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Abstract

Continuous-time Markov chains are commonly used for degkitity modeling of repairable
fault-tolerant computer systems. Realistic models of trewial fault-tolerant systems easily
have very large state spaces. An attractive approach whistbéen proposed to deal with the
largeness problem is the use of pruning-based methods yphiefide error bounds. Using re-
sults from Courtois and Semal, a method for bounding thedgtetate availability has been
recently developed by Muntz, de Souza e Silva, and Goyak paper presents a new method
based on a different approach which exploits the concepaibfré distance to better bound
the behavior out of the non-generated state space. Thegedpoethod yields tighter bounds.
Numerical analysis shows that the improvement is typicsiipificant.

1 Introduction

Modeling plays an important role in the design, analysismadagement of fault-tolerant computer
systems. These systems are characterised by exhibitingpeimastic behavior and, accordingly,
probabilistic measures are used for their quantitativesssaent. Many systems are seen by their
users as providing service or not. For these systems, dap#ibhdmeasures such as the availability
and the reliability are appropriate. The steady-statelatbitity is a useful measure for repairable
systems when the long-term behavior is of interest. In soases; this measure can be computed
using combinatorial techniques [1] or closed-product tafuqueuing networks [6]. However, in
general, the dependencies introduced by lack of coveragere propagation, operational config-
urations and maintenance are such that general-purpase,lestel model solution techniques are



required. Continuous-time Markov chains (CTMC's) are oftsed to analyse systems with these
dependencies and a number of dependability/performalbdils based on these models have been
developed in the past (see [11] for a recent review).

Numerical analysis of CTMC dependability models is hamgdngthe exponential growth of
the number of states with the structural complexity of tretey. Systems with moderate number of
components easily yield CTMC'’s with millions of states andren This problem has been attacked
in three directions: a) hierarchical model solution [16],sbate lumping techniques [12], and c)
pruning techniques. Only the last of them has general agdgility. Recently, pruning-based solution
methods providing error bounds have been developed foraadependability measures. Bounds
for the reliability have been obtained in [2]. A method to hduhe steady-state availability has
been proposed in [15]. This method has been further devélopgl4], [17]. The error bounds
offered by these methods are qualitatively superior to toeii@cy assessment offered by simulation
methods recently developed to attack the largeness prollein[3], whose reliability depends
on how well the variance is estimated. This makes of greatést the development of efficient
bounding techniques.

This paper presents a new method to obtain steady-statailakaty bounds using CTMC
models which, typically, gives significantly smaller baritian the method proposed in [15]. Our
method uses an upper bound exploiting the fact that, vegnothe system is operational a large
portion of the time the model is out of the generated stateespehe upper bound is developed using
the failure distance concept. The rest of the paper is osgdris follows. Section 2 describes the
availability models under consideration, reviews the rméthroposed in [15] and, using a regenera-
tive perspective, argues the potential looseness of the\ststate unavailability upper bound given
by the method. Section 3 presents the theoretical develojsnygelding the upper bound used in
our method. Section 4 illustrates with examples the redadti the steady-state unavailability band
which our method can achieve and discusses the computatieerdeads of our method in relation
to the method proposed in [15]. Section 5 concludes the paper

2 Prdiminaries

The type of models addressed in this paper are those whicitt femm conceptualising a fault-
tolerant system as made up of components which fail and peéregl with constant rates. The sys-
tem is operational or down as determined by a coherent steifiinction [1] on the unfailed/failed
state of the components. This basically means that repaimsat take down an operational sys-
tem and that failures cannot bring operational a down syst@nfailure of a component can be
propagated to other components. In addition, each compaagnbe failed in a finite number of
modes. Failure and repair rates and failure propagatiordepand on the state of the system. Let
X = {X(t);t > 0} be the CTMC modeling the systerf}, its state space andthe (only) state

in which all components of the system are unfailed. We asghaterepair transitions involve only
one component and that at least a repair transition exists &my state# o. It follows from the



hypotheses thaX is finite and irreducible. It is assumed that a high-levekdpsion of the model

is available from which it is possible to identify the bagsomponents (we allow component types
with instances) which can be failed simultaneously in alsimyent. Those bags are callilure
events F will denote the set of failure events of the model diidhe set of failure events including
1 components. It is also assumed that links to the high-legstidption of the model exist allowing
to determine during generation of the CTMC the failure ewassociated to a failure transition and
the component affected by a repair transition. Using tHisrination, it is possible to compute the
bag of failed componentB'(z) in each generated state

Let D be the subset of down states andpgti € () the steady-state probability distribution
of X, the steady-state unavailability is definedds = 3", p;. UAis a special case of the more
general steady-state reward rate meastire Y, ., 7(7)p;, wherer(i), i € € is an arbitrary reward
rate structure imposed oX.

