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Universitat Politècnica de Catalunya
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Abstract

Continuous-time Markov chains are commonly used for dependability modeling of repairable

fault-tolerant computer systems. Realistic models of non-trivial fault-tolerant systems easily

have very large state spaces. An attractive approach which has been proposed to deal with the

largeness problem is the use of pruning-based methods whichprovide error bounds. Using re-

sults from Courtois and Semal, a method for bounding the steady-state availability has been

recently developed by Muntz, de Souza e Silva, and Goyal. This paper presents a new method

based on a different approach which exploits the concept of failure distance to better bound

the behavior out of the non-generated state space. The proposed method yields tighter bounds.

Numerical analysis shows that the improvement is typicallysignificant.

1 Introduction

Modeling plays an important role in the design, analysis andmanagement of fault-tolerant computer

systems. These systems are characterised by exhibiting an stochastic behavior and, accordingly,

probabilistic measures are used for their quantitative assessment. Many systems are seen by their

users as providing service or not. For these systems, dependability measures such as the availability

and the reliability are appropriate. The steady-state availability is a useful measure for repairable

systems when the long-term behavior is of interest. In some cases, this measure can be computed

using combinatorial techniques [1] or closed-product solution queuing networks [6]. However, in

general, the dependencies introduced by lack of coverage, failure propagation, operational config-

urations and maintenance are such that general-purpose, state level model solution techniques are



required. Continuous-time Markov chains (CTMC’s) are often used to analyse systems with these

dependencies and a number of dependability/performability tools based on these models have been

developed in the past (see [11] for a recent review).

Numerical analysis of CTMC dependability models is hampered by the exponential growth of

the number of states with the structural complexity of the system. Systems with moderate number of

components easily yield CTMC’s with millions of states and more. This problem has been attacked

in three directions: a) hierarchical model solution [16], b) state lumping techniques [12], and c)

pruning techniques. Only the last of them has general applicability. Recently, pruning-based solution

methods providing error bounds have been developed for several dependability measures. Bounds

for the reliability have been obtained in [2]. A method to bound the steady-state availability has

been proposed in [15]. This method has been further developed in [14], [17]. The error bounds

offered by these methods are qualitatively superior to the accuracy assessment offered by simulation

methods recently developed to attack the largeness problem[10], [3], whose reliability depends

on how well the variance is estimated. This makes of great interest the development of efficient

bounding techniques.

This paper presents a new method to obtain steady-state unavailability bounds using CTMC

models which, typically, gives significantly smaller bandsthan the method proposed in [15]. Our

method uses an upper bound exploiting the fact that, very often, the system is operational a large

portion of the time the model is out of the generated state space. The upper bound is developed using

the failure distance concept. The rest of the paper is organised as follows. Section 2 describes the

availability models under consideration, reviews the method proposed in [15] and, using a regenera-

tive perspective, argues the potential looseness of the steady-state unavailability upper bound given

by the method. Section 3 presents the theoretical developments yielding the upper bound used in

our method. Section 4 illustrates with examples the reduction in the steady-state unavailability band

which our method can achieve and discusses the computational overheads of our method in relation

to the method proposed in [15]. Section 5 concludes the paper.

2 Preliminaries

The type of models addressed in this paper are those which result from conceptualising a fault-

tolerant system as made up of components which fail and are repaired with constant rates. The sys-

tem is operational or down as determined by a coherent structure function [1] on the unfailed/failed

state of the components. This basically means that repairs cannot take down an operational sys-

tem and that failures cannot bring operational a down system. A failure of a component can be

propagated to other components. In addition, each component can be failed in a finite number of

modes. Failure and repair rates and failure propagation candepend on the state of the system. Let

X = {X(t); t ≥ 0} be the CTMC modeling the system,Ω its state space ando the (only) state

in which all components of the system are unfailed. We assumethat repair transitions involve only

one component and that at least a repair transition exists from any state6= o. It follows from the

2



hypotheses thatX is finite and irreducible. It is assumed that a high-level description of the model

is available from which it is possible to identify the bags ofcomponents (we allow component types

with instances) which can be failed simultaneously in a single event. Those bags are calledfailure

events. E will denote the set of failure events of the model andEi the set of failure events including

i components. It is also assumed that links to the high-level description of the model exist allowing

to determine during generation of the CTMC the failure eventassociated to a failure transition and

the component affected by a repair transition. Using this information, it is possible to compute the

bag of failed componentsF (x) in each generated statex.

Let D be the subset of down states and letpi, i ∈ Ω the steady-state probability distribution

of X, the steady-state unavailability is defined asUA =
∑

i∈D pi. UA is a special case of the more

general steady-state reward rate measureR =
∑

i∈Ω r(i)pi, wherer(i), i ∈ Ω is an arbitrary reward

rate structure imposed onX.

Since repair rates are usually several orders of magnitude higher than failure rates,X is highly

skewed, i.e., it has a probability distribution concentrated in a small portion of the state space (the

states with few failed components). Thus, in general, good approximations forR can be computed

using only a small portion ofΩ. However, assessing the accuracy of the solution is a difficult prob-

lem. The method proposed in [15] was the first to obtain tight bounds in the context of availability

modeling. The method can be used to bound any steady-state reward rate measureR (see [17]).

