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Abstract

We propose a method to obtain bounds for the steady-
stateavailabilityusing Markov model sinwhich only a small
portion of the state space is generated. The method is ap-
plicable to model s with phase type repair distributionsand
involvesthesolutionof only 4 linear systems of thesize of the
generated state space, independently on the number of “ re-
turn” states. A numerical exampleis presented to illustrate
the method.

1 Introduction

A mgor drawback of continuous-time Markov chain
(CTMC) models is that they usualy have state space car-
dinalitieswhich are far beyond the available computational
resources. An approach which hasbeen devel oped inthelast
few yearsisthe use of bounding methods which require the
generation of only a portion of the state space [2], [3], [4],
[5], [71, [8], [9], [11], [15], [16]. Those methods perform
well when, as in the case of availability models, the prob-
ability mass is concentrated in a smal portion of the state
space. Thefirst of such methods was devel oped by Muntz,
Souza e Silva and Goyal [11] using results from Courtois
and Sema concerning bounds for conditional steady-state
distributionsin subsets of Markov chains[4], [5]. Let N be
the number of components of the system. Denoting by C},
0 < k < N, the subset of states with exactly & failed com-
ponents, by & the subset of generated states, and by U the
subset of non-generated states, the basic method proposed
in[11] takes G = U<k < x Cr and boundsthebehaviorin U
using a submodel with states ¢;,, K < k < N associated to
the subsets C;. This basic method requires the solution of
|Ck| linear systemsof size |G|+ N — K, which istypicaly
very costly. In order to reduce the computational cost of
the method a state cloning technique is developed in [11]
which introduces some looseness in the bounds but reduces
the number of linear system to be solved to |C'r|, where
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0 < F' < K. Lui and Muntz[7] have proposed arefinement
of themethod for theparticular case /' = ( includingareuse
techniquewhich, at thepriceof an additiona |oosenessinthe
bounds, avoids a compl ete reapplication of the method each
time K isincremented in the search for thedesired accuracy.
The additional |0oseness has been reduced in another paper
from the same authors [8]. Souza e Silva and Ochoa [16]
have devel oped state space exploration techniquesin which
G isgenerated incrementally following heuristicswhich try
to obtain the tightest possible bounds for a given number
of generated states. Semal has developed recently [15] a
bounding method which refines iteratively the bounds using
detailed knowledge about the model in U/ in the proximities
of G. In[2] a bounding method is developed which ex-
ploits the failure distance concept to bound the behavior in
U more tightly than in [11]. State space exploration tech-
niques specifically targeted to that bounding method have
also been developed [3]. Finaly, the method described in
[11] has been extended in [9] to models with infinite state
spaces and subsets C,, £ > K inwhich no every state has
atransition to the left (subset C_1). Performance models
were considered in [9] and the bounding part of the model
was found using specia developments for the model s under
consideration.

All previousmethods to bound the steady-state avail abil -
ity assume exponential repair time distributions (the only
exception being the machine repair model considered in
[10], an extended version of [9], but the devel opments were
specific for the considered model). In this paper we de-
velop a new bounding method for a large class of models
of repairable fault-tolerant systems with phase type repair
timedistributions. The method generatesthe subset of states
G = U<k <k Cr and computes the bounds without using
state cloning techniques by solving only 4 linear systems of
size |G| Therest of the paper is organized as follows. Sec-
tion 2 describes the type of models considered. Section 3
describes the bounding method. Section 4 illustrates the
method with anumerical example. Section 5 concludes the

paper.