Since repair rates are usually several orders of magnitigdehthan failure ratesX is highly
skewed, i.e., it has a probability distribution concemttain a small portion of the state space (the
states with few failed components). Thus, in general, ggqmaximations fork can be computed
using only a small portion dR2. However, assessing the accuracy of the solution is a difficab-
lem. The method proposed in [15] was the first to obtain tightrials in the context of availability
modeling. The method can be used to bound any steady-statedreate measur& (see [17]).
Let G be the generated portion X, U the non-generated portion, asdthe subset o through
which X can enterG (from U). As in [15], assume that contains all states with up to a given
numberK of failed components. The method can be described in tertted€ TMC's X/, i € S
which (conceptually) can be obtained fra¥has shown in Figure 1. Firsk; is obtained fromX by
redirecting toi all transitions fromlJ to G (S). Second[/ is replaced by the states¢. 1, ...,un,
where eachy;, accounts for the subséf, of U including all the states witlk failed components.
Failure transitions fron@ to states inJ with % failed components are directed to state Each
stateu, kK < N has transitions to states, ; with ratesf;(k) chosen to be upper bounds for the
sum of the failure transitions rates from any state witlailed components t&,, ;. Each stateu,

k > K + 1 has also a repair transition tq._; with a rateg(k) chosen to be a lower bound for the
sum of the repair transition rates from any state witfailed components. A similar transition is
also introduced from stater | to statei. For f;(k) we can take_ . p. Adup(e), wherel,,(e) is an
upper bound to the rate of the failure eventFor g(k) we can take the slowest repair rate of the
model. Let|r|;, and|r|,, be, respectively, lower and upper bounds for the rewardinaa@y state
of X, the bounds fok are obtained using the following recipe:

1. for each staté € S find the steady-state distribution &f and, assigning to the state(ithe
same reward rate as X and to the stategy 1, ..., uy areward ratér|; (|7].s), compute
the resulting steady-state reward rag®e|;, (| R;|up).

2. |R|jp = minges |Ri|i, | R|up = maxies | Rilup-

lb1

Typically S will include all states inG with K failed components and the number of models



Figure 1: Construction of the CTMCX used by the bounding method proposed in [Mun89].

X! to be solved can be large. The computational cost of the rdetio be reduced at the expense of
some looseness of the bounds by the state duplication tpeproposed in [15]. In this technique,
duplicates of all states i with more thanF’ failed components are (conceptually) added/tto
account for the visits to these states after the numberletfabmponents is made larger th&mand
before the number of failed components is made equal tdhis state duplication technique can be
thought as a redefinition of the CTM& to which the bounding method is applied. The resulting
CTMC'’s X/ have the structure depicted in Figure 1, except that theeggte states; will run now
from up, 1 to uy andS will only include the states witli” failed components which can be reached
through repair transitions. Taking small enough reduces arbitrarely the number of CTMX 40

be solved. A final remark is th&t does not have necessarely to include all states with up teem gi
number of failed components (see [17]). However, it doeg ttainclude all states with' or fewer
failed components.

The reviewed bounding method was justified in [15] using tkeceaggregation theorem for
ergodic Markov chains and bounds on conditional steadg-ststributions in subsets of Markov
chains [7], [8]. Here, it will be discussed using a regenegaperspective. The motivation is to
support theoretically our bounding method and ease the ansgm between the method proposed
in [15] and ours. LeC; andT; be, respectively, the expected reward and the expectedirinie
between consecutive jumps frobh to i (regeneration points). LeR; be the steady-state reward
rate of X;. Then, by regenerative theorft; = C;/T;. In addition, using semi-regenerative process
theory [5] it is possible to obtain the following result:

Theorem 1. Let X = {X(¢);t > 0} be a finite irreducible CTMC with state spafeand reward



rate structurer(i), i € Q. LetQ2 = G U U be a non-trivial partition of2 (G,U # 0) and letS be

the subset of7 through whichX can enterGG from U. Let R be the steady-state reward rate §f.

LetX;,i € S, be the CTMC obtained frotX by redirecting tai the transitions front/ to S, assume
X;(0) =14, and letR; be the steady-state reward rate f. Then,min;cs R; < R < max;cg R;.

Theorem 1 has immediate application to the CTM&sunder consideration. The condition
X;(0) = i is in general required becausg could contain several closed sets. However, for the
CTMC's X considered hereX; is irreducible, and the steady-state reward ftés independent on
the initial distribution ofX;. An sketch of the proof of the theorem is given in the Appendike
complete proof can be found in [4]. Using Theorem 1, the abness of the bounds fdt computed
in the recipe follows from the correctness of the bouh@g;, and|R;|,;, for R; computed in the
first step.

