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We consider a family of genus 2 hyperelliptic curves of even order and obtain
explicitly the systems of 5 linear ordinary differential equations for periods of the
corresponding Abelian integrals of first, second, and third kind, as functions of some
parameters of the curves. The systems can be regarded as extensions of the well-
studied Picard–Fuchs equations for periods of complete integrals of first and second
kind on odd hyperelliptic curves. The periods we consider are linear combinations
of the action variables of several integrable systems, in particular the generalized
Neumann system with polynomial separable potentials. Thus the solutions of the
extended Picard–Fuchs equations can be used to study various properties of the
actions. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868965]

I. INTRODUCTION

Given a family of elliptic curves E ⊂ P 2 in the Legendre form

w2 = (1 − z2)(1 − k2z2),

it is known that the complete elliptic integrals of first kind

K (k) =
∫ 1

0

dz√
(1 − z2)(1 − k2z2)

, K ′(k) =
∫ 1/k

1

dz√
(1 − z2)(1 − k2z2)

as functions of the modulus k ∈ C, give 2 independent solutions of the hypergeometric equation of
the Legendre type

k(1 − k2)
d2 y

dk2
− (1 + k2)

dy

dk
+ ky = 0, (1)

that is, K (k) = π
2 F( 1

2 , 1
2 , 1; k2). The equation has singular points z1, 2, 3 = − 1, 0, 1, which means

that the solutions K(k), K′(k) are not single-valued: when k goes around zi, these functions transform
to a linear combination of K(k), K′(k). That is, the solutions y(k) undergo a monodromy.

Equivalently, (1) can be rewritten as a system of first order equations for K(k) and the complete
integral of the second kind17

Ē(k) =
∫ 1

0

z2dz√
(1 − z2)(1 − k2z2)

,

namely,

d K

dk
= 1

k(1 − k2)
(k2 K − Ē),

d Ē

dk
= k

1 − k2
(K − Ē) (2)

(see, e.g., Ref. 8).
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Starting from the pioneer work,16 the above description has been generalized to the case of
curves of higher genus, hyperelliptic, and non-hyperelliptic, in many publications. Apparently, one
of the most generic results was obtained in Ref. 14, which, amongst others, considered the family
of hyperelliptic curves

Gt = {y2/2 + xn+1 + cn−1xn−1 + · · · + c0 = t | t ∈ C}, c0, . . . , cn−1 = const.

For generic values of t, the curves have genus [n/2]. Choose the following set of meromorphic
differentials:

ω̄i = xi−1 y dx, i = 1, . . . , n,

and let γ ∈ H1(�, Gt) be a cycle on Gt. Then the periods of the above differentials,

I1 =
∮

γ

ω̄1, . . . , In =
∮

γ

ω̄n, (3)

become functions of the parameter t. As was shown in Ref. 14, the vector X = (I1, . . . , In)t satisfies
a closed system of ordinary differential equations (ODEs) which can be written in the following
n × n matrix hypergeometric form:

(t I − A)Ẋ (t) = B X (t), (4)

where I is the identity matrix, and A, B depend only on the coefficients cj of Gt. The paper14 also
studied various properties of the solutions of the above systems.

On the other hand, in a series of integrable systems of classical mechanics and mathematical
physics, in particular the Neumann system (see Sec. II), other families of hyperelliptic curves and
Abelian integrals appear. As an illustration, consider first a family of genus g hyperelliptic curves of
odd order

�h = {w2 = (z − a1) · · · (z − ag+1)(zg + h1zg−1 + · · · + hg−1z + hg)} (5)

with the parameters h1, . . . , hg ∈ C. Here a1, . . . , ag + 1 are distinct constants. For generic values
of hi, the curves are 2-fold covering of C = {z} ramified at z = a1, . . . , ag + 1 and ρ1, . . . , ρg, the
roots of the polynomial Pg(z) = zg + h1zg − 1 + ··· + hg−1z + hg.

Choose the following canonical basis of g holomorphic differentials and g meromorphic differ-
entials of the second kind on �h:

ωi = zi−1 dz

w
, ωg+i = zg−1+i dz

w
, i = 1, . . . , g.