2 Type of models and assumed knowledge

We consider fault-tolerant systems made up of compo-
nents which fail and are repaired. Failure processes have
exponential distributions; repair processes have phase type
distributions [12]. Components are grouped into classes,
being indistinguishabl e the components of the same class,
and thus collections of components will be bags (see, for
instance [13] for a brief summary of bag theory). Any bag
of componentswhich can fail smultaneoudly will be called
failurebag. Let £’ betheset of failurebags of themodel. In
general, failurebags may occur with rates which depend on
the bag of failed components. Wewill assumeknown E and,
for each e € I, an upper bound [A(e)]u, for itsrate. Repair
events are assumed to involve only one component. Each
repair event has a repair time distribution taken from a set
P ={P,i=1,...,L} of phase type distributions. Each
phase type distribution P; is defined by a transient CTMC
Zi = {Z;(t),t > 0} withfinite state space L; U {a}, where
al states in L; are transient, a is an absorbing state and
P[Z;(0) € L;] = 1: therepair timeisthetimeto absorption
of Z;. We dlow repair interruption. Thus, the failure of
a component of higher repair priority may preempt an un-
dergoing repair process; the repair process may be resumed
later from the point it was stopped (preemptive-resume) or
retaken asit had just started (preemptive-restart). The state
of the system can then be completely described by giving
the bag of failed components F, the bag of failed compo-
nents assigned to repair processes R, the subbag of failed
components which are under active repair A C R (those
for which repair is in progress), and, for each s € R, the
phase type distribution P; € P associated with it and the
state a € L; of the corresponding transient CTMC Z;.

We will denote by X = {X(¢),t > 0} the resulting
CTMC model and by €2 itsstatespace. Let N bethenumber
of components of the system and let C; be the subset of
 including the states with & failed components. As in
[11] we will take G = Up<r<x C and, accordingly, U =
Ug<x<n'Cr, Where K < N’ < N. According to the
assumed type of state description, we will have |Cy| = 1
and will denote by o theonly state belongingto Cy. Wewill
assume that some repair processisactive in every state with
failed components. Thus, o will be the only state without
active repair processes and X will beirreducible.

3 Bounding method
3.1 Preiminaries

Although our bounding method is mainly addressed to
the computation of bounds for the steady-state availahility,
it can, in fact, be used to bound any steady-state reward
rate measure. Let r;, i €  be an arbitrary reward rate
structure defined over X. We are interested in bounding the

steady-state reward rate:

R= lim Elrxm] = > s,
1EQ

where p; = lim;_, o, P[X(t) = i]. The steady-state avail-
ability is a particular case of R in which r; = 1 for the
up (operationda) states and »; = 0 for the down (non-
operational) states. Let p = (p;)icn be the steady-state
probability vector of X. Let S = Cx bethe subset of states
in G which may have some transitionfrom ¢/ (the so-called
“return” subset), and for each s € S consider the CTMC
X, = {X;(t),t > 0} obtained from X by redirecting to
s dl trangtionsfrom U to S. From the fact that state o is
reachable from s it is easy to prove that X isirreducible.
Let p, = ((ps):i)ien be the steady-state probability vec-
tor of X;. Using genera results from Courtois and Semal
[4, Theorem 3], [5, Section I11] concerning bounds for |eft
eigenvectors of nonnegative irreducible matrices we have:

Theorem 1 Thereexist 35, s € Swith g, > 0,3 ¢ s =
lsuchthatp =" ¢ 3P,

As an immediate consegquence, if we cal R, the steady-
state reward rate of X, i.e.

R = t1_1>r£; E[rXs(t)] = Ezﬂri(pS)i’

we have:
Corollary 1 minges{Rs} < R < maxses{Rs}.

Proof Using Theorem 1:

R = Zﬂpizzrz’Z@(m)i
iEQ €N seS
= Zﬁs Zri(ps)i = ZBSRS'
SES i€) seS
Then, snce 3, > 0 and > .46 = 1, R <

256565 maxses{Rs} = maxses{Rs}. Similarly, we
have R > minges{R;s}. O

Corollary 1 dlows us to compute bounds for R from
boundsfor R, s € S:

(Rl = Iggg{ [Rslw}, )
[R]ub = r?easx{ [RS]ub}~ 2

Consider theregenerativebehavior of X, with X, (0) = s
defined by thetimes at which X hitss from U. Let T and
C;s be, respectively, the mean time and mean reward of X
between regenerations. From regenerative process theory
(see, for instance, [14]) wehave R, = C,/T;. Let Tz ; and
Ty,s (Co s and Cy ;) be the contributions of, respectively,
thestatesin G and U to T (C). We have:

CG,s + C1U,s

R, = .
TG,s + TU,s



Assume that Cg s, T,s, an upper bound [Ty ;]un for
Ty s, and lower and upper bounds [r]y, and [}y, for r;,
i € Q areknown (for the steady-state availability we would
take [7]i, = 0 and [r]u, = 1). We have:

Theorem 2
Cotldlile
Proof Consder the function fi(x) = (Ca. +

[rlune)/(Ta,s + «). Since [}y, upper bounds the reward
rate from any stete of X, we have C¢ ; < [r]unTc s and
dfi/dz = ([rlwTcs — Cas)/(Tas + x)* > 0. Also,
Cus < [r]ubTU,s- Then:

CG s T [r]ubTU s
Z&s T UJubiUs T ) < Tir slu
To+ Ts fillus) < AT sla)

CG,s + [r]ub [TU,s]ub
TG,s + [TU,s]ub

R,

Similarly, consider the function fy(z) = (Ca. +
[rlwe)/(Ta,s + =). Since [r]w, lower bounds the reward
rete from any state of X,, we have Cg , > [r]nTa, s and
dfs/dz = ([Flwlas — Cas)/(Tas + x)* < 0. Also,
CU,s > [r]leU,s- Then:

Ca.s + ["InTv s
R, _— = = T s) > T sl
> Tos + Tos Jo(Trs) > fo([Tv,s]ub)
_ Cas + [r]nlTv,sJub -
TG,s + [TU,s]ub .

3.2 Derivation of [Ty ]ub

In the remainder of the paper we will denote by A;;,
i,j € € the trandition rate from state ; to state j, by
A= Zjeﬂ Aij, ¢ € § the output rate of state 7, and
by \ic = Z cc Aijy © € Q, ¢ C Q the transition rate
from i to sUbSek C, dl of them referred to X, unless oth-
erwise stated. We will also consider a number of transient
CTMCs Y. Each CTMC Y has a state space of the form
B U {a}, where al states in B are transient and « is an
absorbing state, and has a well-defined initial probability
distribution with P[Y'(0) € B] = 1. We will denote by

7(4,Y), ¢ € B the mean time spent by Y in ¢ before ab-
sorption (7(i,Y) = [~ P = 4]dt). We will also use
the notation T(C Y) = ZZEC 7(4,Y). It is wel-known
(see, for instance, [1]) that the mean times to absorption
vector 7 = (7(4,Y));ep isthesolution of thelinear system
7T"Ap = —q”, where Ap istherestriction of the transition
rate matrix of Y to B and q = (P[Y (0) = 7]);ep. Theex-
pected number of times that atransition (4, j) with rate A;;

isfollowedis p;; = 7(4,Y)A;;. Theresult follows easily:
Hi; = fooo P Y(t) = Z]/\”dt = /\ij fooo P Y(t) = Z]dt =
Ai;7(4,Y). It can be similarly shown that, given a partition
B U B¢ of the state space of X and assuming X (0) € B,
the probability that X enters B¢ through a state j € B¢ is
> ien T4, YB)Nij, where Yp isthetransient CTMC track-
ing X till exit of B (Y has state space B’ U {a}, where
a is an absorbing state and B’ isthe subset of B including
the states reachable before exiting B from the states with
non-null initial probability, same initial probability distribu-
tionin B’ and transition rates among statesin B’ as X, and
transition rates /\gya = A; pe, 1 € B/, sothat Yy enters a
whenever X exits B). Notethat 7(i, Yg) > Ofori € B'.
Let Y77, m € U bethetransient CTMC with initid state
m tracking X from m till exit from U/ and let 77" be the
mean timeto absorption of Y;7*. Let o ,,, bethe probability
that X withinitia state s € S will enter U/ through state m.

