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Abstract  

The potential of numerical methods for the solution and optimization of industrial granular flows 
problems is widely accepted by the industries of this field, the challenge being to promote effec-
tively their industrial practice. In this paper, we attempt to make an exploratory step in this regard 
by using a numerical model based on continuous mechanics and on the so-called Particle Finite 
Element Method (PFEM). This goal is achieved by focusing two specific industrial applications 
in mining industry and pellet manufacturing: silo discharge and calculation of power draw in 
tumbling mills. Both examples are representative of variations on the granular material mechani-
cal response – varying from a stagnant configuration to a flow condition.  
The silo discharge is validated using the experimental data, collected on a full-scale flat bottomed 
cylindrical silo. The simulation is conducted with the aim of characterizing and understanding the 
correlation between flow patterns and pressures for concentric discharges.  
In the second example, the potential of PFEM as a numerical tool to track the positions of the 
particles inside the drum is analyzed. Pressures and wall pressures distribution are also studied. 
The power draw is also computed and validated against experiments in which the power is plotted 
in terms of the rotational speed of the drum.  
 

1. Motivation 

Many industrial processes involve the manipulation and transformation of granular materials.  
The presence of granular flows during these processes is a strong source of problems whose ori-
gins are only partially understood. For this reason, it is important to explore and analyze via ex-
perimental and numerical models the physical mechanisms that take place when granular flows 
are present. This work focuses on two industrial problems related to pellet manufacturing in min-
ing industry: the silo discharge and the tumbling mills. 
 
Silo discharge modeling 
 
Granular material behavior in silos has been a topic of interest since late nineteenth century; this 
is due to the wide number of problems that are present during its storage and discharge. The prob-



2 
 
 
 

lems found are not only on the structure itself but also on the material.  The problems involve 
instabilities on the foundations, buckling of silo walls, blockage of the material at the outlet, and 
discharge overpressures [1].   
Internal pressures and the pressures exerted on the silo walls are strongly influenced by the flow 
patterns exhibited by the material during its discharge [2]. These flow patterns can be broadly 
classified as either mass flow or funnel flow [3]. Mass flow patterns are smooth and relatively 
uniform, with velocity profiles exhibiting highest values at the centre-line of the outlet, and de-
creasing progressively toward the silo walls. Mass flow patterns presents a depression on the bulk 
of the material since the discharge is faster at the centre than at the outer portions. On the other 
hand, funnel flows are characterized by a stagnant zone toward the silo walls, a region of vertical 
motion in the centre of the outlet, and a transition or jamming zone [2]. The definition of mass 
flow or funnel flow is a function of the material properties, the geometry of the silo, and the inter-
action between the silo’s wall and the granular material.  
Experimental tests show that for large height to breadth ratios the mass flow is more predominant, 
while for lower ratios the funnel flow is more frequent [1]. It is also observed that funnel flow 
tends to form for large hopper coefficients and large wall friction coefficients, while for smaller 
values the predominant flow is a mass type. 
The pressures during discharge are strongly influenced by the flow regime.  It is important to 
understand and define the pressures since they have repercussions on the structure of the silo and 
its functionality [4]. Therefore, it is essential to establish models to predict these conditions. Un-
fortunately, this is not a trivial task, either on experimental or numerical models.  Experimental 
models have the drawback of the affectation on the response due to the scale factor, and the diffi-
culties due to the instrumentation required, for example in the case of obtaining  the flow patterns,  
since walls are opaque and there is no  devise able to directly measure and observe those patterns. 
 
Tumbling mills modeling 
 
The second industrial application herein presented is the milling of granular material in a tum-
bling drum.  Comminution of the material consumes 50% of the total mineral processing cost [5]. 
Studies have found that grinding of granular material in tumbling mills are inefficient, since large 
amount of energy is wasted in unproductive impacts ---in the sense that such impacts do not break 
particles [6]. The study of charge motion during the milling process allows us to understand how 
energy is consumed and which efforts could be done in order to optimize the operating conditions 
of the drum. 
As may be surmised, this optimization task is a rather difficult one, mainly because material be-
havior within the drum is poorly understood. Different techniques have been proposed in order to 
monitor the performance of a tumbling mill. Among them,  the use of mill noise and mill vibra-
tions, to measure the degree of filling [7], the force exerted by the material on the lifters [6], and 
the power readings during the grinding process, to interpret the filling degree of the material [5], 
are found. Measuring the driving torque and relate it to the process by numerical models can be 
one possible way to validate, control and optimise the grinding system. Since the numerical mod-
el herein presented is developed in the framework of continuum mechanics, it is straightforward 
the calculation of the system energy, via the balance equations, for its validation with experi-
mental results. 
It is important to have in mind the complex nature of the milling process when creating models. 
To decrease the gap between model and reality more physically precise models are necessary. 
Measurements are important for improving the milling efficiency and gaining more understanding 
of the process itself. A step towards a more physically correct numerical description of mill sys-
tems was the combined DEM-FEM model presented by[8]. With the DEM-FEM model forces 
and mechanical waves as well as structural responses and their influence on the charge motion 
can be studied. The model gives the opportunity to optimize the material selection of the mill 
structure. In the work by[9] a combined SPH-FEM model was used in simulations of tumbling 
mill processes. 
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Therefore, it is reasonable to expect that numerical modeling of both problems ---the silo dis-
charge and the tumbling mill--- can offer the possibility to explore the effect of input parameters 
that are not easily accessible to experimentation. 
 
Several numerical strategies have been proposed over the last few years to study granular flows. 
Hard spheres seem the simplest way to simplify the level of difficulty in modeling granular mate-
rial flow. In this case, collisions are so brief that penetrations are not considered and the loss of 
momentum is characterized by means of a coefficient of elastic restitution. This approximation is 
the basis of the so called ‘collisional’ or ‘event-driven’ (ED) models [10]. In contrast, the soft 
sphere approximation is based on the penetration depth. The interaction force between spheres 
depends on this magnitude.  
Representative models in this group are based either on the molecular dynamics (MD) or on the 
distinct element (DEM) methods. Both methods are identical in spirit: penetration is detected 
when the distance between the centers of two spheres is less than the sum of their radii. In this 
case, a penetration force, defined in terms of contact and friction models, is activated. Coulomb 
law is usually used as a friction model though more complex interaction can also be included. The 
motion of the spheres is governed by means of the Newton’s second law and the method of time 
integration is explicit. The consequence, is that the time step must be below a critical value, oth-
erwise the solution can diverge due to numerical instability [11]. Recent versions of DEM extend 
the interaction to complex polyhedral blocks.    
The different methods described above have in common the discrete character of the approxima-
tion:  a sphere represents a small quantity of grains and its motion is traced by classical dynamics.   
 
The other point of view ---the one adopted in the present paper--- is the continuum approxima-
tion. In this case, the granular material is assumed to behave as a continuum that can be described 
by means of a constitutive model and different continuous field variables. At this point, the key 
question is how to obtain the constitutive model and,  for many years, a large number of research-
ers have tried to answer this question. Among the different proposals, two families of models can 
be clearly distinguished, i.e. micromechanics and phenomenological models. In the first family, 
the stress field is the result of a study that comes from molecular dynamics. The second one in-
volves all the models based on continuum mechanics, which in turn can be divided in terms of the 
formulation, i.e. Lagrangian or Eulerian. In the Lagrangian formulation (or description), the vari-
ables are expressed in terms of the initial configuration. The consequence, in terms of a finite 
element mesh, is that the element distortion is so high that accuracy decreases drastically and 
even the computation can be interrupted abruptly. These problems explain why a large family of 
continuum models, for granular materials, is formulated in Eulerian description. In this case, the 
granular material is treated as a non-Newtonian viscous fluid, in which the balance momentum 
equations are verified over a fixed undistorted finite element mesh.  Serious limitations are found 
when the method is needed to handle complicated boundary conditions, as is the case of the free 
surface presented during the flow of granular materials.  
 