For a cycle γ ∈ H1(�, C), the periods of the above differentials

J1 =
∮

γ

ω1, . . . , J2g =
∮

γ

ω2g (6)

become functions of the parameters h1, . . . , hg in (5) or of the roots ρ1, . . . , ρg.
Families of hyperelliptic curves �h often appear in quadratures of integrable systems, for which

h1, . . . , hg play the role of constants of motion. Certain linear combinations of the integrals Ji(h)
give action variables I1(h), . . . , Ig(h), and knowledge of their properties is important in study of
periodic solutions, in quantization, and in applications of the KAM theory to perturbations of the
systems.

Note that Ji are not single-valued functions of hi: when these parameters vary in such a way that
one of the roots, say ρ1, goes around ai or ρ2, . . . , ρg, each integral Ji becomes a linear combination
of J1, . . . , J2g, i.e., undergoes a monodromy.

Following the classical theory of differential equations, the integrals Ji = Ji(h1, . . . , hg) are
solutions of a systems of linear ODEs, with hi being independent variables, called the Picard–Fuchs
equations (see, e.g., Ref. 7):

∂ J

∂hk
= Mk(h) J, J = (J1, . . . , J2g)T , k = 1, . . . , g, Mk ∈ GL(2g,C). (7)

They are natural generalizations of the Legendre equation (1) or (2).9
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Due to the monodromy property, some of the components of Mk(h) have poles when one of the
roots ρ i coincides with aj or with the other roots.

The integrals Ji are transcendental functions of hj and, as mentioned in several publications,
instead of computing them numerically, in some cases it is less expensive to integrate numerically
the above Picard–Fuchs equations, at least locally.

Following this idea, the authors of Ref. 4 derived differential equations for the periods Ji for any
genus g, taking however, as an independent variable one of the roots ρ i in (5), and not a constant of
motion hk. (Thus, they obtained the Gauss–Manin equations.)

A similar approach was followed in Refs. 2 and 3 to treat the actions of the Kovalevkaya top
and the Jacobi problem on geodesics on a triaxial ellipsoid.

For another basis of meromorphic differentials on �h, a similar system of Gauss–Manin equa-
tions was obtained in Ref. 6.

The only disadvantage of this approach is the dependence of all the constants hk on any root ρ i,
which makes it difficult to study the properties of Ji(h) as a function of one hk, when all the other
ones are fixed.

The choice of ρ i instead of hk was motivated in Ref. 4 by the observation that the Picard–
Fuchs equations with the independent variables hk become highly cumbersome even for the lowest
non-trivial case g = 2.

The purpose of our note is to derive the Picard–Fuchs equations of type (7) for the case of the
family of even order genus 2 curves

�h = {w2 = (z − a1)(z − a2)(z − a3)(z3 + h1z + h2)},
which appear in quadratures of an integrable generalization of the Neumann system with a separable
quartic potential, as described in Sec. II. The equations are written in a quite compact and symmetric
form, suitable for possible applications.

In contrast to the odd order curves (5) and Eqs. (7), in our case the order of the Picard–Fuchs
equations is 5, since they also include an Abelian integral of 3rd kind.

This observation is fully compatible with the result of Ref. 14 described by (3) and (4) since for
n = 5 the dimension of the latter system is 5, however our system and the system (4) have different
independent variables.

II. THE CLASSICAL NEUMANN SYSTEM AND ITS GENERALIZATIONS

Recall that the Neumann system describes the motion of a point on the unit sphere
Sn − 1 = {〈x, x〉 = 1}, x ∈ Rn under the action of the quadratic potential U = 〈x, Ax〉/2, A be-
ing a diagonal matrix with constant eigenvalues a1, a2, . . . , an. The Hamiltonian of the problem has
the form

H (x, y) = 1

2
(|y|2|x |2 − 〈y, x〉2) + 1

2
〈x, Ax〉,

where p ∈ TxSn − 1 is the momentum (see, e.g., Refs. 10 and 11).
In Ref. 13, Neumann considered this problem in the case n = 3 and solved it completely in

terms of theta-functions of 2 variables.
In the elliptic (spheroconical) coordinates λ1, . . . , λn − 1 on Sn − 1 such that

x2
i = (ai − λ1) · · · (ai − λn−1)

(ai − a1) · · · (ai − an)
, i = 1, . . . , n

and in the corresponding conjugated momenta p1, . . . , pn , the Hamiltonian takes a Stäckel form,
and the system is reduced to the quadratures

λk
1dλ1√
R(λ1)

+ · · · + λk
n−1dλn−1√
R(λn−1)

=
{

0 if k = 0, 1, . . . , n − 2,

h0dt if k = n − 1,
k = 0, 1, . . . , n − 2, (8)