We have:
Ty, = E as 1. 4
meU

Invoking (4), we can easily upper bound 7 , from upper
boundsfor 777, m € U. To obtain these bounds we will in-
voketheexact aggregationtheoremfor transient CTM Csand
alemma, which generalizes the mean holding time lemma
proved in [11]. Exact aggregation results for irreducible
CTMCs are given in [4]. These results extend easily to
transient CTMCs. We have:

Theorem 3 (Exact aggregation for transient CTMCs)
Let Y = {Y(¢);t > 0} be a transient CTMC with state
space B U {a}, where all statesin B aretransient and « is
an absorbing state, transitionrates \;;, i € B, j € BU{a},
i # j,andinitial probabilitydistribution P[Y'(0) = ¢] = m;,
i€ B,Y icpmi = 1. Assume r(i,Y) > Oforalli e B.
Let By U By U...U B, bea partition of B. Then, there
exists a transient CTMC Y/ = {Y”(¢);t > 0} (the exact
aggregation of Y') with state space {b1,b2...,b,} U {a},
transition rates A, , = > ;cp wikip, 1 < k1 < n,
k # | and /\bka = ZiEBk wf/\iya, 1 < k < n, with
wf > 0, Yep, wf = 1, and initial probability dis-
tribution P[Y'(0) = bs] = m, = > ;cp, ™, Such that
T(bk,Y/) = T(Bk,Y).

Proof Seeappendix. O
Consider the exact aggregation, Y moof Y, m e C,

K < k < N’ under the partition Uk K+1C,Q”, where G}
is the subset of C} including the states reachable from m
before exiting U and K + 1 < N}, < N'. Y has a
transition state diagram like the one givenin Flgure 1, (@
with N’ substituted by ~/,. The following lemma shows
how the times to absorption vector of Y7 can be upper
bounded.

Lemmal Assume N' < N. Let Y’ = {Y'(¢);¢t > 0} be
a transient CTMC with the state transition diagram of Fig-
ure 1, (a) and initial probability distribution P[Y'(0) =



Gl =m K+1<i< N, YN . m=1 Le
Y = {Y(¢);t > 0} be the transient CTMC with the state
transition diagram of Figure 1, (b) and initial probabil-
ity distribution P[Y(0) = ¢;] = m, K +1 < i < N/,
PY(0) =¢] =0, N <i< N. Assume f; ; < f{; and
gi>g; >0, K+1<i< N.Then, 7(c;,Y) > 7(¢;, Y'),
K+1<i<N'

K3

T(¢;, Y'). Wewill useasabasictool thebal anceequationfor
asubset of statesof atransient CTM C, which establishesthat
theinitial probability of the subset plusthe expected number
of entries must be equal to thefinal probability of the subset
plusthe expected number of exits. The statesc; of Y and Y’
aretransient and, therefore, have final probabilitiesequal to
0.

The balance equation applied to Y’ and the subset

Proof For notational conciseness let r; = 7(¢;,Y), 7/ =

{¢K+1,¢K42,...,cN } Oives:
1= 7'}(+19K+1, ©)
1
i = —. 6
Kt IK+1 ( )

The balance equation applied to Y’ and the subset
{CK+1,CK+2, . ..,Ck_l}, K+1l<k< N gIVGS.

k-1 k—1
Z TitThgr = Ty 9K +1+ Z 7] Z figs
i=K+1 i=K41  k—i<j<N'—i
which, using (5)and 1 — S° =L 7w = S gives:
) g =K1 T = 2=, i 9

N’ k—1

domi+ Y Y, fi

i=k i=K41  k—i<j<N'—i

T = ()
9k

Equations (6), (7) define arecursive solutionfor 7, k =
K +1,...,N’. Analysisof Y gives similar equations for
7 (ithasbeen used P[Y(0) = ¢;] = 0 for N < i < N):
1
TK+1 = —Z 3 (8)
IK+1

N kE—1
Yomt doon Y, Y
i=k

i=K+1  k—i<j<N—i
TR = -
i
N’ k—1
domt Do Y, fh
=k =K+l k—i<j<N—i ©)
95

Theresultis proved inductivelyfor k = K +1,..., N'.
Since g ,; < gx 41, using (8) and (6):

1 1
>

gI_(_H - gK—I—l

/
TE+1 = =TK+1-

Figure 1. State transition diagrams of CTMCs of
Lemma 1.