Let G be the generated portion ofΩ, U the non-generated portion, andS the subset ofG through

whichX can enterG (from U ). As in [15], assume thatG contains all states with up to a given

numberK of failed components. The method can be described in terms ofthe CTMC’sX ′
i, i ∈ S

which (conceptually) can be obtained fromX as shown in Figure 1. First,Xi is obtained fromX by

redirecting toi all transitions fromU toG (S). Second,U is replaced by the statesuK+1, . . . ,uN ,

where eachuk accounts for the subsetUk of U including all the states withk failed components.

Failure transitions fromG to states inU with k failed components are directed to stateuk. Each

stateuk, k < N has transitions to statesuk+j with ratesfj(k) chosen to be upper bounds for the

sum of the failure transitions rates from any state withk failed components toUk+j. Each stateuk,

k > K + 1 has also a repair transition touk−1 with a rateg(k) chosen to be a lower bound for the

sum of the repair transition rates from any state withk failed components. A similar transition is

also introduced from stateuK+1 to statei. Forfi(k) we can take
∑

e∈Ei
λub(e), whereλub(e) is an

upper bound to the rate of the failure evente. For g(k) we can take the slowest repair rate of the

model. Let|r|lb and|r|ub be, respectively, lower and upper bounds for the reward ratein any state

of X, the bounds forR are obtained using the following recipe:

1. for each statei ∈ S find the steady-state distribution ofX ′
i and, assigning to the states inG the

same reward rate as inX and to the statesuK+1, . . . , uN a reward rate|r|lb (|r|ub), compute

the resulting steady-state reward rate|Ri|lb (|Ri|ub),

2. |R|lb = mini∈S |Ri|lb, |R|ub = maxi∈S |Ri|ub.

Typically S will include all states inG with K failed components and the number of models
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Figure 1: Construction of the CTMC’sX ′
i used by the bounding method proposed in [Mun89].

X ′
i to be solved can be large. The computational cost of the method can be reduced at the expense of

some looseness of the bounds by the state duplication technique proposed in [15]. In this technique,

duplicates of all states inG with more thanF failed components are (conceptually) added toU to

account for the visits to these states after the number of failed components is made larger thanK and

before the number of failed components is made equal toF . This state duplication technique can be

thought as a redefinition of the CTMCX to which the bounding method is applied. The resulting

CTMC’sX ′
i have the structure depicted in Figure 1, except that the aggregate statesui will run now

from uF+1 to uN andS will only include the states withF failed components which can be reached

through repair transitions. TakingF small enough reduces arbitrarely the number of CTMC’sX ′
i to

be solved. A final remark is thatG does not have necessarely to include all states with up to a given

number of failed components (see [17]). However, it does have to include all states withF or fewer

failed components.

The reviewed bounding method was justified in [15] using the exact aggregation theorem for

ergodic Markov chains and bounds on conditional steady-state distributions in subsets of Markov

chains [7], [8]. Here, it will be discussed using a regenerative perspective. The motivation is to

support theoretically our bounding method and ease the comparison between the method proposed

in [15] and ours. LetCi andTi be, respectively, the expected reward and the expected timein Xi

between consecutive jumps fromU to i (regeneration points). LetRi be the steady-state reward

rate ofXi. Then, by regenerative theory,Ri = Ci/Ti. In addition, using semi-regenerative process

theory [5] it is possible to obtain the following result:

Theorem 1. LetX = {X(t); t ≥ 0} be a finite irreducible CTMC with state spaceΩ and reward
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rate structurer(i), i ∈ Ω. LetΩ = G ∪ U be a non-trivial partition ofΩ (G,U 6= 0) and letS be

the subset ofG through whichX can enterG fromU . LetR be the steady-state reward rate ofX.

LetXi, i ∈ S, be the CTMC obtained fromX by redirecting toi the transitions fromU toS, assume

Xi(0) = i, and letRi be the steady-state reward rate ofXi. Then,mini∈S Ri ≤ R ≤ maxi∈S Ri.

Theorem 1 has immediate application to the CTMC’sX under consideration. The condition

Xi(0) = i is in general required becauseXi could contain several closed sets. However, for the

CTMC’sX considered here,Xi is irreducible, and the steady-state reward rateRi is independent on

the initial distribution ofXi. An sketch of the proof of the theorem is given in the Appendix. The

complete proof can be found in [4]. Using Theorem 1, the correctness of the bounds forR computed

in the recipe follows from the correctness of the bounds|Ri|lb and |Ri|ub for Ri computed in the

first step.

Let CG,i andCU,i denote, respectively, the contributions of the states inG andU to Ci and

assume a similar notation for the contributions of the states in G andU to Ti. Then, we have

Ci = CG,i + CU,i, Ti = TG,i + TU,i, and

Ri =
CG,i + CU,i

TG,i + TU,i
.