Let Cq,; andCy,; denote, respectively, the contributions of the state& iandU to C; and
assume a similar notation for the contributions of the stateG and U to 7;. Then, we have
Ci=Cgi+Cu;, T; =Tg,; + Ty, and

R, — Ca,i+ Cui-
Tai + Ty
Consider now the regenerative behaviorXtf defined by the times at whick hits i from

up11 (@nalogous to the regenerative behavior consideredk§pr As it will be shown later, the
mean time in the states- 1, ..., ux between regenerations upper boufiglg, so we can properly
call it [Ty |- Notice that, sinceX; and X/ enterG through the same state and are identicakin
the mean reward and time (& between regenerations are identical #rand X. Then, the lower
and upper bounds far; computed in the first step of the recipe can be written as

Ca,i +Ir|w|Tvilus

Ri|n, =
B Tci + |Tvilub

(1)

Cai + |7 |ub|Tusilub
T+ Tugluw
The correctness of these bounds can be justified as folloatgyl(x) = (Ce i+ |rlwz)/(Tai + ),
() = (Cqi+|rlwz)/(Tgi+z). Theirfirst derivatives arégy,/dx = (|r|wTc.i—Ca.i)/(Tai+
2)2, dgy/dr = (|r|lwlc: — Cai)/(Tai + )% Using r|pTe: < Cai < |rlwTc.i, we have

|R2|ub =

)

dgi/dx <0, dgyy/dxz > 0. Then, sincer|;, Ty < Cui < |rlwlv,is

_Cai+Cui Coit YA
To;+Tv; —  Tai+Tu,

Ca,i +|r|wl|Tvilub

R4
' T+ Tuilu

= g(Tvi) = gw(|Tv,iluw) = = |Rilw,
Ca,i+ Cu, - Ca,i+|rlwTu, Ca,i + Ir|u|Tvilub
Tei+Tu: = Tgi+Tu, Tci + |Tvilus
For the particular case of the steady-state unavailability = 0, |r|,, = 1 and the bounds (1), (2)
can be written as

R; =

= 9w (Tv,i) < g (|Tvilup) = =|Rilup -

Ca.i

VAilp = 75—,
IUA TG+ Tvilub

®3)



Cai +Tvilub

UA;|uwp = .
VAL Tci + | Tvilus

(4)

The examples given in [15] indicate th&tA|,;, tends to be much looser thfldA|;,. An intu-
itive explanation for this is the following. Sinck¥; tends to be highly skewed, typicall¥7; ;| ., <
Tq.i- SinceUA; = (Cq;i + Cui)/(Tai + Tus), the tightness ofUA; |, (3) and|UA; |, (4) depend
mainly on the closeness 6f;; andCq ; + |Tyi|us 10 Cq i + Cyi. Down states tend to be sparse
and, typically,Cy; < Ty ;. Then,Cq i + |Tv.i|uw tends to be less closer & ; + Cy; thanCg ;,
making |UA; |, significantly looser thaflUA,; ;.

3 Proposed bounding approach

3.1 Setup

Our method differs from the method given in [15] in the useigitier upper bounds fduA;, ¢ €
S. We start considering the more general steady-state rexatedmeasurg? and showing how
a different upper bound foR;, |R;|!,, can be established using an upper bounddpy,. First,
Cu;i < |r|lwTy,; implies

_ Ce.i+Cu. - Ca,i+Cu,
Tei+Tvi ~ Tai+ Cui/lr|w

i = h(Cuy),
with h(z) = (Cqi + z)/(Ta,i + x/|r|w). Inaddition,dh/dz = (Ta,; — Cai/lrlw)/ (Ta,i +
z/|r|uw)? > 0, sinceCq; < |r|wTc.i- Thus,h(x) is monotonically increasing and

Ca,i +1Cuilup

Ri < h(|Cuiiluy) = — Rl 5
= (| U,| b) TG,i""’CU,i‘ub/‘T’ub | |ub ( )

Regarding the tightness 6R;|,, and|R;| ,, we have the following result:

ub?

Theorem 2. Assume’ ; < |r|sTc,i- Then,

Rz‘;b < ’Rz‘ub if and onIy if’CUﬂ"ub < ’T‘ub’TUJ‘ub-

Proof: Consider again the functioh(x) = (Cg; + =)/(TG: + /|r|w). FOrCaq: < |r|lwlc.,
dh/dx = (T —Ce.if|rlw)/(Tai+z/|rwl)? > 0. Thisimplies thah(z) is strictly monotonically
increasing and, since (5R; |\, = h(|Cu.ilup) and (2)|R;|up = h(|7|uws|Tv.ilup), the result follows.