Assumen > 1/, K+ 1 <1 < k. Usng(9), g, < g,
N' <N, fit > fi j, and (7):

N’ k—1
Yomt doon Y, [
i=k

i=K+41  k—i<j<N—i
Tk = -
I
N’ k-1
/
> it > 7 > fij
i=k i=K41  k—i<j<N'—i
> == =17.0
9k

Let o (k) = Zmeck as m be the probability that X
withinitial state s € .S will enter U through subset C};. Let
flfj (g;7) be upper (lower) bounds for the transition rates
f;j}’ fromc¢; t0 c;y; (97 frome; t0 ¢, i > K+ 1or
from cx 41 toa) of any Y7, Let T'(k) be the mean timeto
absorption of the transient CTMC Y of Figure 1, (b) with
initial state c¢;,. We have:

Theorem 4 Ty, < 0 ey oy (k)T (k) = [T, sub-

Proof Let Y* be the transient CTMC with the state tran-
sition diagram of Figure 1, (b) and initid state ¢;. Y7,
m € O, and Y* satisfy the conditions of Lemma 1
and, therefore, 7(c;, Y7') < 7(e;, Y*). By Theorem 3
we have T = Svme. r(e, YF). Then, T <
S gy T(ei, Y*) = T(k). Itfollows (4):

N/
TU,s = as,mTU = as,mTU
meU k=K+1meCy

N

Yoo D anTlk)= Y a(k)T(k).0

k=K+1meCy k=K+1

IN

Upper bounds flf for the transition rates f;ﬁf can be
easily derived. Let E; be the subset of £ including the



faillurebags of cardinality j. Itisclearthat A\, ¢, ., n € C;
is upper bounded by ZeeEj [A(€)]ub- Using Theorem 3:

m/ _ 7
N 2: Wy An Ciyss

nEClm

withw) > 0,3, . om wi, = 1. Then, it follows:

<Y wh e = Y M = 1

nECm e€l; e€l;
(10)

In [11] the lowest repair rate of the modd is used as
lower bounds g;”. Unfortunately, a similar approach can-
not be taken for the models considered in this paper, since
depending on the characteristics of the phase type distribu-
tionsthelowest rate to the left from the states of a subset C;
may be 0. A more sophisticated approach is needed. That
approach is developed in the next section.

3.3 Computation of 4

To derivethebounds g;~ we need aresult from [9] which
is obtained for irreducible CTMCs. To establish alink with
thisresult we defineirreducible CTMCs X[}, m € U asfol-
lows: X7} has state space U}, U{a}, where U}, isthe subset
of U includingthe states reachablefrom i beforeexitingU,
transitionratesfrom U}, to U} U{a} asY{" and atransition

rate 1 froma to m. Let X{}“ be the exact aggregate of X7
under the partition (UQ;”KHC’,Z”) U {a}. Given theconnec-
tion between Theorem 3 and the exact aggregation theorem
for irreducible CTM Cs and the rel ationshi psbetween thein-
volved CTMC:s, it isnot hard to see that the transition rates
of X7 from {cxt1,...,ens } 1O {egyn, ... enr  a} are
equal to the corresponding transition rates of Yg”' .

Let ¢x 5, ¢ € C}* denote the probability that X7 will
jumpfrom € k > K +1(CF L) to O (a) givenentry
in C7* (Cg,,) through state 7. Let hy i, ¢ € O be the
mean holdingtime of X7 in C}* conditionedto entry inthe
subset through state i. Then, it has been shown in[9] that:

L (11)

Assume that alower bound, ¢—, for ¢ ;, K < k < N/,,
i € C}7" and an upper bound, h*, for hy ;, K < k < N/,
i € CF* areavailable. Using (11) we have:
I S (12)
e =35 =9
Inthefollowingwe show how ¢~ and A+ can be derived.