Consider now the regenerative behavior ofX ′
i defined by the times at whichX ′

i hits i from

uF+1 (analogous to the regenerative behavior considered forXi). As it will be shown later, the

mean time in the statesuF+1, . . . , uN between regenerations upper boundsTU,i, so we can properly

call it |TU,i|ub. Notice that, sinceXi andX ′
i enterG through the same state and are identical inG,

the mean reward and time inG between regenerations are identical forXi andX ′
i. Then, the lower

and upper bounds forRi computed in the first step of the recipe can be written as

|Ri|lb =
CG,i + |r|lb|TU,i|ub
TG,i + |TU,i|ub

, (1)

|Ri|ub =
CG,i + |r|ub|TU,i|ub
TG,i + |TU,i|ub

. (2)

The correctness of these bounds can be justified as follows. Letglb(x) = (CG,i+ |r|lbx)/(TG,i+x),

gub(x) = (CG,i+|r|ubx)/(TG,i+x). Their first derivatives aredglb/dx = (|r|lbTG,i−CG,i)/(TG,i+

x)2, dgub/dx = (|r|ubTG,i − CG,i)/(TG,i + x)2. Using |r|lbTG,i ≤ CG,i ≤ |r|ubTG,i, we have

dglb/dx ≤ 0, dgub/dx ≥ 0. Then, since|r|lbTU,i ≤ CU,i ≤ |r|ubTU,i,

Ri =
CG,i + CU,i

TG,i + TU,i
≥
CG,i + |r|lbTU,i
TG,i + TU,i

= glb(TU,i) ≥ glb(|TU,i|ub) =
CG,i + |r|lb|TU,i|ub
TG,i + |TU,i|ub

= |Ri|lb ,

Ri =
CG,i + CU,i

TG,i + TU,i
≤
CG,i + |r|ubTU,i
TG,i + TU,i

= gub(TU,i)≤ gub(|TU,i|ub)=
CG,i + |r|ub|TU,i|ub
TG,i + |TU,i|ub

= |Ri|ub .

For the particular case of the steady-state unavailability|r|lb = 0, |r|ub = 1 and the bounds (1), (2)

can be written as

|UAi|lb =
CG,i

TG,i + |TU,i|ub
, (3)
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|UAi|ub =
CG,i + |TU,i|ub
TG,i + |TU,i|ub

. (4)

The examples given in [15] indicate that|UA|ub tends to be much looser than|UA|lb. An intu-

itive explanation for this is the following. SinceXi tends to be highly skewed, typically|TU,i|ub ≪

TG,i. SinceUAi = (CG,i + CU,i)/(TG,i + TU,i), the tightness of|UAi|lb (3) and|UAi|ub (4) depend

mainly on the closeness ofCG,i andCG,i + |TU,i|ub to CG,i + CU,i. Down states tend to be sparse

and, typically,CU,i ≪ TU,i. Then,CG,i + |TU,i|ub tends to be less closer toCG,i + CU,i thanCG,i,

making|UAi|ub significantly looser than|UAi|lb.

3 Proposed bounding approach

3.1 Setup

Our method differs from the method given in [15] in the use of tighter upper bounds forUAi, i ∈

S. We start considering the more general steady-state rewardrate measureR and showing how

a different upper bound forRi, |Ri|
′
ub, can be established using an upper bound forCU,i. First,

CU,i ≤ |r|ubTU,i implies

Ri =
CG,i + CU,i

TG,i + TU,i
≤

CG,i + CU,i

TG,i + CU,i/|r|ub
= h(CU,i) ,

with h(x) = (CG,i + x)/(TG,i + x/|r|ub). In addition,dh/dx = (TG,i − CG,i/|r|ub)/ (TG,i +

x/|r|ub)
2 ≥ 0, sinceCG,i ≤ |r|ubTG,i. Thus,h(x) is monotonically increasing and

Ri ≤ h(|CU,i|ub) =
CG,i + |CU,i|ub

TG,i + |CU,i|ub/|r|ub
= |Ri|

′
ub . (5)

Regarding the tightness of|Ri|ub and|Ri|
′
ub, we have the following result:

Theorem 2. AssumeCG,i < |r|ubTG,i. Then,|Ri|
′
ub < |Ri|ub if and only if|CU,i|ub < |r|ub|TU,i|ub.

Proof: Consider again the functionh(x) = (CG,i + x)/(TG,i + x/|r|ub). ForCG,i < |r|ubTG,i,

dh/dx = (TG,i−CG,i/|r|ub)/(TG,i+x/|rub|)
2 > 0. This implies thath(x) is strictly monotonically

increasing and, since (5)|Ri|
′
ub = h(|CU,i|ub) and (2)|Ri|ub = h(|r|ub|TU,i|ub), the result follows.

For the steady-state unavailability (|r|ub = 1) |Ri|
′
ub (5) is reduced to

|UAi|
′
ub =

CG,i + |CU,i|ub
TG,i + |CU,i|ub

, (6)

whereC has the meaning of “mean down time”. Also, the fact that the stateo is operational and,

therefore, has reward rate 0 ensuresCG,i < TG,i. Then, Theorem 2 establishes that|UAi|
′
ub <

|UAi|ub if and only if |CU,i|ub < |TU,i|ub.
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Figure 2: Transient CTMCY used to derive the boundsT (k) andC(k).