To circumvent these problems, a Lagrangian based model, in the frame of PFEM [12], is pro-
posed herein. The spatial discretization of the corresponding variational equations is formulated 
in the new framework, in which the nodes of the spatial domain are continuously reconnected by 
the action of a Delaunay triangulation. In contrast to classical  PFEM approximations, in which 
the free boundary is obtained by a geometrical technique (alpha shape method), in this work the 
boundary is treated as a material surface, where the boundary nodes are removed or inserted by 
means of an error function.  
The constitutive model is based on the concepts of plasticity at large strains. The yield surface is 
defined in terms of a Drucker Prager yield function characterized, in turn, by two constitutive 
parameters (the cohesion and the internal friction coefficient), and provided with a deviatoric 
plastic flow. The elastic part is defined by a hypoelastic model. These expressions are accompa-
nied by the corresponding governing equations and boundary conditions. 
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The remaining of the paper is organized as follows. Section 2 is devoted to the description of the 
numerical model, we start with a brief description of PFEM and the modifications introduced here 
concerning insertion and remotion of particles. The section continues with a description of the 
proposed constitutive model, elastic response, yield criteria, and flow rule, among others.   Sec-
tion 3 focuses on two industrial applications: silo discharge and power draw prediction in tum-
bling mills. Both examples are representative of variations on the granular material mechanical 
response – varying from a stagnant configuration to a flow condition. Finally, in Section 4, some 
concluding remarks are presented. 

2. Numerical model 

2.1. The Particle Finite Element Method 

The Particle Finite Element Method (PFEM) is a FEM-based particle method [12], initially pro-
posed for the solution of the continuous fluid mechanics equations. The main objectives were, on 
the one hand, to develop a method to eliminate the convective terms in the governing equations,  
and, on the other hand,  the introduction of a technology, based on the alpha shape method used in 
other areas, able to deal  with free boundary surfaces. The interpretation of the method has 
evolved from a meshless method, in which the nodes are supposed to be particles that move ac-
cording to simple rules of motion, to a sort of updated lagrangian approach in which the ad-
vantages of the standard FEM formulation for the solution of the incremental problem are used.  
In the PFEM approach, the continuum material is modelled using an updated lagrangian formula-
tion, and the finite element method is used to solve the variational incremental problem. Hence, a 
mesh, discretizing the domain, is generated in order to solve the governing equations. In this con-
text, discretization nodes can be regarded as material points whose motion is followed during the 
time stepping solution. A typical solution with the PFEM contains the following steps. 
 

1. Discretize the domain with a finite element mesh. The mesh generation is typically 
based on a standard Delaunay triangulation.   

2. Identify the external boundaries of the domain. In this step the Alpha Shape method 
[13] is used for the boundary recognition. 

3. Solve the variational incremental problem. The solution provides the state variables 
at each time step: displacements, velocities, pressure, and stresses, among others. 

4. Update the nodal position with the displacement values obtained in step 3. 
5. Generate a new mesh. The mesh results from the Delaunay triangulation of the up-

dated position of the nodes. 
6. Go back to step 2 and repeat the solution process for the next time step. 

 
The continuous reconnection introduced in step 5 is the key strategy to circumvent the typical 
mesh distortion generated when a Lagrangian description is used with problems involving large 
strains.  
Although PFEM was initially applied to problems in the field of fluid mechanics, it is being cur-
rently applied to a wide range of simulation problems [14-16],[17]: filling, erosion, mixing pro-
cesses, thermo-viscous processes and thermal diffusion problems, among others. First applica-
tions of PFEM to solid mechanics are found in [18] to problems involving large strains and rota-
tions, multi-body contacts and creation of new surfaces (riveting, powder filling and machining). 
Applications to the response of rockfill dams on overtopping conditions, via a non-Newtonian 
fluid, can be found in [19]. In this work, we extend the application to the numerical simulation of 
granular flows via a visco-elastoplastic model.        
The standard PFEM presents some weaknesses when applied to granular flow simulation. The 
boundaries generated using alpha-shape method may adversely affect the predictive capacity of 
the model in many situations and aspects: lack of mass conservation; absence of equilibrium on 
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the boundary due to the introduction of artificial perturbations and generation of unphysical weld-
ing of the granular material and the walls of the container.  To deal with these problems, we pro-
pose in this work a free-surface construction method that uses a constrained Delaunay triangula-
tion combined with procedures aimed at improving the quality of the new mesh (by insertion, 
remotion and reposition of the nodes). These procedures are applied locally and not in every time 
step. Specific size metrics control node insertion and remotion, while Laplacian smoothing algo-
rithm drives the repositioning of nodes.   

2.2. Continuum modelling of dense granular flows 

The assumption of modelling a discrete media as a continuum has been subject of extensive 
study. It has been demonstrated that the differential equations used to define the kinematics of 
their deformation are correct as the number of particles increases ([10], [20]).  The continuum 
approach allows us to interpret the particle interaction as a transmission of energy through the 
domain by a mathematical formulation.  Under some considerations, the microscopic relations of 
the particles are properly transformed into macroscopic equivalents in terms of the material prop-
erties.   
The definition of a unique model capable of representing any physical condition for any material 
is difficult to establish (if not impossible).  Granular materials models are not an exception in this 
regard.  In what follows, we present a constitutive model for dense granular flows able to differ-
entiate stagnant and flow zones as well as the jamming transition between these conditions.  
 
The model is formulated in the framework of large deformation plasticity theory. The yield func-
tion is defined in stress space by a Drucker-Prager yield surface equipped with a deviatoric flow 
rule. This plastic flow condition is considered nearly incompressible so the proposal is integrated 
in a u p- mixed formulation with the pressure stabilization proposed in [21]. 
 
Model limitations  
 
It is important to narrow the flow conditions and granular materials that the model is intended to 
represent. The model is proposed for dense granular materials, aimed at characterizing the static 
condition of the materials at rest, as well as for slow granular flows including its jamming transi-
tion. The statement of dense granular flows implies small velocities in the material as well as the 
assumption for the granular particles to remain in contact while the material spreads or flows.  
The mechanical properties of dense granular materials are governed by the frictional interaction 
between the particles, which means that the deformations that the material experiences while 
flowing do not present significant volumetric variations; this fact allows one to assume that the 
material is nearly incompressible.  In this sense, the model is not suitable for industrial processes 
where granular materials are subject to compaction or to dispersion. 
In order to represent a frictional response between particles, the presence of any other material 
between the grains is ignored. The isotropy assumption of the model is conserved maintaining a 
high homogeneity in size and shape of the granular particles. Even so, this assumption is achieved 
when the particle size is considerable small compared to the size of the domain under considera-
tion. 

2.3. The constitutive model 

2.3.1. Kinematics of plastic large deformations 

Consider the granular material as a deformable body B consisting of continuously distributed 

material occupying, at a reference time 0t , a region 0W  of dn ( 2,3dn = ) . The deformation at 

time t  relative to the reference configuration is given by a smooth mapping 0: dn
t tW W Ìφ 
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.  Let /t t=¶ ¶V φ  and / t=¶ ¶Α V  be the material velocity and the material acceleration, 

respectively; and let denote by ( , )tv x  and ( , )ta x  the spatial counterparts of V  and Α , respec-

tively.  On the other hand, let v  bet he spatial velocity gradient and 1
2 ( )T=  +d v v  the 

symmetric part of d , termed the spatial rate of deformation tensor.  
As is customary in the literature of large plasticity theory, we adopt the assumption of the local 
multiplicative decomposition of the deformation gradient of tφ , denoted by F , into plastic and 

elastic parts: 
 e p=F F F  (1) 

where pF  represents a pure plastic deformation from 0W  to a certain stress-free intermediate 

configuration [22], and eF  a pure elastic loading from such an intermediate configuration to the 
current configuration .tW Likewise, we shall denote by detJ = F  the determinant of the defor-

mation gradient.    
For the particular case of granular material flows, which is the one that concerns us, it is also 
assumed that elastic deformations are, comparatively with the total ones, small. We shall thus 
limit our considerations to a kinematic description that considers arbitrarily large plastic defor-
mations and small elastic strains. Under such circumstances, the distinction between the above-
mentioned intermediate state and the current configuration tW  becomes negligible, and tensorial 

fields defined naturally at the intermediate configuration can be transformed directly into spatial 
tensorial fields. A valuable implication of this is that the Almansi strain tensor 

1( ) 1/ 2( )T- -= -e x 1 F F  inherits the additive structure of classical small strain formulations 
[23]: 

 e p= +e e e  
(2) 

being 
1

1/ 2( )
Tp p p- -

= -e 1 F F  and ee the plastic and elastic parts, respectively, of the Almansi 
strain tensor. This property that, incidentally, holds also for the rate of deformation tensor: 

 e p= +d d d  
(3) 

where ed  and pd are the elastic and plastic parts of rate of deformation tensor, respectively, will 
afford a remarkable aspect of simplicity in deriving the ensuing constitutive equations.   