]
For the steady-state unavailability'|(,, = 1) |R;|!, (5) is reduced to
Cai +|Cuiluw
UA [, = 2t Tt 6
Uy Tai + |Cuilub ©)

whereC' has the meaning of “mean down time”. Also, the fact that tla¢est is operational and,
therefore, has reward rate 0 ensu€@s; < T ,. Then, Theorem 2 establishes thai;|’, <
|UA; | if and only if [Cuilus < |Tvilub-



Figure 2: Transient CTMQ” used to derive the bound%k) andC' (k).

The boundgUA;|;;, and |UA;|,;, are computed in [15] from the steady-state solutionXgf
In our bounding methodCc i, TG, |Tv,ilus and|Cy il are computed independently and then
combined using (3), (6) to obtajA;|;;, and|UA; |/ ,.

3.2 Computation of T ;, Ce; and [Ty | up

In the following (v, Z) will denote the mean time to absorption in the state or sulifsstatesy of
the transient CTMCZ with given initial distribution. LetA be the restriction of the transition rate
matrix of Z to its transient states} the column vector giving the initial probability distriban of
Z, andt the solution ofAT = —q. As it is well-known,7 (i, Z) = 7.

Tc,; andCg,; can be computed solving the transient CTME with initial statei tracking X
from i to exit of G:

TG,i - Z T(ja YCZ;)7
jeEG

Coi= Y. 7(4,Yd).

jeGND

The upper boundly ;|,, can be computed using the transient CTMGQepicted in Figure 2.
The boundness dffy; |, will be justified using exact aggregation results for transiCTMC’s [9]
and the following lemma (see [4] for the proof), closely tethto the mean holding time lemma of
[15].

Lemma 1. Let a transient CTMCY with the structure depicted in Figure 2 and consider another
transient CTMC,Y’, with the same structure and such thf(k) < f;(k) and ¢'(k) > g(k).
Also assume that” and Y’ have the same initial distribution. Then(u;,Y") < 7(u;,Y), i =
F+1,....N.

Let 7;; be the mean time spent by during a visit toU conditioned to entry through state
s. Ty is the mean time to absorption of the transient CTME with initial states tracking X
from s to exit of U. Let Yy be the result of the exact aggregationYf of the subsetdJ;,
k= F+1,...,N. Y has the structure of and initial stateur(5)- From exact aggregation
results for transient CTMC's [9F; (ug, YY) = 7(Uy, Y;3) and the transition rates &f5' are convex



linear combinations of the transition ratesf. More specifically\,, , = > ;cp, wi'Aj v, and

Uk, Uy

Nporab = Ljetpn w]FH“b/\] abs With w; > 0, Y wi =1, 33w ™ = 1. Consider the
“failure” transition rates oft; Nigupssr B = F+ 14> 0. Slncef,( ) upper bounds\; v, , .,
J € U,

k,k
A;[/k7uk+z = Z 'LU +2/\] Uk i < ma'X >\.7 Uk 44 < fl( )
JeU
Usingg(k) < Aju,_ 1,]’ €Up k>F+1andg(F +1) < Aja, j € Upsa, it can be similarly
shown thaty;, ., , >g(k), k> F+1 and)\’uF+l ab > 9(F +1). In summary, the transition rates

of Y andY;y satisfy the conditions of Lemma 1. Denoting BY the transient CTMQ” with initial
stateu;, and by7' (k) the mean time to absorption &% and using Lemma 1,

N N N
Tp= Y 70pY5) = 3 7w, ¥) < 3 7, YO = T(F(s))).
j=F+1 j=F+1 j=F+1

Let ¢% be the conditional entry probability distribution &f; in U through states. ¢% can be com-
puted from the mean times to absorptiont{f as

oL = 7. Y Ajs - @)

jeG

Let 7 be the probability thak; entersU throughUy,. We have

=D ®)
seUy,
Then,|Ty ;|4 can be computed as
N .
Tuilw = > mT(k). 9)
k=F+1

The upper boundness {if;; ;|.,, can be easily justified usirfj; < T'(|F(s)|):

N N N
Toi=Y oT5= > > oI5 < > > ¢iT(k)= > mT(k).
seU k=F41s€Uy k=F41s€Uy k=F+1

Giving the relationships betweeri and X7, it is clear that|7y |, is the upper bound fof;
implicitely used in [15].

Although the bound$Iys /., can be computed directly as the mean times to absorptidn of
with initial distributions P[Y (0) = ;] = 7%, this procedure requirgs| solutions ofY” (one for
each staté € S) and a more efficient approach whgsl > 1 is to compute|Ty ;. from T'(k),
k=F+1,...,N using (9).7(N) can be computed solving" asT(N) = Y p., 7(ug, YV).
Denoting byA(k) the output rate ofi;, in Y, the remainindl’(k)’'s can be computed exploiting the
following relations, which result from a conditional pathadysis ofY .