The bounds|UAi|lb and |UAi|ub are computed in [15] from the steady-state solution ofX ′
i.

In our bounding method,CG,i, TG,i, |TU,i|ub and |CU,i|ub are computed independently and then

combined using (3), (6) to obtain|UAi|lb and|UAi|
′
ub.

3.2 Computation of TG,i, CG,i and |TU,i|ub

In the followingτ(v, Z) will denote the mean time to absorption in the state or subsetof statesv of

the transient CTMCZ with given initial distribution. LetA be the restriction of the transition rate

matrix ofZ to its transient states,q the column vector giving the initial probability distribution of

Z, andτ the solution ofAτ = −q. As it is well-known,τ(i, Z) = τi.

TG,i andCG,i can be computed solving the transient CTMCY i
G with initial statei trackingX

from i to exit ofG:

TG,i =
∑

j∈G

τ(j, Y i
G) ,

CG,i =
∑

j∈G∩D

τ(j, Y i
G) .

The upper bound|TU,i|ub can be computed using the transient CTMCY depicted in Figure 2.

The boundness of|TU,i|ub will be justified using exact aggregation results for transient CTMC’s [9]

and the following lemma (see [4] for the proof), closely related to the mean holding time lemma of

[15].

Lemma 1. Let a transient CTMCY with the structure depicted in Figure 2 and consider another

transient CTMC,Y ′, with the same structure and such thatf ′i(k) ≤ fi(k) and g′(k) ≥ g(k).

Also assume thatY and Y ′ have the same initial distribution. Then,τ(ui, Y ′) ≤ τ(ui, Y ), i =

F + 1, . . . , N .

Let T s
U be the mean time spent byX during a visit toU conditioned to entry through state

s. T s
U is the mean time to absorption of the transient CTMCY s

U with initial states trackingX

from s to exit of U . Let Y s′
U be the result of the exact aggregation inY s

U of the subsetsUk,

k = F + 1, . . . , N . Y s′
U has the structure ofY and initial stateu|F (s)|. From exact aggregation

results for transient CTMC’s [9],τ(uk, Y s′
U ) = τ(Uk, Y

s
U ) and the transition rates ofY s′

U are convex
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linear combinations of the transition rates ofY s
U . More specifically,λ′uk,ul

=
∑

j∈Uk
wk,l
j λj,Ul

and

λ′uF+1,ab
=

∑

j∈UF+1
wF+1,ab
j λj,ab, with wj ≥ 0,

∑

j w
k,l
j = 1,

∑

j w
F+1,ab
j = 1. Consider the

“failure” transition rates ofY s′

U , λ′uk,uk+i
, k ≥ F + 1, i > 0. Sincefi(k) upper boundsλj,Uk+i

,

j ∈ Uk,

λ′uk,uk+i
=

∑

j∈Uk

wk,k+i
j λj,Uk+i

≤ max
j∈Uk

λj,Uk+i
≤ fi(k) .

Usingg(k) ≤ λj,Uk−1
, j ∈ Uk, k > F + 1 andg(F + 1) ≤ λj,ab, j ∈ UF+1, it can be similarly

shown thatλ′uk,uk−1
≥ g(k), k > F + 1 andλ′uF+1,ab ≥ g(F + 1). In summary, the transition rates

of Y andY s′
U satisfy the conditions of Lemma 1. Denoting byY k the transient CTMCY with initial

stateuk and byT (k) the mean time to absorption ofY k and using Lemma 1,

T s
U =

N
∑

j=F+1

τ(Uj , Y
s
U ) =

N
∑

j=F+1

τ(uj , Y
s′
U ) ≤

N
∑

j=F+1

τ(uj , Y
|F (s)|) = T (|F (s)|) .

Let φis be the conditional entry probability distribution ofXi in U through states. φis can be com-

puted from the mean times to absorption ofY i
G as

φis =
∑

j∈G

τ(j, Y i
G)λj,s . (7)

Let πik be the probability thatXi entersU throughUk. We have

πik =
∑

s∈Uk

φis . (8)

Then,|TU,i|ub can be computed as

|TU,i|ub =
N
∑

k=F+1

πikT (k) . (9)

The upper boundness of|TU,i|ub can be easily justified usingT s
U ≤ T (|F (s)|):

TU,i =
∑

s∈U

φisT
s
U =

N
∑

k=F+1

∑

s∈Uk

φisT
s
U ≤

N
∑

k=F+1

∑

s∈Uk

φisT (k) =
N
∑

k=F+1

πikT (k) .

Giving the relationships betweenY andX ′
i, it is clear that|TU,i|ub is the upper bound forTU,i

implicitely used in [15].

