observations that
are divided into groups either of regression models or of multivariate normal clusters.
The later procedure is derived from the FSDA implementation of Atkinson et al. [35].

In addition to programming, our main methodological advance is the batch procedure
described in Section 5 which provides a computationally fast version of the FS taking
advantage of the ability of SAS to handle datasets much larger than those analysable by
R or in the MATLAB FSDA tool box, with little loss in statistical efficiency. Appendix C
contains comments on other software for robust statistical analysis.
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Appendix A. Testing for Outliers in Regression

The test statistic (2) is the (m + 1)st ordered value of the absolute deletion residuals.
We can therefore use distributional results to obtain envelopes for our plots. The argument
parallels that of Riani et al. [5] where envelopes were required for the Mahalanobis distances
arising in applying the FS to multivariate data.

Let Y[m+1] be the (m + 1)st order statistic from a sample of size n from a univariate
distribution with c.d.f. G(y). Then, the c.d.f of Y[m+1] is given exactly by

P{Y[m+1] ≤ y} =
n

∑
j=m+1

(
n
j

)
{G(y)}j{1− G(y)}n−j.

(A1)

See, for example, Lehmann [36] (p. 353). We then apply properties of the beta distribu-
tion to the RHS of (A1) to obtain:

P{Y[m+1] ≤ y} = IG(y)(m + 1, n−m), (A2)

where Ip(A, B) is the incomplete beta integral. From the relationship between the F and
the beta distribution Equation (A2) becomes:

P{Y[m+1] ≤ y} = P
{

F2(n−m),2(m+1) >
1− G(y)

G(y)
m + 1
n−m

}
, (A3)
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where F2(n−m),2(m+1) is the F distribution with 2(n − m) and 2(m + 1) degrees of free-
dom [37]. Thus, the required quantile of order γ of the distribution of Y[m+1], say ym+1,n;γ,
is obtained as

ym+1,n;γ = G−1(q) = G−1

(
m + 1

m + 1 + (n−m)x2(n−m),2(m+1);1−γ

)
, (A4)

where x2(n−m),2(m+1);1−γ is the quantile of order 1− γ of the F distribution with 2(n−m)
and 2(m + 1) degrees of freedom.

In our case, we are considering the absolute values of the deletion residuals. If the
c.d.f. of the t distribution on ν degrees of freedom is written as Tν(y), the absolute value
has the c.d.f.

G(y) = 2Tν(y)− 1, 0 ≤ y < ∞. (A5)

The required quantile of Y[m+1] is given by

ym+1,n;γ = T−1
m−p{0.5(1 + q)},

where q is defined in (A4). To obtain the required quantile we call an inverse of the F and
than an inverse of the t distribution.

If we had an unbiased estimator of σ2, the envelopes would be given by ym+1,n;γ for
m = m0, . . . , n− 1. However, the estimator s2(m∗) is based on the central m observations
from a normal sample—strictly the m observations with the smallest squared residuals
based on the parameter estimates from S∗(m− 1). The variance of the truncated normal
distribution containing the central m/n portion of the full distribution is:

σ2
T(m) = 1− 2n

m
Φ−1

(
n + m

2n

)
φ

{
Φ−1

(
n + m

2n

)}
, (A6)

where φ(.) and Φ(.) are, respectively, the standard normal density and c.d.f. See, for
example, Johnson et al. [38] (pp. 156–162) and Riani et al. [5] for a derivation from the
general method of Tallis [39]. Since the outlier tests we are monitoring are divided by an
estimate of σ2 that is too small, we need to scale up the values of the order statistics to
obtain the envelopes

y∗m+1,n;γ = ym+1,n;γ/σT(m).

Specifically, we consider the 99% envelope, that is γ = 0.99, which corresponds to a
nominal pointwise size α = 1− γ which is equal to 1%. We expect, for the particular step m
which is considered, to find exceedances of the quantile in a fraction of 1% of the samples
under the null normal distribution. We, however, require a samplewise probability of 1%
of the false detection of outliers, that is over all values of m considered in the search. The
algorithm in the next section is accordingly designed to have a size of 1%.