R(λ) = 	(λ)Pn−1(λ), 	(λ) = (λ − a1) · · · (λ − an),

Pn−1(λ) = λn−1 + h1λ
n−2 + · · · + hn−1 = (λ − ρ1) · · · (λ − ρn−1),
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where h0, h1, . . . , hn − 1 are constants of motion.
Here the differentials λkdλ/

√
R(λ) can be regarded as holomorphic differentials on the genus

g = n − 1 hyperelliptic curve �h = {μ2 = 	(λ)Pn − 1(λ)}, already described in (5).
By integrating the quadratures (8) and inverting the integrals, symmetric functions of the elliptic

coordinates λj and, therefore, the Cartesian coordinates xi, can be expressed in terms of theta-
functions of uk and, therefore, of the time t (see Ref. 12). The generic real invariant varieties are
unions of n-1 dimensional tori T n−1. Moreover, the tori are real parts of complex Abelian varieties,
which are isogeneous to the Jacobians of the curves, and the system is algebraically integrable (see
Refs. 10 and 12).

On the other hand, as was shown in several publications (see, e.g., Refs. 5 and 15), the Neu-
mann system admits a hierarchy of integrable generalizations, in which the quadratic potential
U(x) = 〈x, Ax〉/2 is replaced by polynomial or rational potentials, which are all separable in the same
elliptic coordinates. For all such generalizations, the dimension of the generic invariant tori is the
same, n − 1. On the other hand, for a class of separable polynomial potentials of degree 2N, the
quadratures take the following form, which generalizes (8),

λk
1dλ1√
R(λ1)

+ · · · + λk
n−1 dλn−1√
R(λn−1)

=
{

0 if k = 0, 1, . . . , n − 2,

h0dt if k = n − 1,
k = 0, 1, . . . , n − 2,

(9)
where now R(λ) = 	(λ)PN+1(λ),

	(λ) = (λ − a1) · · · (λ − an), PN+1(λ) = λN+1 + h1λ
n−2 + · · · + hn−1.

The quadratures include n-1 holomorphic differentials on the hyperelliptic curve

�h = {μ2 = 	(λ)PN+1(λ)}
of genus g = [(n + N)/2]. This implies that for the separable potentials of degree 2N > 4, the genus
of �h is bigger than the dimension of the tori, and one can show that in this case the system is no
more algebraic integrable.1, 18

The action variables of the original and generalized Neumann systems are the periods of the
Abelian integrals

J j (h1, . . . , hn−1) = 1

2π

∮
γ j

(λN+1 + h1λ
n−2 + · · · + hn−1) dλ√

R(λ)
, j = 1, . . . , n − 1,

γ j being certain cycles on the Riemann surface �h. Note that the functions J j (h1, . . . , hg) are also
the frequencies of the angle variables on the tori T n−1. Then a solution to the Neumann system is
periodic if and only if the quantities J j are commensurable. So, knowledge of J j (h) is important in
describing periodic solutions of the system.

As follows from the above, the action variables J j are linear combinations of the periods of the
following basic g holomorphic and g meromorphic differentials on �h:

Jk =
∮

γ

ωk, ωs = λs−1dλ√
R(λ)

, ωg+s = λg+s−1dλ√
R(λ)

, s = 1, . . . , g. (10)

For the classical Neumann system with the quadratic potential (N = 1), the above 2g differentials
satisfy the Picard–Fuch equations (7). However, for N > 1 this is not always true.

For concreteness, below we restrict ourselves to the simplest case n = 3 and the quartic separable
potential (N = 2),

U (x) = 〈x, Ax〉2 − 2TrA〈x, Ax〉 − 〈x, A∗x〉, A∗ = det A A−1.

In the elliptic coordinates, up to a constant, it reads

(λ3
1 − λ3

2)/(λ1 − λ2) = λ2
1 + λ1λ2 + λ2

2.

Then the quadratures (9) contain differentials on the genus 2 curve of order 6,

w2 = (λ − a1)(λ − a2)(λ − a3) · (λ3 + h1λ + h2), (11)
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whose compactification in P 2 have 2 infinite points, which we denote by ∞− , ∞+ .
The differentials (10) then are

ω1 = dλ

w
, ω2 = λ dλ

w
, ω3 = λ2 dλ

w
, ω4 = λ3 dλ

w
.