Although the bounds|TU,i|ub can be computed directly as the mean times to absorption ofY

with initial distributionsP [Y (0) = uk] = πik, this procedure requires|S| solutions ofY (one for

each statei ∈ S) and a more efficient approach when|S| > 1 is to compute|TU,i|ub from T (k),

k = F + 1, . . . , N using (9).T (N) can be computed solvingY N asT (N) =
∑N

j=F+1 τ(uk, Y
N ).

Denoting byλ(k) the output rate ofuk in Y , the remainingT (k)’s can be computed exploiting the

following relations, which result from a conditional path analysis ofY .

T (k) =
1

λ(k)
+
g(k)

λ(k)
T (k − 1) +

∑

i

fi(k)

λ(k)
T (k + i) , F + 1 < k < N ,

T (N) =
1

g(N)
+ T (N − 1) ,
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yielding

T (N − 1) = T (N)−
1

g(N)
,

T (k) =
1

g(k + 1)
[λ(k + 1)T (k + 1)− 1−

∑

i

fi(k + 1)T (k + 1 + i)] ,

k = N − 2, . . . , F + 1 .

3.3 Computation of |CU,i|ub

The strategy to find a bound|CU,i|ub potentially smaller than|TU,i|ub is to exploit the fact that many

of the states inU are operational and, thus, do not contribute toCU,i. As we shall show, the strategy

can be implemented using the concept offailure distance, which has been useful to speed up the

simulation of the type of models considered in this paper [3]. The failure distance from an statex,

d(x), is defined as the minimum number of components which have to fail (in addition toF (x)) for

the system to go down (d(x) = 0 for x ∈ D).

Let Uk,d be the subset ofU including the states withk failed components and failure distance

d and letπik,d be the probability thatXi entersU throughUk,d. We have

πik,d =
∑

s∈Uk,d

φis . (10)

Assume that upper boundsC(k, d) to the mean down time inU conditioned to entry inU through

any state∈ Uk,d are available. Then, an upper bound forCU,i can be computed as

|CU,i|ub =
∑

k,d

πik,dC(k, d) . (11)

Sinceπik =
∑

d π
i
k,d, it is clear (9) thatC(k, d) ≤ T (k) implies |CU,i|ub ≤ |TU,i|ub. If, in addition,

C(k, d) < T (k) for some pair(k, d) with πik,d 6= 0, |CU,i|ub < |TU,i|ub.

Our approach to obtain boundsC(k, d) ≤ T (k) includes two steps. In the first step, we obtain

upper bounds to the mean down time inU conditioned to entry inU throughUk. Then, we let

C(k, d) = C(k) and improve iterativelyC(k, d). The boundsC(k) are≤ T (k) and, as a result,

C(k, d) ≤ T (k). Thus, our bounds|CU,i|ub are always≤ |TU,i|ub and our upper bound|UA|′ub is

never worse than|UA|ub.

Let L be the minimum number of components which have to fail to takethe system down

(L = d(o)). With the reward rate structure

r(uj) =

{

0 if j < L

1 if j ≥ L
,

the mean reward to absorption ofY k provides a suitable boundC(k). To justify this, letCs
U be

the mean down time in a stay inU since entry through states. Cs
U is the mean down time of the

9



transient CTMCY s
U . Using exact aggregation results for transient CTMC’s, Lemma 1, and the fact

that all states inUk, k < L are operational,

Cs
U =

∑

j∈U∩D

τ(j, Y s
U ) ≤

∑

k≥L

τ(Uk, Y
s
U ) =

∑

k≥L

τ(uk, Y
s′
U ) ≤

∑

k≥L

τ(uk, Y
k) = C(k) .

ForF + 1 ≥ L, C(k) = T (k). Otherwise,C(k) < T (k). C(N) can be easily computed from the

mean times to absorption vector ofY N asC(N) =
∑N

i=L τ(uk, Y
N ). The remainingC(k)’s can be

computed using the following recursive equations (analogous to the equations givingT (k), k < N ),

whereI(c) is the indicator function which returns 1 ifc is true and 0 otherwise.

C(N − 1) = C(N)−
1

g(N)
,

C(k) =
1

g(k + 1)
[λ(k + 1)C(k + 1)− I(k + 1 ≥ L)−

∑

i

fi(k + 1)C(k + 1 + i)] ,

k = N − 2, . . . , F + 1 .

Let FC be the set of different cardinalities of the failure events of the model. LetF (k, d, i, r),

i ∈ FC, be upper bounds for the sum of failure rates involvingi components from any state inU with

k failed components and failure distanced to states with failure distance≤ r, let w = min{i, d},

and let

fi,j(k, d) = F (k, d, i, d − j)− F (k, d, i, d − j − 1) , 0 ≤ j < w ,

fi,w(k, d) = F (k, d, i, d − w) .

The iterative improvement procedure ofC(k, d) is based on the following result (proved in [4]),

where in the expression forC ′(k, d) the termsC(k, d) corresponding to unfeasible pairs(k, d) have

to be set to 0. The feasible pairs(k, d) are given byF + 1 ≤ k ≤ N , max{0, L − k} ≤ d ≤

min{L,N − k}.