2.3.2. Elastic response  

In many industrial applications, involving granular flows, the size and localization of stagnant 
zones formation determines the flow behavior. The correct determination of these zones requires 
the introduction of a specific model tool. We propose the formulation of an elasto-plastic model 
capable of predicting stagnant zones and flow regions simultaneously in any spatial domain.  For 
the elastic response, we propose a class of model of phenomenological, rate independent, plastici-
ty obtained by an ad hoc extension of the infinitesimal theory, which relies on a hypoelastic char-
acterization of the elastic behavior. The advantage of this model lies on the conceptual simplicity 
of its formulation. We write the elastic response in the following form: 

 :[ ]p
vL = -τ c d d  

(4) 

where ( )vL  denotes the Lie objective stress rate, and τ  denotes the Kirchhoff stress tensor. We 

assume that the spatial elasticity tensor c is given by: 
 

 1
32 ( )m k= - Ä + Äc I 1 1 1 1 (5) 

where I  and 1 , with components [ ] / 2abcd ac bd ad bcI d d d d= +  and 1ab abd= , are  the fourth 

and second order symmetric unit tensors, respectively. The parameters m  and k  represent the 
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shear and bulk elastic moduli, respectively. In the case of general granular materials, these pa-
rameters are not constant but depend on a hardening internal variable [24, 25]. For iron pellets, 
and according to experiments conducted by Gustafsson [26], the Poisson’s coefficient can be 
regarded, in a first approximation, as constant ( 0.21)n = ; by contrast, k  is strongly influenced 
by the level of isostatic compression. The following law corresponds to the fitting equation to 
iron pellet bulk’s modulus values, obtained in instrumented confined compression tests carried 
out by Gustafsson [26, 27]: 
 

 
1 2( )p a a pk = +

 
(6) 

 
where p represents the isostatic pressure, with 1 60.0a = MPa and 1 150.0a = .  

2.3.3. Yield condition 

The yield condition used in this work is derived, essentially, from the Drucker–Prager type crite-
rion. This yield condition is formulated in terms of the Kirchhoff stress invariants 

1 1
13 3 trp I= = τ (mean stress), and 22 dev : devq J= = τ τ (norm of deviatoric stress); its 

envelope is determined by the following equation: 
 

1 2( ) 0q b p bf = + - =τ (7) 

This equation represents a straight line in the p q-  plane. Parameter 2b  is customarily referred 

to as cohesion, and it can be interpreted as the shear strength under zero hydrostatic stress (inter-
section of the Drucker–Prager yield surface with the q -axis); 1b  represents the slope of the 

Drucker–Prager line, and it is termed the parameter of internal friction. With experimental values 
of cohesion and the frictional coefficient, one can plot q  as a function of p  when the material 
yields. To achieve this, different cylindrical triaxial tests can be carried out:  1) conventional tri-
axial compression and conventional triaxial extension, with the stress path having a positive 
slope, 2) triaxial compression, triaxial extension, and simple shear, with vertical stress paths and,  
finally, 3) reduced triaxial compression, and reduced triaxial extension, with a stress path with a 
negative slope. Gustafsson et al. [26] performed  various sets of compression and shear tests on 
iron ore pellets, and arrived at 1 1.0b =  and 2 0b =  as numerical values for those parameters.  

2.3.4. Flow rule 

As is customary in the framework of incremental plasticity theory, we apply the concept of flow 

rule to obtain the plastic rate of deformation tensor pd  in terms of the plastic flow vector m  
associated to the yield surface: 

 p l=d m  
(8) 

The positive scalar factor l , referred to as consistency parameter or plastic multiplier must obey 
the standard Karush–Kuhn–Tucker loading/unloading conditions, that in the context of rate-
independent plasticity read:  

 0, ( ) 0,l f³ £τ
 and  ( ) 0lf =τ

 
(9) 

along with the consistency condition ( ) 0τlf =   [22]. Furthermore, each plastic flow vector m  

is presumed to be aligned with the gradient of a certain plastic potential function, j , i.e. 

/j=¶ ¶m τ . In this work, the following plastic potential is proposed: 
 21

2( )= devj τ τ
 

(10) 

Therefore, the plastic rate of deformation tensor can be written as  
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 dev .p l=d τ
 

(11) 

Since pd  is proportional to a deviatoric tensor, the flow rule asserts plastic incompressibility. 
While, as noted in [28], dilation in dense flow does occur, it is typically on the order of only a few 
percent and quickly reaches a steady value over large deformations. Moreover, relative density 
(or packing fraction) is not necessary for purposes of computing flow motion; hence, the approx-
imation of plastic incompressibility should have negligible effect on the velocity field of a dense 
granular flow. Note that this approximation affects only the stress state in the static regions – 
hydrostatic stresses are fully elastics.   
Equations (4), (7), (9), and (11) define the elasto-plastic part of the proposed model for granular 
flows.  

2.3.5. Visco-plastic regularization 

As pointed out in the introduction, constitutive equations for granular material flows are still a 
matter of debate. One difficulty is that granular material can behave like a solid (in a powder 
heap), a liquid (when poured on an inclined plane) or a gas (when strongly stirred up). For the 
solid-like state, the elasto-plastic constitutive model described in the foregoing is proposed. How-
ever, the intermediate flow regime, where the granular material flows like a liquid, as in a silo 
discharge, requires the inclusion of viscous behavior. The fundamental features of granular flows 
in this regime are: a yield condition (a shear stress limit below which the grain doesn’t move) and 
general nonlinear dependence on shear rate when flowing. In this sense, granular behavior shares 
similarities with classical visco-plastic models. Here we propose a visco-plastic regularization via 
a Duvault-Lions type model. The new flow rule reduces to 

 11 :[ ]
R

vp ep
t

-= -d c τ τ (12) 

where Rt  refers to the relaxation time and  epτ  corresponds to the solution of the elasto-plastic 

part of the model (described in the foregoing). Box 1 summarizes the constitutive model proposed 
in this work to describe the behavior of a dense granular material. 
 

Elastic response 
  :[ ]vp

vL = -τ c d d
Yield function and elastic domain in stress space 
  

{ }

1
1 23

ˆ

( ) dev ( tr )

ˆ / ( ) 0

b b

Et

f

f

= + -

= £

τ τ τ

τ τ
Flow rule 
  11 :[ ]

R

vp ep
t

-= -d c τ τ

 epτ  is solution of the following sub-problem 
            :[ ]p

vL = -τ c d d
             devp epl=d τ
           0, ( ) 0, 0l f lf³ £ =τ 
  
Box 1. Visco-elasto-plastic model for dense granular material. 
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2.4. Governing equations 

Next, we summarize the equations of motion, in local form, relevant to numerical implementation 
in the framework of PFEM. The local equations of motion in the Eulerian description take the 
form: 

 div r r+ =σ b a    in   0( )t tjW = W    (13) 

where 1
J=σ τ  is the Cauchy stress tensor, r  is the density in the current placement, b  is the 

body force per unit of volume in  tW  and div( )⋅  denotes the divergence of .σ  We let t¶W  be the 

boundary of tW  and assume that the deformation is prescribed on t tj¶ W Ì¶W  as  

 (prescribed) ont t tjj j= ¶ W (14) 

whereas the nominal traction vector s  is prescribed on s t t¶ W Ì¶W  as 

 (prescribed) on s t= ¶ Ws s (15) 

Now, we summarize the weak formulation of momentum balance equations as a first stage toward 
the numerical implementation within the framework of PFEM.  
We let Vj  be the space of admissible displacements  

 { }: / ( ) 0, fordn
t tVj jj=  = Î¶ Wv v x x (16) 

we call VjÎv  an admissible displacement. Taking the dot product with any VjÎv , integrating 

over tW , and using the divergence theorem, we get 

 

( ) ( ) ( )

:

t t t t

d d s ds d

jj j j

r r
W W ¶ W W

-  W+ ⋅ W+ ⋅ = ⋅ Wò ò ò òσ v b v v a v

 

(17) 

 
that is the integral form of the momentum balance equation in its spatial form. The constitutive 
model described in Box 1, the system of equations (17), the boundary condition (14), and the 
corresponding initial conditions, define the whole continuum problem to be solved. Unfortunate-
ly, due to the inherent incompressible character of the proposed deviatoric flow rule, the so-called 
locking phenomena may emerge when solving the weak form of the motion equation using stand-
ard, irreducible formulations. In order to circumvent this problem, a mixed formulation, stabilized 
using the polynomial pressure projection [21], is proposed. In this case, the Cauchy stress tensor 

in equation (17) is decoupled into its deviatoric dσ and volumetric parts 
 d p= +σ σ 1  

(18) 

where  p  is a new unknown of the problem that represents the pressure. The weak form of the 
new additional equation reads 

 1

( )

( ) 0

t

mJq p d
j

d t
W

- W=ò (19) 

for any qd , square-integrable function over ( )tj W . mt  denotes the media stress of the Kirch-

hoff stress tensor τ (solution of the constitutive model summarized in Box 1). Equation (19) is 
completed with the addition of a stabilization term, proposed by Bochev in [21] and here extend-
ed for its use in large strains contexts. The inclusion of this last equation (19) defines the ultimate 
continuum problem to be solved.  