Appendix B. Regression Outlier Detection in the FS

We have to find appropriate bounds for the outlier test (2). For efficient parameter
estimation, we want to use as many observations as possible. However, we wish to avoid
biased estimation due to the inclusion of outliers. We therefore need to control the size of
the test. Because we are testing for the existence of an outlier at each step of the search,
we have to allow for the effect of simultaneous testing. Atkinson and Riani [7] adapt and
extend a sophisticated simulation method of Buja and Rolke [40] to show how severe
this problem can be. For example, for a nominal pointwise significance level of 5%, the
probability of observing at least one outlier in the null case of no outliers is 55.2% when
n = 100, p = 3 and outliers are only sought in the last half of the search. Even if an outlier
is only declared when 3 successive values lie above the pointwise boundary, the size of the
test is 23.2%.
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If there are a few large outliers they will enter at the end of the search, as in Figure 2,
and their detection is not a problem. However, even relatively small numbers of moderate
outliers can be difficult to identify and may cause a peak in the centre of the search. Masking
may then cause the plot to return inside the envelopes at the end of the search. Methods of
using the FS for the formal detection of outliers have to be sensitive to these two patterns:
a few “obvious” outliers at the end and a peak earlier in the search caused by a cluster of
outliers.

To use the envelopes in the FS for outlier detection, we accordingly propose a two-
stage process. In the first stage, we run a search on the data, monitoring the bounds for
all n observations until we obtain a “signal” indicating that observation m†, and therefore
succeeding observations, may be outliers, because the value of the statistic lies beyond
our threshold. In the second part, we superimpose envelopes for values of n from this
point until the first time we introduce an observation we recognise as an outlier. The
conventional envelopes shown, for example, in the top panel of Figure 2, consist roughly of
two parts; a flat “central” part and a steeply curving “final” part. Our procedure FS for the
detection of a “signal” takes account of these two parts and is similar to the rule used by
Riani et al. [5] for the detection of multivariate outliers. In our definition of the detection
rule, we use the nomenclature rmin(m, n∗) to denote that we are comparing the value of
rmin(m) with envelopes from a sample of size n∗.

1. Detection of a Signal
There are four conditions, the fulfilment of any one of which leads to the detection of
a signal.

• In the central part of the search, we require 3 consecutive values of rmin(m, n)
above the 99.99% envelope or 1 above 99.999%;

• In the final part of the search, we need two consecutive values of rmin(m, n)
above 99.9% and 1 above 99%;

• rmin(n− 2, n) > 99.9% envelope;
• rmin(n− 1, n) > 99% envelope—in this case, a single outlier is detected and the

procedure terminates.

The final part of the search is defined as

m ≥ n−
[
13 (n/200)0.5

]
,

where here [·] stands for a rounded integer. For n = 200, the value is slightly greater
than 6% of the observations.

2. Confirmation of a Signal
The purpose of the first point, in particular, is to distinguish informative peaks
from random fluctuations in the centre of the search. Once a signal takes place (at
m = m†), we check whether the signal is informative about the structure of the data.
If rmin(m†, m†) < 1% envelope, we decide the signal is not informative, increment m
and return to Step 1.

3. Identification of Outliers
With an informative signal, we start superimposing 99% envelopes taking n∗ =
m† − 1, m†, m† + 1, . . . until the final, penultimate or ante-penultimate value are above
the 99% threshold or, alternatively, we have a value of rmin(m, n∗) for any m > m†

which is greater than the 99.9% threshold. Let this value be m+. We then obtain the
best parameter estimates by using the sample of size m+ − 1.

Automatic use of m = m+ − 1 is programmed in our SAS routines. It is also central to
the comparisons involving the batch method of Section 5.

Appendix C. Software for Robust Data Analysis

The statistical community currently has three main environments for program devel-
opment, which target rather different market segments.
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The R environment is the most popular among statisticians and offers many packages
for robust statistics, for example rrcov for multivariate analysis [41] and robustbase for
regression, univariate and multivariate analysis [42]. Recently [43] have developed FSDAr
for regression analysis.

Engineers and practitioners in physics, geology, transport, bioinformatics, vision and
other fields usually prefer MATLAB, but find that the default distribution includes only
a few robust tools, such as the Minimum Covariance Determinant estimator (MCD, [44],
introduced in the 2016 release through function robustcov) and the robust regression
computed via iteratively re-weighted least squares (functions robustfit and fitlm). Many
more robust procedures are provided by two open toolboxes: Library for Robust Analysis
(LIBRA) [45,46] and Flexible Statistics for Data Analysis (FSDA) [1,2]).

LIBRA addresses robust principal component analysis, robust partial least squares
regression and robust principal component regression [47], classification and depth-based
methods. FSDA includes robust clustering [48,49], S, MM [50] and MVE [51] estimators, and
tools for monitoring a number of traditional robust multivariate and regression estimators
for various choices of breakdown or efficiency, along with the FS approach [4]. Both
toolboxes offer functions for least trimmed squares (LTS) [18], MCD and M estimation [50].
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