Proposition 1. LetC(k, d) be upper bounds forCs
U , s ∈ Uk,d and assume thatC(k, d) is decreasing

ond. Then, for anys ∈ Uk,d,

Cs
U ≤ C ′(k, d) =

I(d = 0)

g(k)
+ max{C(k − 1, d), C(k − 1, d+ 1)}

+
∑

i∈FC

w
∑

j=0

fi,j(k, d)

g(k)
C(k + i, d− j) . (12)

The iterative improvement procedure can be implemented using (12). At each step,C ′(k, d)

is computed for each feasible(k, d) pair and accepted as newC(k, d) if C ′(k, d) < C(k, d). The

procedure can be finished when no boundC(k, d) has been reduced significantly during a step. It is

important to note that the correctness of the boundsC ′(k, d) requires that the available set ofC(k, d)

bounds be decreasing ond. It is proved in [4] that this is satisfied if 1) the boundsF (k, d, i, r) are

decreasing ond, and 2) the boundsC(k, d) are reviewed grouped byk. In our implementation the
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bounds are reviewed by increasing values ofk and, for a givenk, by increasing values ofd. This

ordering has been proved effective, in the sense that very few improvement steps (typically< 10)

are required to reach stable values for the bounds.

It is possible to argue that the boundsC(k, d) obtained at the end of the iterative improvement

procedure ford > 0 are potentially much smaller than the originalC(k) if
∑w

j=0 fi,j(k, d) =

F (k, d, i, d) ≪ g(k). ConsiderC ′(F + 1, d) with d > 0 andC(k, d) = C(k). For such a case, the

first two terms ofC ′(F + 1, d) are 0 (C(k, d) = 0 for non-feasible(k, d) pairs) and only the last

term remains, but even considering thatC(k) > C(F +1) for k > F +1, the last term can be much

smaller thanC(F +1) if
∑w

j=0 fi,j(k, d) ≪ g(k). Consider nowC ′(F +2, d) with d > 0. A similar

discussion can be made except that the second term will not benull, but since this term corresponds

to revised valuesC ′(F + 1, d) with d > 0, it is potentially much smaller thanC(F + 1), and thus

thanC(F + 2). The argument can be iterated for increasing values ofk.

Combining (7), (8), (9) and (10)|TU,i|ub and|CU,i|ub can be formulated as

|TU,i|ub =
∑

j∈G

τ(j, Y i
G)α(j) ,

|CU,i|ub =
∑

j∈G

τ(j, Y i
G)β(j) ,

with

α(j) =
∑

s∈U

λj,sT (|F (s)|) ,

β(j) =
∑

s∈U

λj,sC(|F (s)|, d(s)) .

Note thatα(j), β(j) are independent oni and the above formulations are used with advantage when

|S| > 1.

3.4 Computation of failure distances and bounds F (k, d, i, r)

The computation of|CU,i|ub requires the knowledge of the failure distances from the states in the

frontier ofU . The failure distanced(x) from a statex can be computed fromF (x) if the minimal

cuts of the structure function of the system [1] are known. Let MC be the set of all minimal cuts of

the structure function of the system, using standard bag notation, we have

d(x) = min
m∈MC

|m− F (x)| . (13)

Although (13) can be used to compute all the required failuredistances, most of the transitions

from G to U will be of the failure type (all ifG contains all states up to a given number of failed

componentsK) and a more efficient procedure can be established introducing the notion of “after”

minimal cuts associated with a given failure evente. Let MCe = {m′ | m′ = m − e,m ∈
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MC,m
⋂

e 6= φ} be the set of “after” minimal cuts associated toe, the failure distance from any

state reached fromx through a failure transition with failure evente can be computed as

ad(x, e) = min{d(x), min
m∈MCe

|m− F (x)|} . (14)

The cardinality ofMCe is in general much smaller than the cardinality ofMC. Then, for each state

x in the frontier ofG we can compute its failure distance using (13), and use (14) to compute the

failure distances for the states inU reached fromx through failure transitions. If some statey in U

is reached fromx through a repair transition, then we can constructF (y) and computed(y) using

(13).

The tightness of the boundsC(k, d) depends on the tightness of the boundsF (k, d, i, r). In

general, better boundsF (k, d, i, r) require a more detailed analysis of the model and thus their

computation requires more effort. The boundsF (k, d, i, r) used here are relatively easy to compute

and, as the examples in the next section will show, provide good results. The bounds are based on

two structural properties of failure events. TheimportanceI(e) of a failure evente is defined as the

minimum number of components which are left unfailed in any minimal cut affected by the failure

event. TheactivityA(e) of a failure evente is defined as the maximum number of components of

the failure event in any minimal cut. From their definitions,I(e) andA(e) can be computed by

I(e) = min
m∈MC,m∩e 6=φ

|m− e| ,

A(e) = max
m∈MC

|m ∩ e| .