T(k:)zﬁjt% +Zf2 T(k+i), F+1<k<N,

— +T(N-1),



yielding

T(N = 1) = T(N) - —=.
Tk) = 1)\lek11 k+1DT(k+1+1
k) = GrpPE+DTE+D) - —Xijfz( + DTk +1+3)],

k=N-—2. . F+1.

3.3 Computation of |Cy;|ub

The strategy to find a bourid’ ;|,,, potentially smaller thafily; ;| is to exploit the fact that many
of the states it/ are operational and, thus, do not contribut€’tg;. As we shall show, the strategy
can be implemented using the concepfaifure distance which has been useful to speed up the
simulation of the type of models considered in this paper J3ie failure distance from an state
d(x), is defined as the minimum number of components which hawailtéirf addition toF'(x)) for

the system to go downi(z) = 0 for x € D).

Let Uy, 4 be the subset df/ including the states withk failed components and failure distance
dand Ietw;;d be the probability thak; entersU throughUy, 4. We have

Tha= D - (10)
SEUk,d
Assume that upper bounds(k, d) to the mean down time ity conditioned to entry i/ through
any state= U}, 4 are available. Then, an upper bound € ; can be computed as

|Curilus = Y 7},aC (K, d). (11)
kd
Sincer}, = >4}, 4, itis clear (9) thaC(k,d) < T'(k) implies |Cyiluy < [Tvi|us- If, in addition,
C(k,d) < T(k) for some pair(k, d) with 7}, ; # 0, [Cuilup < [Tvilub-

Our approach to obtain bound&k, d) < T'(k) includes two steps. In the first step, we obtain
upper bounds to the mean down timelinconditioned to entry irlV throughU,. Then, we let
C(k,d) = C(k) and improve iterative\C'(k, d). The bound<C(k) are< T'(k) and, as a result,
C(k,d) < T(k). Thus, our bound&Cy |, are always< |Ty |, and our upper bounfUA|! , is
never worse thafA| ;.

Let L be the minimum number of components which have to fail to thieesystem down
(L = d(0)). With the reward rate structure

() 0 if j<L
r(u;) =
! 1 if j>L"

the mean reward to absorption Bf provides a suitable bound (k). To justify this, letCs; be
the mean down time in a stay i since entry through state C7; is the mean down time of the



transient CTMCY7;. Using exact aggregation results for transient CTMC’s, i, and the fact
that all states iy, k < L are operational,

Co= 3 7G.Y8) < S r(UnYE) = 3l ) < 30 r(ug, YF) = C (k).

jeunD k>L E>L k>L

ForF +1> L,C(k) = T(k). OtherwiseC(k) < T'(k). C(N) can be easily computed from the
mean times to absorption vectorvf' asC(N) = YN ; 7(ug, YV). The remaining”(k)’s can be
computed using the following recursive equations (analedo the equations giving(k), k£ < N),

wherel(c) is the indicator function which returns 1dfis true and O otherwise.

1
CV =1) = C(V) = .
Ck) = ————\(k+ DOk +1) — [(k+1> L)~ IICRCEREE

glk+1)
k=N _2.  Fil.

Let FC be the set of different cardinalities of the failure everftthe model. LetF'(k, d, i, r),
1 € FC, be upper bounds for the sum of failure rates involvikgmponents from any stateihwith
k failed components and failure distanééo states with failure distance r, let w = min{i, d},
and let
fij(k,d) = F(k,d,i,d —j)— F(k,d,i,d—j5—-1), 0<j<w,

Foaalk,d) = F(k,di,d — w).

The iterative improvement procedure ©fk, d) is based on the following result (proved in [4]),
where in the expression fa’(k, d) the termsC'(k, d) corresponding to unfeasible pairs d) have
to be set to 0. The feasible paifs, d) are given byF + 1 < k < N, max{0,L — k} < d <
min{L, N — k}.