2.5. Numerical implementation 

Although the thorough treatment of issues pertaining to the discretization and numerical imple-
mentation of the model is not the goal of this work, it is convenient to, before launching into de-
tails of the validation of the model, provide a brief overview of some aspects that may result cru-
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cial for acquiring a proper grasp of the ensuing computed results. The algorithm used for integrat-
ing the constitutive differential equations is the so-called Impl-Ex scheme, originally proposed by 
Oliver et al. [29], and further elaborated in Oliver et al. [30], to improve the robustness of implicit 
algorithms in the numerical simulation of material failure. They coined the term Impl-Ex (IM-
PLicit-EXplicit) to suggest that the method shares some of the features of both implicit and ex-
plicit integration schemes. Roughly, the essence of the method is to solve explicitly for some 
variables (in the sense that the values at the beginning of the increment are presumed known) and 
implicitly for other group of variables. This methodology, in turn, entails the solution at each time 
increment of the non-linear system of equations stemming from the implicit backward-Euler dif-
ference scheme, i.e. the so-called return-mapping equations, since the above mentioned group of 
‘‘explicit” variables are but extrapolated values of the same quantities computed implicitly at 
previous time steps. 
In regard to the finite element approximation, an updated lagrangian viewpoint has been adopted 
for describing the motion of the mesh, with a mesh update procedure based on the so-called Parti-
cle Finite Element Method (PFEM). This method imposes a limitation concerning element tech-
nology: finite elements are to be three-noded triangular elements (linear). To avoid the locking 
problem that may emerge in the response in using such simple finite elements, a finite element 
approximation based on a mixed variational formulation, with displacements and pressure as 
basic variables, and continuous linear interpolation for both fields has been implemented [21]. 
The formulation has been specialized to address plane strain and axisymmetric problems.  
 
Tools are modeled as rigid bodies.  Granular-tool friction-contact conditions are imposed using 
the so-called Contact Domain Method described in Oliver [31], Hartmann [32] in which interact-
ing portions of contacting bodies are identified via an interface mesh. The interface mesh, having 
zero thickness, has the same dimension as the contacting bodies, and provides a complete, contin-
uous and non-overlapping, pairing of the contact surfaces.  
The contact domain can be easily incorporated into the framework of PFEM, overcoming some 
deficiencies of the node-to-segment pairings, like dependence on the choice of master or slave 
faces and over-constraining of some specific parings. The displacement field on the contact do-
main is naturally taken from the interface of the contacting bodies and the definition of the strain 
measures is straightforward. The core of the method is to discretize the domain within the con-
tacting bodies via a constrained Delaunay triangulation, to allow the accurate definition of the gap 
within the active contact area. The contact boundary condition is then enforced in the continuum 
by the use of Nitsche’s technique. The resulting method was proved to be robust and efficient for 
a variety of demanding problems in computational mechanics, and herein is proposed to solve the 
considered industrial granular flow applications.  

3. Industrial applications 

This section focuses on two industrial applications silo discharge and power draw prediction in 
tumbling mills. Though the considered granular material is here iron pellets, both examples are 
representative of the mechanical response – varying from a stagnant configuration to a flow con-
dition– for a large variety of granular materials.  
The silo discharge is validated using the experimental data, collected by Rotter et al. [33], on a 
full-scale flat bottomed cylindrical silo.  The simulation is conducted with the aim to characterize 
and understand the correlation between flow patterns and pressures for concentric discharges. 
Numerical and experimental flow patterns are compared for different levels of discharge. The 
effect on the flow patterns due to variation of the mechanical properties and the outlet diameter is 
also analyzed. In the second example, the potential of PFEM as a numerical tool to track the posi-
tions of the particles in the interior of the drum is analyzed. Pressures and wall pressures distribu-
tion are also studied. The power draw is also computed and validated against experiments in 
which the power is plotted in terms of the rotational speed of the drum. 
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3.1. Silos discharge: experimental setup 

The importance of this example lies on the use of a full-scaled silo; since it is identified the influ-
ence on the experimental data given by the scale of the model ([1],[4]). The model is a full-scaled 
flat-bottomed cylindrical silo, instrumented to study the flow patterns and their correlation with 
the wall pressures.  Several conditions of discharge and materials were tested. 
The silo is 4200 mm in diameter with 9500 mm high barrel section; see Figure 1(a). It has three 
480 mm diameter outlets: one concentric, one fully eccentric and one half way between. Each 
outlet has a hydraulically controlled slide gate, which operates from one side. This slide gate is 
opened partially, which makes the outlet in a shape of a circular segment.  
 

(a) (b)

 
Figure 1. Full-scaled experimental silo [33] [4]: (a) Elevation view (all dimensions in mm); 
(b) Seeding of radio tags per levels. 

 
In the experiment, radio tags were placed in the silo with the aim of predicting flow patterns dur-
ing the discharge.  The radio tags were carefully located along and across the material.  A total of 
280 radio tags were placed uniformly at seven different levels and eight spokes for each level 
separated at five different radii, see Figure 1(b). The silo was filled concentrically to avoid locali-
zation of pressures due to particle packing. The filling of the material was stopped at each level 
and the bulk was raked in order to dispense a flat surface; afterward the template with the seeding 
position was located to define the exact position of the tags.  In order to avoid damage of the ra-
dio tags, they were placed inside tennis balls. The logging system for the tags consisted on an 
aerial wired straight into an amplification box.  The signal was processed in order to identify the 
radio tag at the time that it was expelled through the outlet.   
The flow patterns were calculated via an extrapolation of the position of the tags and their time 
residence.  For the position of the tags along the discharge, the authors (of the experiment) define 
the assumption of a trajectory defined by the shortest path, which for many markers and mass 
flow it is correct; and for the velocity it was determined an exponential changing velocity sup-
ported by the time residence of the markers. It was observed that even for concentric discharge,   
a full symmetric pattern was not obtained; however, the difference is too slight to be considered 
significant.  
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The experiment results are taken from the case corresponding to a concentric discharge of iron 
ore pellets – several technical aspects of the experiment, described as PCB test, are reported in 
Ref. [33]. The silo was filled concentrically and the solid surface raked flat at a mean height of 
6400 mm. 
The mechanical characterization of this material was carefully analyzed by Gustafsson, in Ref. 
[26]. The most relevant mechanical properties are:  the particle size has a range between 12-15 
mm, the bulk density is 2.3 kg/m3, the reported internal friction coefficient is 0.67, the bulk 
modulus is 32Mpa and the wall friction between iron ore pellets and steel plate is 0.6.  
 

3.2. Silos discharge, numerical simulation 

The computational model is a flat-bottomed cylindrical silo with a concentric outlet. The dimen-
sions and filling height is based upon the full-scale experiments by Rotter. The diameter of the 
silo is 4200mm and the filling height 6400mm. A full opening outlet of 480 mm diameter is used 
as a reference example. The simulation is performed with the PFEM method described above 
using an axisymmetric formulation.  The edge of the outlet is rounded --- using a radius of 40 
mm--- in order to reduce geometrical singularities. A non-uniform discretization of 6250 nodes is 
used to describe the initial configuration of the pellets domain; each node represents 3 degrees of 
freedom (2 for displacements and 1 for the pressure) as consequence of using a mixed formula-
tion. The non-uniform discretization is fundamental for the simulation, since the opening of the 
outlet is considerable small compared to the size of the silo. The average element size is 100 mm, 
except near the outlet, where the element size is 25 mm, approximately.  
In all the examples, calculations have been made with the following material data:  bulk density 

2.3r= kg/m3, bulk modulus k= 60 MPa, shear modulus G = 7 MPa, internal friction coeffi-

cient 1 1b =  (where the internal friction coefficient is 30.57o ), cohesion 2 0b = , relaxation time 

Rt =2´10-7 sec,  Coulomb’s dry friction m=0.6. The simulations has been run with a time-step 

length tD =  2´10-4 sec. The total time analyzed is 95 sec, corresponding to a volume silo dis-
charge of 20m3. To get a steady start after the gravity is applied the outlet is closed the first 0.5s 
of the simulation time.  
 