Consider a state withk failed components and failure distanced and another state reached from

it through a failure evente. The number of components left unfailed in any minimal cutm is

≥ |m − e| − k, since at mostk components not included inm ∩ e were failed beforee. Then,

d′ ≥ I(e) − k. Also, d′ ≥ d − A(e), since at mostA(e) components in the same minimal cut will

be failed bye. Imposingd′ ≤ r results in:

I(e)− k ≤ r ,

d−A(e) ≤ r .

Then, the failure rate from any state withk failed components and failure distanced due to failure

events withi components leading to states with failure distance≤ r is bounded above by

F (k, d, i, r) =
∑

e∈Ei,A(e)≥d−r,I(e)≤k+r

λub(e) .

It is easy to check that these bounds are decreasing ond, as required for the correctness of the

iterative improvement procedure forC(k, d).

4 Numerical Analysis

In this section our bounding method is compared with the method proposed in [15] using the large

model described there and a variation of it to explore the impact of the redundancy levelL on the
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Figure 3: Fault-tolerant database system from [Mun89] (model 1).

relative tightness of the bounds given by the methods. We usethe same state generation strategy as

in [15], i.e.,G includes all the states with up toK failed components. The large model considered

in [15] is the fault-tolerant database system shown in Figure 3. The system includes two processor

types (A andB), two sets of dual-ported controllers with two controllersper set and six disk clusters

with four disks. Each set of controllers controls three clusters. Each processor type has three spares.

The system is operational if at least one processor of any type is unfailed, at least one controller

in each set is unfailed, and at least three disks in each cluster are unfailed. Thus,L = 2. A

failure in the active processorA is propagated to the active processorB with probability 0.10.

Processors and controllers of one set fail with rate1/2000, controllers of the other set fail with rate

1/4000. Disks fail with different rates from one cluster to another. These rates are1/6000, 1/8000,

1/10000, 1/12000, 1/14000, and1/16000. Any component fails in one of two modes with equal

probabilities. The repair rate is 1 for one mode and0.5 for the other. Components are repaired by a

single repairman who chooses components at random from the set of failed components. Unfailed

components continue to fail when the system is down. This model has about9× 1010 states, clearly

illustrating the “largeness” problem. A slight variation of this example is also considered. We call

the original model from [15] model 1, and call model 2 its variation. Model 2 is obtained from

model 1 by increasing the number of controllers in each set to3 and the number of disks in each

cluster to 5, without modifying any other aspect. For model 2, L = 3.

Tables 1 and 2 give the number of generated states, the steady-state unavailability bounds and

bands under both methods, and the improvement measured as the band ratio. Our method always

gives significantly smaller bands. Thus, for model 1, our method forK = 2 (231 states) gives

bounds wich can be considered tight enough for most purposes, whereas the bounds given by the

method proposed in [15] are quite loose. Using that method, 1,763 states (K = 3) should be

generated to achieve bounds of acceptable quality. For model 2, our method with anyK gives

tigther bounds than the other method withK + 1. The improvement of our method decreases for

larger values ofK and is considerably larger for model 2. Both behaviours can be explained by the
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relative sparsness of down states inU .

Table 1: Comparison of the bounding methods for model 1.

|G| K F Muntz et al. proposed improvement

231 2 0 3.2313 × 10−6 3.2313 × 10−6 23.7

8.9886 × 10−6 3.4746 × 10−6

5.7573 × 10−6 2.4322 × 10−7

1,763 3 0 3.3167 × 10−6 3.3167 × 10−6 14.2

3.4182 × 10−6 3.3239 × 10−6

1.0155 × 10−7 7.1676 × 10−9

10,464 4 0 3.3192 × 10−6 3.3192 × 10−6 9.44

3.3208 × 10−6 3.3194 × 10−6

1.5547 × 10−9 1.6469 × 10−10

Table 2: Comparison of the bounding methods for model 2.

|G| K F Muntz et al. proposed improvement

231 2 0 0 0 522

8.5262 × 10−6 1.6324 × 10−8

8.5262 × 10−6 1.6324 × 10−8

1,771 3 0 4.5418 × 10−9 4.5418 × 10−9 202

1.6621 × 10−7 5.3420 × 10−9

1.6167 × 10−7 8.0016 × 10−10

10,616 4 0 4.7214 × 10−9 4.7214 × 10−9 95.6

7.4986 × 10−9 4.7504 × 10−9

2.7773 × 10−9 2.9058 × 10−11

52,916 5 0 4.7277 × 10−9 4.7277 × 10−9 55.2

4.7736 × 10−9 4.7286 × 10−9

4.5912 × 10−11 8.3150 × 10−13

It has been observed that the tightness of the bounds derivedin [15] increases withF . This is

not typically the case with ours. Table 3 gives|S| and the lower and upper bounds obtained with

both methods for model 1,K = 3 and all possible values forF . The lower bound (identical for both

methods) does not experiment variations at the level of the 6th significant digit. The upper bound

given by the method proposed in [15] experiments some improvement whenF increases. Our upper

bound experiments a slight improvement fromF = 0 to F = 1, but deteriorates considerably with

further increase ofF . This behavior can be explained as follows. Given the ordersof magnitude

difference between failure and repair transitions, the model reaches stateo with high probability and