Proposition 1. LetC'(k, d) be upper bounds fat'j;, s € Uy, 4 and assume that'(k, d) is decreasing
ond. Then, for anys € Uy 4,

I(d = 0)

cs < C'(k,d) = o

+ max{C(k — 1,d),C(k —1,d + 1)}

+sz”kd C(k+i,d—7). (12)

i€ FC j=0

The iterative improvement procedure can be implementetgudi2). At each step;’(k, d)
is computed for each feasibé, d) pair and accepted as néW(k, d) if C'(k,d) < C(k,d). The
procedure can be finished when no bodrg, d) has been reduced significantly during a step. Itis
important to note that the correctness of the boutid#, ) requires that the available set@fk, d)
bounds be decreasing @n It is proved in [4] that this is satisfied if 1) the boun#$k, d, i, r) are
decreasing om, and 2) the bound€’(k, d) are reviewed grouped by. In our implementation the

10



bounds are reviewed by increasing values @nd, for a giverk, by increasing values of. This
ordering has been proved effective, in the sense that verynigrovement steps (typically. 10)
are required to reach stable values for the bounds.

It is possible to argue that the boun@ék, d) obtained at the end of the iterative improvement
procedure ford > 0 are potentially much smaller than the origir@(k) if 377, fi;(k,d) =
F(k,d,i,d) < g(k). ConsiderC’(F + 1,d) withd > 0 andC(k,d) = C(k). For such a case, the
first two terms ofC’(F + 1,d) are 0 C(k,d) = 0 for non-feasible(k, d) pairs) and only the last
term remains, but even considering th&gt) > C(F +1) for £ > F + 1, the last term can be much
smaller tharC'(F +1) if 3% fi j(k,d) < g(k). Consider now’’(F'+2,d) with d > 0. A similar
discussion can be made except that the second term will nmilbéout since this term corresponds
to revised value€’(F + 1,d) with d > 0, it is potentially much smaller thafi'(F' + 1), and thus
thanC(F' + 2). The argument can be iterated for increasing valuds of

Combining (7), (8), (9) and (10)Y1,i|u» and|Cy 4|, can be formulated as

Tuilu = Y, 7(7, Y a(h)

e
(Curilup = _ 703, YE)B()
with "
a(j) = S;JAJ;ST(IF(S)I),
Bl) = ;Aj,sC(IF(s)I,d(s))-

Note thata(j), 5(7) are independent ahand the above formulations are used with advantage when
|S] > 1.

3.4 Computation of failure distances and bounds F'(k,d, i,r)

The computation ofCy;|., requires the knowledge of the failure distances from thtestam the
frontier of U. The failure distancé(z) from a stater can be computed from’(x) if the minimal
cuts of the structure function of the system [1] are knowrt. M€ be the set of all minimal cuts of
the structure function of the system, using standard baatinat we have

d(x) = mrg&}llc |m — F(z)|. (13)

Although (13) can be used to compute all the required failiseances, most of the transitions
from G to U will be of the failure type (all ifG' contains all states up to a given number of failed
componentds) and a more efficient procedure can be established introgube notion of “after”
minimal cuts associated with a given failure eventLet MC. = {m’ | m’ = m —e,m €

11



MC,m (e # ¢} be the set of “after” minimal cuts associatedetathe failure distance from any
state reached from through a failure transition with failure eventan be computed as

ad(x,e) = min{d(z), min |m — F(x)|}. (14)

meMC,

The cardinality ofMC, is in general much smaller than the cardinality€. Then, for each state
x in the frontier of G we can compute its failure distance using (13), and use (Lddmpute the
failure distances for the stateslihreached fromx through failure transitions. If some stajen U
is reached fromx through a repair transition, then we can constrki¢y) and computei(y) using
(13).

The tightness of the bounds(k, d) depends on the tightness of the bouddg:, d,i,7). In
general, better boundB(k,d,i,r) require a more detailed analysis of the model and thus their
computation requires more effort. The bourfdg, d, i, r) used here are relatively easy to compute
and, as the examples in the next section will show, providelgesults. The bounds are based on
two structural properties of failure events. Tingortancel (e) of a failure event is defined as the
minimum number of components which are left unfailed in angimal cut affected by the failure
event. Theactivity A(e) of a failure event is defined as the maximum number of components of
the failure event in any minimal cut. From their definitiodi$s) and A(e) can be computed by

I(e) = min |m — e,
meMC mne#¢

A(e) = max_|mnNel.
meMC
Consider a state witk failed components and failure distanéeand another state reached from
it through a failure event. The number of components left unfailed in any minimal putis
> |m — e| — k, since at most: components not included im N e were failed beforee. Then,

d > I(e) — k. Also,d > d — A(e), since at mosti(e) components in the same minimal cut will
be failed bye. Imposingd’ < r results in:

Ile)—k<r,
d—Ale) <r.

Then, the failure rate from any state withfailed components and failure distanéeue to failure
events withi components leading to states with failure distafceis bounded above by

F(k,d,i,r) = > Aup(e) .

e€E;,Ale)>d—r,I(e)<k+r

It is easy to check that these bounds are decreasing, @s required for the correctness of the
iterative improvement procedure f6f(k, d).