The PFEM reconnecting process is one of the basic tasks that allow the method to handle large 
deformation processes.  Nevertheless, it was necessary to introduce additional criteria in the 
remeshing and reconnecting process to define a spatial discretization with a sufficiently high de-
gree of quality.  These criteria allow the finite element mesh having a more homogeneous distri-
bution of the nodes and constraining the boundary in order to define a material surface. 
The domain discretization into particles is a continuous process, repeated for these simulations 
every five time steps.  The remeshing process covers three main steps: insertion (and remotion) of 
particles, particles reposition, and mesh information transference; this process is carried out after 
solving the system equations and updating the coordinates of the mesh.   
The insertion of particles is carried out in those elements attaining a size higher than a reference 
tolerance; the particle is inserted at the center of the element in inner elements.  In boundary ele-
ments, on the other hand, new nodes are introduced if the distance between two adjacent nodes 
exceeds the prescribed tolerance. The elimination of nodes takes into account the average size of 
those elements adjacent at the concerned node; if the averaged size is smaller than a reference 
tolerance, the node is removed. In the case of boundary nodes, if the distance between two adja-
cent nodes is smaller than the tolerance both nodes are removed and a new one is placed in the 
middle.  
Repositioning of particles is a local procedure taking into account the mesh quality of the patch of 
elements connected to a single particle and it is made in terms of  the size and shape metrics de-
fined in Ref. [34]. For those nodes connecting elements with a higher degree of distortion, parti-
cles are repositioned using a standard Laplacian smoothing. Finally, mesh information transfer-
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ence is carried out by mesh projection; it should be noted that this method is different from that 
employed in classical PFEM (a smoothing process defining nodal variables).  
The initial, intermediate and final configurations of the numerical silo are shown in Figure 2. 

(a) (b) (c) 

 
Figure 2. Particle discretization of the domain at different stages of the silo discharge: (a) 
Initial outlet opening, (b) 20m3 of material discharged, (c) last stage of discharge defining the 
remaining material on silo. 

 

3.2.1. Flow patterns comparison 

To compare the numerical results with the experiment, seven horizontal lines in the numerical silo 
are marked and traced through the solution. These horizontal lines coincide with the levels where 
the radio tags were placed. The initial locations of the radio tags are marked in the simulation 
model, and then, the positions at three different volumes of discharge are compared with the 
computer visualizations of the experiment in Figure 3. The blue lines stand for the numerical 
results and the red cross marks for the computer visualization of the tag’s position.  The compari-
son is extended to 17m3 of material discharged.   

radius (mm)

h
ei

g
ht

 (
m

m
)

(a)

radius (mm)

h
ei

g
ht

 (
m

m
)

(b)

0 1000 2000
0

1000

2000

3000

4000

5000

6000

0 1000 2000
0

1000

2000

3000

4000

5000

6000

radius (mm)

h
ei

g
ht

 (
m

m
)

(c)

0 1000 2000
0

1000

2000

3000

4000

5000

6000 Exp
PFEM

 
Figure 3. Flow patterns comparison between experiments and PFEM for different volumes of 
discharge: (a) 1m3, (b) 5m3, (c) 17m3. 

  
In general, the trends between numerical results and the computer visualization of the tags are 
similar in most of the stages. For 1m3 of discharged volume, particles adjacent to the outlet are in 
motion, followed by particles further afield. A velocity wave propagates upward and the funnel 
flow behavior is clearly initiated. Ore pellets located toward the wall remain stagnant – the con-
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tinuous lines, at least for the five lower levels, remain horizontal at a significant distance from the 
wall–, indicating that the material does not crumbles toward the outlet; the material that is dis-
charged is the one located at the center of the silo. 
 
 
 For 17m3 of discharged volume, a ‘‘semi-mass flow’’ or ‘‘mixed flow’’ pattern is established 
with an effective transition at about 1m or 2m above the outlet. This can be seen from the two 
principal zones: an internal funnel flow zone toward the bottom (where particles near the outlet 
move but those elsewhere are stationary), and a mass flow zone toward the top (where all parti-
cles are moving downward). This flow pattern, typical of mixed flow, is appreciated during the 
majority of the discharge period. 
Nonetheless, significant differences with computer visualization data are observed, as we detail in 
what follows.  For 5m3 of discharge, the two blue lines (counting from the top) exhibit a distance 
between them and a small horizontal platform is still apparent; by contrast, the plot of the corre-
sponding tags defines a unique contour level. The material volume defined by the skyline of the 
tags seems less than the one defined by the numerical result, however the experimental volume 
discharged is 5m3.  The progressive decrease of volume observed experimentally at 17m3 of dis-
charge is more pronounced that the decrease in volume predicted by the model, which even retain 
horizontal platforms. This markedly distinct response highlights concern with the characterization 
of the material response, which should clearly receive careful consideration in future improve-
ments of the model. 
These differences between observed and calculated flow pattern responses may be attributed to 
three main reasons. The first one is the numerous simplifying assumptions made in Section 2 in 
deriving the constitutive model, the second reason due to assumptions introduced to be able to do 
the simulation, and the third reason concerns the computer visualization code required to visual-
ize the position of the tags. Among the simplifying assumptions made in the model, we suppose 
that the internal friction coefficient is independent of the pressure or of the material density. A 
similar comment can be done on other parameters like the viscosity (defined in terms of the re-
laxation time).  
Another contributor to these discrepancies may be found in the elementary character of the out-
let’s size and shape. As commented in section 3.1, the outlet has a hydraulically controlled slide 
gate, which is opened partially, making the outlet in a shape of a circular segment; by contrast, in 
order to minimize the computational cost, we assume an axisymmetric geometry, removing in 
this way the intrinsic 3D character of the outlet. The third reason is the computer visualization 
code itself. As pointed out by the authors of the experiment in [4], the interpretations of the resi-
dence time measurements were made following previous studies by portraying residence times in 
horizontal and vertical cross-sections through the silo. These contours are more as a qualitative 
indicator of the flow pattern than a quantitative one. 
 
 An alternative numerical representation of the flow patterns is discussed in what follows. The 
idea is to plot in the same domain the evolution of a fixed material line. In order to get a clear 
visualization only a few time steps are included in the analysis. The different positions of the odd 
levels (counting from the bottom) have been drawn in Figure 4. There are plotted several particles 
at each level identified by black dots and joined by a continuous blue line; the material position of 
the particles at different time steps defines the flow mechanisms present during its discharge. 
It is identified a similar pattern of discharge on all the levels which define the evolution of a fun-
nel flow with a small contribution of a mass pattern.  The particles located close to the wall do not 
present a noticeable separation in their relative position, but, close to the outlet, they change ab-
ruptly as they converge on the flow.  The discharge mechanism is not considered fully of the fun-
nel type, since it is identified that the material located toward the wall is not completely stagnant, 
i.e. it is observed that the particles diminish their level, indicating a discharge of some material 
under them.  
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Figure 4. Evolution of the position for different levels during the material discharge. 

 

3.2.2. Influence of material and geometric parameters on the flow patterns 

The advantage of numerical simulations is the capability of easily varying parameters in order to 
have a wider understanding of the phenomenon; in this section it is studied the influence of the 
material and geometric parameters on the discharge mechanisms of a silo. 
The first set of examples corresponds to the study of the flow patterns varying the internal friction 
coefficient.  In order to identify a proper variation due to this coefficient, it was defined a set of 
values above and under the reference one; this material coefficient was varied using the following 
set 1b =  [0.7, 0.85, 1, 1.15] – the calibrated coefficient with respect the experimental essay is