One observes that, in contrast to ω4, the differential ω3 is meromorphic of the 3rd kind, i.e., it has
a pair of simple poles at ∞− , ∞+ , and that the corresponding periods J1, . . . , J4 do not form a
closed system of differential equations with respect to the constants h1 or h2. It turns out that in this
case the Picard–Fuchs equations must include also the period J5 of the differential of the second

kind ω5 = λ4 dλ

w
.

III. THE PICARD–FUCHS EQUATIONS FOR GENUS 2 EVEN ORDER CURVES

To derive the Picard–Fuchs equations for the considered case, we first compute the derivatives
of the integrals J1, . . . , J5 with respect to the roots ρα in (11). Namely, rewrite the genus 2 curve in
the form

w2 = R(λ), R(λ) = (λ − e1)(λ − e2)(λ − e3)(λ − e4)(λ − e5)(λ − e6).

Like in several other publications (see, e.g., Ref. 5), we will use the following key relation:

A(k)
j

∂

∂ek

(
λ j

w

)
= a(k)

j λ4 + b(k)
j λ3 + c(k)

j λ2 + d (k)
j λ + g(k)

j

w
− d

dλ

(
w

λ − ek

)
, (12)

j = 0, 1, . . . , 4, k = 1, . . . , 6,

where A(k)
j , a(k)

j , . . . , g(k)
j are functions of the branch points ei only. Namely, let us write

R′(ek) = d R(λ)

dλ

∣∣∣∣
λ=ek

= e5
k + �

(k)
1 e4

k + �
(k)
2 e3

k + �
(k)
3 e2

k + �
(k)
4 ek + �

(k)
5 ,

so that the coefficients �
(k)
i are elementary symmetric functions of {e1, . . . , e6}\ek of degree i.

In particular, �
(1)
1 = −e2 − e3 − e4 − e5 − e6, �

(1)
5 = − e2e3e4e5e6. Then comparing both sides of

(12), we obtain

A(k)
j = R′(ek)

e j
k

,

a(k)
0 = a(k)

1 = a(k)
2 = a(k)

3 = a(k)
4 = A(k) = 2,

b(k)
0 = b(k)

1 = b(k)
2 = b(k)

3 = B(k) = −1

2

(
ek − 3�

(k)
1

)
, b(k)

4 = B + R′(ek)

2e4
k

,

c(k)
0 = c(k)

1 = c(k)
2 = C (k) = −1

2
(e2

k + ek�
(k)
1 − 2�

(k)
2 ),

c(k)
3 = c(k)

4 = C (k) + R′(ek)

2e3
k

, (13)

d (k)
0 = d (k)

1 = D(k) = −1

2

(
e3

k + e2
k�

(k)
1 + ek�

(k)
2 − �

(k)
3

)
,

d (k)
2 = d (k)

3 = d (k)
4 = D(k) + R′(ek)

2e2
k

,

g(k)
0 = G(k) = −1

2

(
e4

k + e3
k�

(k)
1 + e2

k�
(k)
2 + ek�

(k)
3

)
,

g(k)
1 = g(k)

2 = g(k)
3 = g(k)

4 = G(k) + R′(ek)

2ek
.
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Multiplying both sides of (12) by dλ, and using again the notation

ω1 = dλ

w
, ω2 = λdλ

w
, ω3 = λ2dλ

w
, ω4 = λ3dλ

w
, ω5 = λ4dλ

w
, (14)

one gets

∂

∂ek
ωi = e j

k

R′(ek)

(
g(k)

j ω1 + d (k)
j ω2 + c(k)

j ω3 + b(k)
j ω4 + a(k)

j ω5 + d Fk

)
, (15)

Fk = w

λ − ek
, j = i − 1, i = 1, . . . , 5,

where R′(e1) = (e1 − e2)···(e1 − e6), etc. Since

∂

∂ek

(∮
γ

ωi

)
=

∮
γ

∂

∂ek
ωi ,

and since dFk is a differential of a meromorphic function of �h, from (15) we obtain the following
system for the vector of periods J = (J1, . . . , J5)t,

2
∂ J

∂ek
= Mk J, k = 1, . . . , 6, (16)

Mk = 1

R′(ek)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ek

e2
k

e3
k

e4
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(G(k) D(k) C (k) B(k) A(k) ) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1 0 0 0 0

ek 1 0 0 0

e2
k ek 1 0 0

e3
k e2

k ek 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

with G(k), D(k), C(k), B(k), A(k) defined in (13). One observes that the right hand sides, as functions of
ek, may have only simple poles at {e1, . . . , e6}\ek, that is, the systems are of Fuchsian type.