4 Numerical Analysis

In this section our bounding method is compared with the owfiroposed in [15] using the large
model described there and a variation of it to explore theaichpf the redundancy levél on the
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Figure 3: Fault-tolerant database system from [Mun89] (@h@jl

relative tightness of the bounds given by the methods. Wehéssame state generation strategy as
in [15], i.e.,G includes all the states with up #@ failed components. The large model considered
in [15] is the fault-tolerant database system shown in FirThe system includes two processor
types (@ andB), two sets of dual-ported controllers with two controllpes set and six disk clusters
with four disks. Each set of controllers controls three s Each processor type has three spares.
The system is operational if at least one processor of ary iymnfailed, at least one controller
in each set is unfailed, and at least three disks in eacheclase unfailed. Thus[. = 2. A
failure in the active processot is propagated to the active procesd®rwith probability 0.10.
Processors and controllers of one set fail with figt2000, controllers of the other set fail with rate
1/4000. Disks fail with different rates from one cluster to anothiEnese rates ark/6000, 1,/8000,
1/10000, 1/12000, 1/14000, and1/16000. Any component fails in one of two modes with equal
probabilities. The repair rate is 1 for one mode @arigdfor the other. Components are repaired by a
single repairman who chooses components at random fromettad failed components. Unfailed
components continue to fail when the system is down. Thisahlaas aboud x 10'0 states, clearly
illustrating the “largeness” problem. A slight variatiohtbis example is also considered. We call
the original model from [15] model 1, and call model 2 its @ion. Model 2 is obtained from
model 1 by increasing the number of controllers in each s8tdaad the number of disks in each
cluster to 5, without modifying any other aspect. For moddl 2= 3.

Tables 1 and 2 give the number of generated states, the st&tdyunavailability bounds and
bands under both methods, and the improvement measured harit ratio. Our method always
gives significantly smaller bands. Thus, for model 1, ourhuétfor K = 2 (231 states) gives
bounds wich can be considered tight enough for most purpedesreas the bounds given by the
method proposed in [15] are quite loose. Using that methodb3lstates £ = 3) should be
generated to achieve bounds of acceptable quality. For Inydsur method with anyi gives
tigther bounds than the other method with+ 1. The improvement of our method decreases for
larger values of< and is considerably larger for model 2. Both behaviours @explained by the
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Table 1: Comparison of the bounding methods for model 1.

‘ |G| ‘ K F ‘ Muntz et al. proposed improvement
231 | 2 032313x107%|3.2313x 1076 23.7
8.9886 x 1076 | 3.4746 x 1076
5.7573 x 1076 | 2.4322 x 1077
1,763 | 3 0 3.3167 x 1076 | 3.3167 x 1076 14.2
3.4182 x 1076 | 3.3239 x 1076
1.0155 x 107 | 7.1676 x 107
10,464 4 0| 3.3192 x 1075 | 3.3192 x 1076 9.44
3.3208 x 1076 | 3.3194 x 1076
1.5547 x 1072 | 1.6469 x 10~10
Table 2: Comparison of the bounding methods for model 2.
‘ |G| ‘ K F ‘ Muntz et al. proposed improvement
2312 010 0 522
8.5262 x 1076 | 1.6324 x 1078
8.5262 x 1076 | 1.6324 x 1078
1,771 3 0| 4.5418 x 107 | 4.5418 x 107 202
1.6621 x 1077 | 5.3420 x 107
1.6167 x 10~7 | 8.0016 x 10~10
10,616 4 0 | 4.7214 x 107 | 4.7214 x 107 95.6
7.4986 x 1079 | 4.7504 x 107
2.7773 x 1079 | 2.9058 x 101!
52,916| 5 0 | 4.7277 x 107° | 4.7277 x 107? 55.2
4.7736 x 107 | 4.7286 x 10~
4.5912 x 10~ | 8.3150 x 10713

It has been observed that the tightness of the bounds den\é8] increases withf". This is
not typically the case with ours. Table 3 givigd and the lower and upper bounds obtained with
both methods for model ' = 3 and all possible values fdr. The lower bound (identical for both
methods) does not experiment variations at the level of thesignificant digit. The upper bound
given by the method proposed in [15] experiments some inggnant wherF' increases. Our upper
bound experiments a slight improvement fréfm= 0 to F' = 1, but deteriorates considerably with
further increase of'. This behavior can be explained as follows. Given the ordéraagnitude
difference between failure and repair transitions, the ehoeaches statewith high probability and
in short time for anyi € S and7; tends to depend vary little on the “return” stateThen, the
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dependency ofUA, |, (6) on: comes mainly througl®’; ; and|Cy ;|- The latter is determined
by the exit distributionzr,i,d (11). For largerF', S includes states with more failed components and
smaller failure distances, the distributiowfg,d are more shifted to high values éfand smaller
values ofd, and sinceC(k, d) increases with highet and smallerd, the correspondingCy ;.
are larger. Wherf" > L, S includes down states and the shifhcjj’d for such states is specially
significant, since all failure transitions fromgive contributions tcm,i,d with d = 0. Also, the
corresponding transient CTMCY, include visits to down states with probability 1, yieldirgder
Cq,i values. Fol0 < F' < L the small dependency @i;; on< may outweight the other factors
and yield a slightly tighter upper bound than #6r= 0. Both behaviors are clearly supported by the
results in Table 31 = 2 for model 1). The cost in time of the bounding method is venysie/e