.b =1 1 00 .   
The results of this study are summarized in Figure 5, where the flow patterns for the set of inter-
nal friction coefficients are compared.   
In the figure are plotted, in a front view with a continuous blue line, the position of the markers at 
each level for different volumes of material discharged – 1m3, 5m3, 10m3, 15m3, and 20m3; with a 
dotted red line, it is marked the original height for the second and fourth levels, to observe its 
variation during the discharge. The front views, for the four cases, show, from left to right, how 
the flow evolves since the material is released.   
In the four cases, the flow is identified as being of the funnel type; it is observed on the first fig-
ure, 1m3, that the flow is formed at the centre or axisymmetric axes of the silo.  As the material 
continue to be discharged, the stagnant zones are more clearly identified – shown at the fourth 
and fifth figures of each internal friction coefficient, corresponding to 15m3 and 20m3 of material 
discharged. 
As it is expected, the internal friction coefficient of the model plays a fundamental role in the 
behavior of the material.  Lower values of internal friction coefficient allow the material to devel-
op larger deformations for the same external excitation – in this case gravitational forces. Figure 
5(a) shows a funnel flow with a high contribution of mass flow during the discharge, which is 
described by a flow nourished by material located of the bottom region of the silo.  The lower 
levels of markers show a narrow region of stagnant material toward the wall, which describes a 
funnel flow. The mass flow contribution is identified by the large amount of material discharged 
from the bottom of the silo since the upper tags markers remain on the silo – level 6 and 7 for 
15m3 and level 7 for 20m3 of material discharged. 
The funnel flow is recovered with a slight increment on the internal friction coefficient. Figure 
5(b) displays the flow patterns obtained for a discharge using 1b = 0.85. It is observed a wider 

region of the stagnant zone, releasing material of the upper levels.  Comparing with previous in-
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ternal friction coefficient, it is observed that the uppermost level has been released at 15m3 of 
material discharged. 
The flow patterns corresponding to the reference internal friction coefficient are plotted in Figure 
5(c).  The funnel is achieved with the discharged of 15m3 of material – material from the last 
level has been discharged; and the stagnant zones are wider as expected.  A higher value than the 
reference example was used for the internal friction coefficient, in order to force a more pro-
nounced flow funnel.  Figure 5(d) shows the flow patterns for a value of 1b = 1.15 (correspond-

ing to a Mohr-Coulomb internal friction angle 34.77oq » ).  As the internal friction coefficient is 
increased, the stagnant zone is increased toward the centre of the silo defining a vertical narrow 
region of flow closer to the axisymmetric axis. Since the funnel flow is more pronounced, the 
material corresponding to the upper levels of the marker is released since the first 10m3 of materi-
al discharged.  
The influence of the internal friction coefficient on the discharge mechanisms could be summa-
rized studying the flow patterns present at 20m3 for each friction coefficient value.  It was marked 
with a black cross mark at the inflection point of the curvature of each level of the markers. It is 
identified that the flow encompasses a wider region as the internal friction coefficient is smaller; 
for 1b = 0.7 the loosen material present an elliptic region, while, for a granular media with 1b =
1.15, the loosen material flow is defined in a narrow vertical region. 
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Figure 5. Variation of level markers during material discharge – discharge at 1m3, 5m3, 10m3, 15m3, and 
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20m3 – for different internal friction angles: (a) .b =1 0 70 , (b) .b =1 0 85 , (c) .b =1 1 00 , and (d) .b =1 1 15 . 

The second study consists of the analysis of the opening size of the outlet on the discharge of the 
silo.  From the previous set of examples, it is identified a strong influence on the flow type due to 
the internal friction coefficient; even though, it is indispensable to study the dependency of the 
flow as the dimensions of the outlet are modified.  The study analyzes the flow patterns during 
discharge for three different outlet sizes and constraining the value of the internal friction coeffi-
cient with the reference example 1b = 1.  The radii to explore, for the full-circular outlet, are: 

170mm, 240mm, and 310mm –the outlet radius used in the reference example shown in the pre-
vious section is 240mm, the corresponding flow patterns were plotted in Figure 5(c). 
Figure 6, compares the variation of the level markers as a function of the flow type for the re-
maining two radii at 1m3, 5m3, 10m3, 15m3, and 20m3. The continuous blue line denotes the evo-
lution of seven levels of the markers, and the dotted red lines are used, as in previous figure, as a 
reference for the height of the second and fourth levels. It is observed that, for both discharges, 
the predominant flow is of funnel type. Even though, the patterns show a variation on the defini-
tion of the stagnant zones and the flow region on the silo.  
 Figure 6(a) shows the evolution of level markers for the smallest radius used for the outlets; the 
flow patterns show a broader stagnant zone than for larger radius, see Figure 5(c) and Figure 6b) 
for  R mm= 240 and  R mm= 310  respectively. The flow region is defined by a vertical narrow 
region located at the center of the silo; although it is observed a delay on the discharge of the 
upper levels – the material on these levels remains inside the silo after 20m3 of material dis-
charged. 
The largest radius of the outlet shows likewise a semi-mass flow discharge.  In contrast with the 
smaller outlet, the core of the funnel flow spreads toward the walls on the upper levels of the silo.  
This reduction of the stagnant zone on the upper levels appears even at the first stages of the dis-
charge (1m3 and 5m3 of discharged material in Figure 6).  
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Figure 6. Variation of level markers during material discharge – discharge at 1m3, 5m3, 10m3, 
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15m3, and 20m3 – for different outlet radius: (a) R mm= 170 , (b) R mm= 310 . 

 

3.2.3. Velocity fields during silo discharge 

Velocity fields on the silo are information required to determine design parameters, as the resi-
dence time distribution, mixing properties of the material, and the rate of wall wear [2]. Numeri-
cal simulations allow processing the data accordingly, to understand different features of the phe-
nomenon. In this section, the velocity contours obtained for different amounts of material dis-
charged and the maximum velocities obtained during the whole process are discussed.  
Plotting the contours  of the velocity field is an alternative procedure to understand the discharge 
mechanisms on a silo.  In this context, the contours, corresponding to different volumes of dis-
charged material, the internal friction coefficient b =1 1 and the outlet radius  R mm=170 , are 
shown in Figure 7. There, it can be observed that the funnel flow develops since the first cubic 
meters of material are discharged.  
 

(a) (b) (c) 

 
Figure 7. Velocity contours for material with internal friction coefficient b =1 1  through an 

outlet with radius  R mm=170 :  (a) 1m3, (b) 5m3, and  (c) 20m3. Particles moving with a 
velocity greater than 1.0 m/s are represented by dark color, and particles moving with a ve-
locity lower than 0.1m/s are represented by light color. 

 
The transition between a stagnant zone and a flow zone is defined by the presence of a disconti-
nuity on the velocities.  This discontinuity is not necessary be coincident with a stress discontinui-
ty since it could be present in a continuous stress field [2]. The term discontinuity for a velocity 
field is not as strict as in the stress field; in terms of a velocity field, it is defined by a large veloci-
ty gradient over a small distance.   
 
The velocity contours, shown in Figure 7, allow characterizing this discontinuity. Particles mov-
ing with a velocity greater than 1.0 m/s are represented by the dark color, and particles moving 
with a velocity lower than 0.1m/s are represented by the light color. This technique is used to 
provide a qualitative illustration of the developing flow pattern by differentiating between zones 
that are moving relative to each other.  
Velocity contours supplement the understanding of the granular flow. It can be observed, from 
the previous figure, that the discharge is characterized by a vertical sliding of a rigid block of 
material – nourished by the material from the upper levels – and that , after a certain distance 
from the outlet, the material is loosen and the particles gain velocity toward the outlet. 



20 
 
 
 

The maximum velocities appearing during the whole discharge allow identifying the smoothness 
of the flow during the process. Figure 8 shows the comparison of the maximum velocities reached 
during the discharge of two models – for the outlet dimension R = 170mm and R = 240mm.  From 
those curves two main features are identified:  the discharge of the material takes place in a steady 
state regime during the full process; and second, as it is expected, the maximum velocities on the 
material are increased as the silo’s outlet radius is larger.   
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Figure 8. Maximum velocities for a material with internal friction angle b =1 1comparing 

two different outlets – R mm=170 and R mm= 240 . 

 

3.2.4. Pressure distribution 

Probably the most relevant result from the analysis is the pressure distribution acting on the silo 
wall. Unfortunately, wall pressures for this experimental test are not reported on the referenced 
technical report [33] measurement difficulties appeared during the experiments .  Nevertheless, 
numerical pressure distributions can be analyzed from the previous validation campaign of the 
flow patterns.  
These numerical pressures distributions should differ from hydrostatic distributions because the 
static strength of granular material results in differences between the horizontal and vertical direc-
tions, and it is affected by wall friction, which gradually transfers vertical loads into the walls. 
These differences are analyzed next.  
Firstly, we reproduce numerically the hydrostatic analysis, in which the silo is hypothetical filled 
with water and the resulting numerical pressure is compared with the hydrostatic distribution. In 
order to reproduce the mechanical behavior of the fluid by means of our constitutive model, the 
internal friction coefficient of the material was set close to zero, b »1 0. Figure 9(a) shows the wall 
pressure distribution for different bulk modulus compared with the hydrostatic pressure distribu-
tion. The difference between the curves is a consequence of the compressibility of the elastic part 
of the model and the theoretical hydrostatic pressure is recovered when the bulk modulus is in-
creased (see Figure 9(a)). Our concern now is to examine the response of the numerical results 
when the internal friction coefficient is increased. These results are shown in Figure 9(b). It is 
observed that the maximum wall pressures are reduced as the internal friction is increased.   
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Figure 9. Wall pressures when material confined:  (a) wall pressure distribution for different 
bulk modulus compared with the hydrostatic pressure (b) variation of pressure distributions 
for different internal friction coefficients. 