The structure of the matrices Mk is similar to that of the Picard–Fuchs equations obtained in
Refs. 4 and 6, however, not the same: the system (16) and (17) has an odd order.

Now, taking into account (11), we identify the roots ρ1, ρ2, ρ3 with e1, e2, e3, and the parameters
a1, a2, a3 with e4, e5, e6, that is, we set

λ3 + h1λ + h2 = (λ − ρ1)(λ − ρ2)(λ − ρ3),

h1 = ρ1ρ2 + ρ1ρ3 + ρ2ρ3, h2 = −ρ1ρ2ρ3, −ρ1 − ρ2 − ρ3 := h3 = 0.
(18)

Then the following relation between the partial derivatives holds:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ Ji

∂ρ1

∂ Ji

∂ρ2

∂ Ji

∂ρ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 ρ2 + ρ3 −ρ2ρ3

1 ρ1 + ρ3 −ρ1ρ3

1 ρ2 + ρ1, −ρ1ρ2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Ji

∂h3

∂ Ji

∂h1

∂ Ji

∂h2

⎞
⎟⎟⎟⎟⎟⎟⎠

, i = 1, . . . , 5,

and, therefore,⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Ji

∂h3

∂ Ji

∂h1

∂ Ji

∂h2

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1

�

⎛
⎜⎜⎜⎝

−ρ2
1 (ρ2 − ρ3) ρ2

2 (ρ1 − ρ3) −ρ2
3 (ρ1 − ρ2)

ρ1(ρ2 − ρ3) ρ2(ρ3 − ρ1) ρ3(ρ1 − ρ2)

ρ2 − ρ3 ρ3 − ρ1 ρ1 − ρ2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ Ji

∂ρ1

∂ Ji

∂ρ2

∂ Ji

∂ρ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

� = (ρ1 − ρ2)(ρ3 − ρ1)(ρ3 − ρ2).
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Now combining the above relations with Eqs. (16), and taking into account (13) and (18), we
arrive at the following theorem.

Theorem 1. The vector of periods J = (J1, . . . , J5)T of the differentials (14) of the even order
curve (11) satisfies the equations

2
∂ J

∂h1
= U1 J, 2

∂ J

∂h2
= U2 J, (20)

U1 =
3∑

α=1

1

	(ρα)

ρα

(ρα − ρβ)2(ρα − ργ )2
Sα +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

h3 1 0 0 0

h1 h3 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U2 =
3∑

α=1

1

	(ρα)

1

(ρα − ρβ)2(ρα − ργ )2
Sα +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

h3 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

	(ρα) = (ρα − a1)(ρα − a2)(ρα − a3), (α, β, γ ) = (1, 2, 3), h3 = 0,

Sα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ρα

ρ2
α

ρ3
α

ρ4
α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(G(α) D(α) C (α) B(α) A(α) ),

A(α) = 2, B(α) = −ρ2
α

2
− 3

2
ρα + 3

2
σ1, C (α) = h1 − 1

2
σ1ρα + σ2,

D(α) = 1

2

(−2ρ3
α + ρ2

ασ1 + h2 − h1σ1 − σ3
)
, G(α) = −ρα	(ρα) + 1

2
(h2ρα − σ3ρα − h2σ1) ,

and σ 1 = a1 + a2 + a3, σ 2 = a1a2 + a3a1 + a2a3, σ 3 = a1a2a3.

The proof is direct and uses the identities

ρk
1 (ρ2 − ρ3) + ρk

2 (ρ3 − ρ1) + ρk
3 (ρ1 − ρ2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, k = 1

−(ρ1 − ρ2)(ρ3 − ρ1)(ρ3 − ρ2), k = 2

(ρ1 − ρ2)(ρ3 − ρ1)(ρ3 − ρ2)h3, k = 3

(ρ1 − ρ2)(ρ3 − ρ1)(ρ3 − ρ2)(h2
3 − h1), k = 4.

Remark. The right hand sides of the systems (20) are symmetric functions of the roots e1, e2, e3,
hence, according to (18), they can be written in terms of the constants of motion h1, h2. However,
the explicit expressions U1(h1, h2),U2(h1, h2) appear to be too long to show here. We only mention
that the components of U1,U2 have poles if and only if some of the roots e1, e2, e3 coincide and, due
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to relations (18), these poles are of first order with respect to the corresponding increments of h1,
h2. In other words, the systems (20) are of Fuchs type.
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