to F, since|S| CTMC's Y/, have to be solved, anfl = 0 should be the reasonably choice for our
method.

Table 3: Impact oft” on the bounds for model 1 arnd = 3.

‘ F |5 ‘ Muntz et al. proposed
0 1 |3.31670x 1075 | 3.31670 x 1076
3.41825 x 1076 | 3.32386 x 1076
1 20 | 3.31670 x 1076 | 3.31670 x 106
3.39292 x 1076 | 3.32373 x 1076
2 210 | 3.31670 x 1079 | 3.31670 x 106
3.39275 x 1076 | 3.34645 x 1076
3 1532] 3.31670 x 106 | 3.31670 x 10~
3.39272 x 1076 | 3.36944 x 1076

Our bounding method is more complex both theoreticaly amdpedationaly. The last aspect
requires some discussion. The only storage and time owdstefaur method which can be signifi-
cant are related to the computation of the failure distangeseration and storage of minimal cuts
and computation of failure distances using (13), (14). kffitalgorithms (see [13] for a review)
exist which will find all minimal cuts very fast even when theumber is of the order of several
thousands. Thus generation “per se” does not seem to be amtampproblem. Since a minimal
cut requires less storage than a state and the informatsmtiased to it, the requirement of storing
the minimal cuts can only be significant when the number ofirmah cuts is substantially larger
than the number of states of the model. Regarding the cogshandssociated to the computation
of failure distances, it represente@@ overhead for the examples used here which have 9 minimal
cuts. When the number of minimal cuts is large the methodritest here for failure distances
computation can be time consumming. However, the techeigugposed in [3] can be used to re-
duce drastically the number of minimal cuts which have totbec¢hed” to compute the failure and
“after” failure distances from a particular state. Usinggh techniques, storage and time overheads
will only be significant when a number of minimal cuts in theler of several thousands has to be
managed. We also note that knowially minimal cuts is not a requirement of the method. We can
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simply consider the minimal cuts with up to a given numbé&iof components and assume that the
system is down for all combinations of more th&h failed components to obtain a looser upper
bound (but never worse than the bound obtained using [1B))s;Ta tradeoff can be made between
tightness of the bounds and overhead caused by the manageities minimal cuts.

5 Conclusions

In this paper we have proposed a method to bound the steaitytstavailability of repairable fault-
tolerant systems using CTMC'’s which, with the same numbeyeoierated states, can give signifi-
cantly smaller (ansheverworse) bands than a method previously proposed [15]. Usiaddilure
distance concept we have obtained an upper bound explditenéact that, typically, the system is
operational a large portion of the time the model is out ofdeeerated state space. The quality
of our upper bound depends on the tightness of the failueebvatindsF'(k, d,i,r). The bounds
F(k,d,i,r) we have used here are relatively simple and we plan to canisidiee future the use of
more precise'(k, d,i,r) bounds. We are also interested in studying the behavior mbounding
method and how it compares with the method proposed in [1&mbination with state exploration
techniques recently proposed [17].

APPENDI X

Sketch of the proof of Theorem 1

LetC; (T3), i € S be the expected reward (time) ¥ between entry i and the next entry i1 from
U. Using results from semi-regenerative process theorydidm 6.12 of [Cin75, Chapter 10]) and
using the fact thak is irreducible and finite, it is easy to show that

>ies ¥iCi

Yies UiTi

where);, i € S is any invariant measure of the embedded discrete-time dWackainII of X.
BeingllI finite and irreducible, there exists an invariant measurélfeatisfyingy; > 0, >";cg i =

1. Using this, it can be shown by induction 0$j| that

R=

min{Ci/Ti} < R < max{Ci/T;} .

Being X irreducible,S is reached inX from i with probability 1. Thenj is recurrent inX;.
AssumingX;(0) = ¢, it is easy to check thaX; is recurrent aperiodicC; andT; are, respectively,
the expected reward and time between recurrences. Theegbyperative theon®; = C;/T; and
the result follows. O
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