 
Likewise, the pressures reached in the silo’s wall and the granular material are depending on the 
geometry of the problem itself; Figure 10 presents the pressures for different volumes of material 
discharged using two different opening size on their outlets.  Figure 10(a.1) show the pressure 
evolution on the material for an outlet radius R mm=170 ; it is observed that the stresses fields 
suffer a redistribution when the material is released.  The pressures on the material located at the 
wall are increased up to 50% just as the outlet is opened – as it is displayed by the variations on 
the values for a material confined and at 1m3 of material discharged. In contrast with the material 
pressures, the wall pressures do not suffer a substantial increment when the material is released, 
see Figure 10(a.2). In this case, the radial stress is incremented at the bottom of the silo and re-
duced almost linearly toward its upper level. 
  For both properties, material pressure and wall pressure, the maximum values are present on the 
bottom of the silo.  During the discharge, pressures along the wall are reduced, since there is a 
lower amount of material inside the silo, but the maximum values at the bottom remain constant. 
This monotonic behaviour is expected, since it corresponds to concentric discharge – maximum 
values for the highest amount of material in the silo, which decrease as it is discharged. 
The evolution of the stresses during the material discharge is similar for the outlet of radius

 R mm= 240 . Figure 10(b.1) shows the material pressures for different amounts of discharge; the 
comparison with those obtained with the smaller outlet shows that the mechanical response of the 
material is similar, presenting an increment up to 50% of the magnitude on the pressures at the 
bottom once the outlet is opened. The difference on the pressure redistribution between both out-
lets size cases, is that, for the wider opening, the level of pressures on the material near the wall 
maintains the same magnitude – almost for the two first meters from the bottom of the material. 
 
The pressures exerted by the material on the wall, for different volumes of discharge, are shown 
in Figure 10(b.2).  The evolution of the pressures shows the same behavior than for the smaller 
outlet, being the only difference a slightly increment on the magnitude of the pressures.  Since the 
wall pressures for both discharges show a similar response, it is expected that the increment on 
the material pressures be caused by a redistribution of the gravitational loads of the material. 
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Figure 10. Evolution of stresses during material discharge of a silo with an outlet of  R mm=170 :  
(a) pressures on material located at the wall, (b) pressures exerted by the material on the wall. 

 

3.3. Experimental measurement of power consumption for a tumbling mill – experimental 
setup 

The model capability to simulate tumbling processes is verified via the numerical simulation of 
the experimental tests conducted in [9].  The experiment consists of the measurement of power 
consumption during the comminution of a mill charge, varying the granular mass and the rota-
tional velocity.  The measurements were conducted on a laboratory-scale ball mill.  The scaled 
model has an inner diameter i mmf = 284 and a depth l mm= 441 ; the displacement of the charge 

is controlled by eight semicircular bumps of diameter b mmf = 25 spaced uniformly as lifters. The 

charge consists of dry sand of density about kg m32500 and porosity around 33%. Figure 11 
shows the drum dimensions as well as the placement of the lifters.  
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(a) (b)

 
Figure 11. Scaled model of a tumbling ball mill, all measures in mm: (a) Front view, (b) 
Model depth [9]. 

The computation of the power is given in terms of the torque applied to the drum and its angular 
speed.  The torque was measured as the reaction force applied on a load cell at a given distance 
from the rotation center, and the average rotational speed of the system was obtained measuring 
the number of revolutions during a long time.  Due to the impulsive nature of the charge, it is 
convenient to measure the average torque and the angular speed, to define a relatively invariant 
measure of the required power [35]. 
The rotational speed at which the drum was subjected to, is defined in terms of a critical speed of 
the system, given by the following equation   

crit
ig r

w
p

= 60
2  

(20) 

where g is the acceleration of gravity, ir  the inner radius, and critw   the speed given in rpm. Fig-
ure 12 shows the averaged measured power for the system correlated to the degree of filling of 
the drum and its critical speed. 

 
Figure 12. Averaged power measured on dry sand [9].   

3.4. Numerical simulations of a tumbling ball mill 

As mentioned earlier, the proposed constitutive model is, in principle, only suited for representing 
dry dense granular materials. In the present example (tumbling ball mill), the drum reaches rela-
tively high rotational speed and the granular material tends to separate. The assumption of dense 
flow, thus, is not strictly valid in the context of this example, and, therefore, an accurate represen-
tation of the motion of the material within the drum cannot be expected.  However, our interest 
does not lay on an accurate simulation of such local details, but rather on examining the overall 
behavior of the system in terms of the mechanical power required to maintain the tumbling pro-
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cess. Accordingly, in the following, numerical and experimental torque values will be compared 
for three different rotational speeds.   The smallest rotational speed will be used to calibrate the 
internal friction coefficient and the relaxation time ( b1 and Rt , respectively), while the other two 

cases will be used for validation. 
 
The degree of filling of the drum is 35%. The geometry of the model corresponds directly to the 
experimental setup using an internal diameter of i mmf = 284 , and eight semicircular bumps of 

diameter  b mmf = 25 as the lifters of the mill.  The experimental drum is modelled using a two-

dimensional plain-strain state of depth l mm= 441 . The initial spatial discretization has approxi-
mately 2250 nodes and 4500 linear triangular elements. As regards time discretization, time steps 
of 1 10000tD = sec. are used. The granular material/mill structure plate interaction is modelled 
with the same algorithm used for the silo example; in this case the wall friction coefficient is set 
to the same value than in the bulk domain.   
As for the material properties of the granular material, the internal friction coefficient and the 
wall friction coefficient is set to .b =1 0 30 , and the cohesion parameter to .b Pa=2 0 01  (this rela-
tively small value of cohesion is introduced to ensure numerical stability). Likewise, the em-
ployed bulk and shear modulus are MPak= 32  and G MPa= 7 , respectively. The visco-plastic 

regularization is a function of the relaxation time Rt ; for these tests, the relaxation time is 

65 10Rt
-= ´ sec.  

In order to calculate the power required by the mill to keep its rotational speed, the balance of the 
mechanical energy of the system is used.  This balance states that the sum of the rate of change of 
the kinetic energy k  and the rate of the internal mechanical work, intP , of a continuum is equal to 

the rate of external mechanical work extP  [36], as given by the following equation 

( ) ( ) ( )int ext
D

t t t
Dt
k + =P P

 
(21) 

Since the kinetic energy is a function of the velocity field and the internal mechanical work is a 
function of the stress field, it is fundamental to obtain a smooth response of those fields.  The 
velocity contours, shown in Figure 13, determine the kinematic response of the charge while the 
drum rotates. This velocities distribution presents the same pattern in the transient and stationary 
regime, varying the magnitudes reached in each stage.  
The motion of the charge is defined by an overturn of the material from the wall toward the cen-
ter, where the larger velocities show up at the outer region of the material and relative null veloci-
ties are located on the core of the material. A relevant difference between the transient and sta-
tionary regimes is that, on its acceleration stage Figure 13(a), the material presents a higher de-
gree of consolidation. Instead,  when the material reaches the stationary regime, Figure 13(b), it is 
observed that the material experiences a relaxation. 

(b)

0.420.00

Velocities (m/s)

(a)
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Figure 13. Velocity contours for the granular flow (m/s): (a) transient regime, acceleration 
process, (b) stationary regime, after two revolutions. 

Pressure contours are displayed in Figure 14.  It is worth noting that computed pressures are rela-
tively smooth, a fact that indicates that the used mixed formulation is fulfilling the purpose of 
overcoming the deleterious effects of volumetric locking. Likewise, it can be observed that pres-
sures in the tensile regime are, at least, one order of magnitude smaller than those in the compres-
sive regime. The contours indicate that the maximum compressive pressures are given on the 
charge propelled by the bump or lifter, and that, after the material overpass the bump, a region of 
loose material is formed presenting small or null compressive pressures, see Figure 14(b). 