in short time for anyi ∈ S andTG,i tends to depend vary little on the “return” statei. Then, the
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dependency of|UAi|
′
ub (6) on i comes mainly throughCG,i and |CU,i|ub. The latter is determined

by the exit distributionπik,d (11). For largerF , S includes states with more failed components and

smaller failure distances, the distributionsπik,d are more shifted to high values ofk and smaller

values ofd, and sinceC(k, d) increases with higherk and smallerd, the corresponding|CU,i|ub

are larger. WhenF ≥ L, S includes down states and the shift ofπik,d for such states is specially

significant, since all failure transitions fromi give contributions toπik,d with d = 0. Also, the

corresponding transient CTMC’sY i
G include visits to down states with probability 1, yielding larger

CG,i values. For0 < F < L the small dependency ofTG,i on i may outweight the other factors

and yield a slightly tighter upper bound than forF = 0. Both behaviors are clearly supported by the

results in Table 3 (L = 2 for model 1). The cost in time of the bounding method is very sensitive

to F , since|S| CTMC’s Y i
G have to be solved, andF = 0 should be the reasonably choice for our

method.

Table 3: Impact ofF on the bounds for model 1 andK = 3.

F |S| Muntz et al. proposed

0 1 3.31670 × 10−6 3.31670 × 10−6

3.41825 × 10−6 3.32386 × 10−6

1 20 3.31670 × 10−6 3.31670 × 10−6

3.39292 × 10−6 3.32373 × 10−6

2 210 3.31670 × 10−6 3.31670 × 10−6

3.39275 × 10−6 3.34645 × 10−6

3 1532 3.31670 × 10−6 3.31670 × 10−6

3.39272 × 10−6 3.36944 × 10−6

Our bounding method is more complex both theoreticaly and computationaly. The last aspect

requires some discussion. The only storage and time overheads of our method which can be signifi-

cant are related to the computation of the failure distances: generation and storage of minimal cuts

and computation of failure distances using (13), (14). Efficient algorithms (see [13] for a review)

exist which will find all minimal cuts very fast even when their number is of the order of several

thousands. Thus generation “per se” does not seem to be an important problem. Since a minimal

cut requires less storage than a state and the information associated to it, the requirement of storing

the minimal cuts can only be significant when the number of minimal cuts is substantially larger

than the number of states of the model. Regarding the cost in time associated to the computation

of failure distances, it represented a5% overhead for the examples used here which have 9 minimal

cuts. When the number of minimal cuts is large the method described here for failure distances

computation can be time consumming. However, the techniques proposed in [3] can be used to re-

duce drastically the number of minimal cuts which have to be “touched” to compute the failure and

“after” failure distances from a particular state. Using these techniques, storage and time overheads

will only be significant when a number of minimal cuts in the order of several thousands has to be

managed. We also note that knowingall minimal cuts is not a requirement of the method. We can
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simply consider the minimal cuts with up to a given numberM of components and assume that the

system is down for all combinations of more thanM failed components to obtain a looser upper

bound (but never worse than the bound obtained using [15]). Thus, a tradeoff can be made between

tightness of the bounds and overhead caused by the management of the minimal cuts.

5 Conclusions

In this paper we have proposed a method to bound the steady-state unavailability of repairable fault-

tolerant systems using CTMC’s which, with the same number ofgenerated states, can give signifi-

cantly smaller (andneverworse) bands than a method previously proposed [15]. Using the failure

distance concept we have obtained an upper bound exploitingthe fact that, typically, the system is

operational a large portion of the time the model is out of thegenerated state space. The quality

of our upper bound depends on the tightness of the failure rate boundsF (k, d, i, r). The bounds

F (k, d, i, r) we have used here are relatively simple and we plan to consider in the future the use of

more preciseF (k, d, i, r) bounds. We are also interested in studying the behavior of our bounding

method and how it compares with the method proposed in [15] incombination with state exploration

techniques recently proposed [17].

APPENDIX

Sketch of the proof of Theorem 1

LetCi (Ti), i ∈ S be the expected reward (time) inX between entry ini and the next entry inS from

U . Using results from semi-regenerative process theory (Theorem 6.12 of [Cin75, Chapter 10]) and

using the fact thatX is irreducible and finite, it is easy to show that

R =

∑

i∈S ψiCi
∑

i∈S ψiTi
,

whereψi, i ∈ S is any invariant measure of the embedded discrete-time Markov chainΠ of X.

BeingΠ finite and irreducible, there exists an invariant measure for Π satisfyingψi > 0,
∑

i∈S ψi =

1. Using this, it can be shown by induction on|S| that

min
i∈S

{Ci/Ti} ≤ R ≤ max
i∈S

{Ci/Ti} .

BeingX irreducible,S is reached inX from i with probability 1. Then,i is recurrent inXi.

AssumingXi(0) = i, it is easy to check thatXi is recurrent aperiodic.Ci andTi are, respectively,

the expected reward and time between recurrences. Then, by regenerative theory,Ri = Ci/Ti and

the result follows.
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