(b)(a)

Pressures (MPa)

0.0004-0.004
 

Figure 14. Pressure distribution on the material (MPa): (a) material at rest, (b) material at 
stationary regime after two revolutions. 

The torque obtained from the numerical simulations is computed using the internal power defined 
in equation (21), and the rotational speed of the system.  The experimental torque data reported 
corresponds to a full revolution in its steady state. Therefore, in order to compare with numerical 
simulations, it is required to measure the torque in a steady state. The loading conditions for the 
milling are defined by an acceleration period of two seconds until the rotational speed is reached; 
thereafter, it is set a complete revolution to reach the steady regime, which is the one to be com-
pared.   
Figure 15 shows the evolution of the torque curve of the numerical simulation, for a rotational 
speed at 35% of the critical speed, during the three loading stages – an acceleration period of two 
seconds, a revolution on transient regime, and the stationary regime reached at the second revolu-
tion. The maximum value of the torque is reached at the transition between the acceleration stage 
and the condition of constant rotational speed.  It is observed a slight diminution of the torque 
value on the first revolution. This is due to the relaxation that the material suffers until it reaches 
its steady state.    
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Figure 15. Torque evolution – transient and stationary response. 

Comparison between experimental and numerical torque for different rotational speeds is shown 
in Figure 16; for the experimental data, a continuous red line is used and the experimental values 
by a red mark. Numerical values, on the other hand, are represented by a continuous black line.  
The comparison shows the values for a full revolution of the drum and it is considered in a steady 
state; for the numerical simulations it is used the information obtained after the second revolution 
in constant velocity, when it is considered that it has reached the steady state. 
Figure 16(a) shows the torque comparison for a rotational speed corresponding to 35% of its criti-
cal speed, which is the one used for calibration purposes. While a reasonable overall agreement is 
achieved in terms of mean response, discrepancies are detected in the oscillating pattern around 
this mean value. Indeed, experimental torque oscillates more abruptly, and at a higher frequency, 
than its numerical counterpart does. It can be easily shown that the period of the oscillations in 
the numerical results is related with the circumferential spacing of the bumps in the drum. 
 
The comparison with experimental data for higher velocities presents the same behavior than in 
the above commented reference example.  Figure 16(b) shows the comparison for a rotational 
speed at 65% of the critical speed.  The torque presents, as in previous example, an oscillatory 
response that corresponds to the interaction of the material with the bumps of the drum. It is re-
marked that the amplitude of the oscillations in the computed results are notably higher than in 
the previous case. 
 
Lastly, the torque for a rotational speed of 95% is given in Figure 16(c). The same oscillation 
pattern is observed, with a further increase in amplitude. This fact confirms the influence of the 
rotational speed in the amplitude of the oscillations predicted by the numerical model. This influ-
ence, however, is not perceived in the experimental graphs (the amplitude in this case is, on aver-
age, similar in the three studied cases). Nevertheless, the model is able to capture with reasonable 
accuracy the mean torque in the three cases. This is confirmed by the comparison of averaged 
power of the experimental data and the one obtained by numerical simulation for the three differ-
ent rotational speeds, see Figure 17. As expected, the highest accuracy is observed for the lowest 
rotational speed, for this is the one used to calibrate the model.  As the speed is increased, the 
deviation between experimental and numerical results increases, albeit it remains at moderate 
levels. In conclusion, despite the limitation of the model, the overall results in terms of power 
consumption can be deemed reasonably accurate.  
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Figure 16. Torque comparison between experimental and numerical models for rotational 
speeds at: (a) 35% of critical speed, (b) 65% of critical speed, (c) 95% of critical speed. 
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Figure 17. Average power comparison for the three different rotational speeds. 

3.4.1. Inclusion of milling balls 

 
Comminution of granular material within a rotating drum by crushing caused by the impact of 
steel balls is a problem of high interest for many industries (ceramics, composites, foods, miner-
als, paints, inks and pharmaceuticals and so on). As a first step towards the full simulation of this, 
admittedly challenging problem, we explore in this example the possibilities of the proposed nu-
merical model to capture, at least, the mechanical interaction between several (hard) bodies and 
dry sand (crushing effects are, thus, not contemplated in the simulation). The charge for the mod-
el is formed by the same amount of dry sand than in previous examples and fifteen rods of two 
different diameters, namely, 10 rods of  mmf =1 15  and 5 rods of mmf =1 10 , see Figure 18. The 
material and numerical parameters are the same of those given in the introduction of section 3.4.  

10 rods (  = 15 mm)

  5 rods (  = 10 mm)

 
Figure 18. Numerical model of dry sand and steel rods on a tumbling mill. 

Since there is no available experimental data for this simulation, the mechanical response of the 
charge, including the steel rods, is compared with the numerical simulation defined previously as 
the reference example, Figure 16(a) (with only dry sand).  ¡Error! No se encuentra el origen de 
la referencia.(a) shows a snapshot of the pressure field in the stationary regime.  The rods define 
local areas where the pressures present the maximum values – it is found on the material located 
between the rods and the drum wall and between the rods themselves. 
The influence of the rods on the material is observed via the plastic multiplier.  Since the model is 
formulated in the framework of plasticity, this parameter identifies the material in the plastic or 
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elastic regime.  For the charge conformed by dry sand, the plastic multiplier lies on the range of 
full plasticity while for the material interacting with the rods,  zones where the material does not 
reach completely plasticity can be appreciated. ¡Error! No se encuentra el origen de la referen-

cia.(b), shows this concept by means of an elastic factor, defined herein as 1(1 )a l -= +D , 

where lD  denotes the plastic multiplier; 0a=  denotes full plasticity and 1a=   denotes full 
elastic regime. 

(b)(a)

Pressures (MPa)

0.0005-0.005 1.01e-10

Elastic Factor

 

Figure 19. Mechanical variables in the charge during motion: (a) volumetric pressures in the 
material, (b) elastic factor 

Figure 20 shows the numerical comparison of both charges (with and without steel rods) for a 
degree of filling of the drum of 35% and using the referential rotational speed of 35% of the criti-
cal speed. It may be observed that, as it could be expected, the torque of the charge with the steel 
rods increases significantly. Likewise, the torque in the case of dry sand with steel rods shows a 
higher degree of oscillations during the motion of the charge, a fact that may be attributable to the 
displacement and impact of the rods during the process. 
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Figure 20. Torque comparison for a charge at 35% of degree of filling at 35% of the critical 
speed, with and without steel rods. 

4. Concluding remarks 

Along these work, a PFEM-based model is applied to simulation of two industrial granular flows: 
silo discharge and tumbling mills. From these simulations, the following conclusions can be ob-
tained: 
 
Silo discharge: 
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 The simulations, done on different material parameters and geometry (given by the open-
ing of the outlet), allow understanding the flow mechanisms during the silo discharge. 
The internal friction coefficient affects directly the definition of a mass or a funnel flow; 
for small values, the mass flow is predominant, while, for larger values, the funnel flow is 
recovered.   

 Despite the type of flow is a function of the internal friction, the opening of the outlet 
plays a fundamental role. The spreading of the core of the funnel flow is smaller as long 
as the opening of the outlet remains small; for larger openings, the funnel tends to open 
toward the walls at the upper levels of the material. 

 Though the wall pressures could not be compared with experimental results, since they 
were not reported for this problem, it is possible to state a good agreement of the bulk 
pressure provided by the model and the theoretical hydrostatic pressures on a fluid.  Once 
the flow patterns are validated, it is possible to determine the bulk pressures and the 
stresses exerted by the material on the walls. 

 
Tumbling mill: 
 

 Tumbling mill processes involve, in general, rapid granular flows, which are not, in prin-
ciple, full candidates to be modeled by the considered model.  In spite of this, the numeri-
cal model presented herein shows a well agreement between experimental and numerical 
simulations.   

 The comparison of the consumption of the power of the system shows a higher degree of 
accuracy for lower rotational speeds, which indicates that the simulations for large rota-
tional speeds could be improved by enriching the constitutive model allowing to simulate 
rapid granular flows. 

 
The proposed constitutive model shows a good ability to predict the kinematic behavior of dense 
granular flows and to define stagnant and flow zones, as well as the transition of jamming in the 
material. Simulations of both types of industrial processes state the potential of the proposed con-
stitutive model, in combination with the Particle Finite Element Method, resulting in a robust 
numerical tool, suitable to handle dense granular flows in industrial processes.  
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