To that end we first introduce some notation. Let a state
i€ CP,0 < k< NJ,. Wewill denote by \; ¢, the

trangitionratefrom: to Uff,:;kHCg? (notethat A; ¢, isthe
same for all states j which are visited in C}* from a given

entry state 7, since all these states havethe same bag of failed
components), by A; the number of active repair processes
ini by a;(), 1 <j < A; the phase type distribution of
the jth active repair processin state 7 (1 < a;(4) < L), and
by s; (i) the state of the phase type distribution 7, ;) in
state 7. Let W be the random variable time to absorption
of Z; withinitid state s. Let Ay, = >, p[A(e)]un and let
EXP()) denote an exponential random variablewith param-
eter A. Since A; ¢, < Ay, and the random variables W,
EXP(); ¢, ) and EXP(\,;,) are independent we have:

= <o
. 55(4)
z PL<I?1<nA Waji < EXP(/\ub)}
4(1)
> 1<1r511<nA P{W (i) < EXP(A, )}
> min min P[W; < EXP(Aup)].
1<j<Ls€eL;
Also:
o . ' . s5(4)
mﬂ_EhﬂﬂmmJg&mmH

B[, min, W]
[, 1[G

< max max E[W/].
T 1<j<LLseL;

s e

IN

LetusdenoteP[W5<EXP( b)) by Q3 and ETWV ;] by

. Weuse:
=, ) &
hT = max max H?. (14)

1<j<LseLl; 7

Let B; be the transition rate matrix of Z; restricted to
thetransient states Z; and let b; be the vector whose entries
arethetransitionrates of Z; from L; to the absorbing state
a. Let Q; and H; be the vectors with entries @ and H,
respectively, s € L;. Q; and H; can be obtained as:

Q; =—(Bj — Aupl) by, (15)

H; =—-B;'L (16)

Equation (16) is trivia since the component in row s and
column i of —B>! is the mean time to absorption spent
by Z; in state ¢ given that the initial state is s. Equation
(15) follows considering transient CTMCs 7 with state
space L; U {a, b}, where a and b are absorbing states, same
trangitionratesfrom L; toa as Z; andtransitionrates A, , =
Aub, § € Lj. Thetransition rate matrix of Z} restricted to
LjisB; — Aupl and @)} isthe probability of being absorbed
in state a given that the initial state is s. These comments
justify the equation.



3.4 Computation of T'(k)

Let M betheset of indices k associated tothe subsets C,,
K <k < Nwith ; ¢, # 0for some ¢ € G. Remember
that T'(k) is the mean time to absorption of the transient
CTMC Y of Figure 1, (b) with initid state c;. In order to
obtain the bounds [7%; ;] given by Theorem 4 we have to
compute T'(k), k € M. A direct computation of each 7'(k)
solving Y withinitial state ¢, would require the solution of
| M| linear systems. A more efficient procedure, specialy
for large | M|, can be developed e<p|oiting the following
equations, where ¢ = g, + >, f;; denotes the output
rate of Y from ¢ (see Figure 1, (b)):

R T o,
T (k) ¢k+¢kT(1f 1+Z ” T(k + 1),
A—l—2§k<N, (17)
T(N) = 1. T(N —1). (18)
InN

These equations are obtained as follows. First, consider
(17). T'(k), mean time to absorption of Y with initial state
¢k, 1ISequal to the mean sojourntimein ¢, 1/, plusthe
mean time to absorption from the next visited state, which
is ¢, with probability g, /¢ and c4; with probability
f,;fi/qsk. Equation (18) is obtained similarly; in this case,
¢N = gy and state cy_; IS the next visited state with
probability 1. Equations(17), (18) can be solved recursively
intermsof 7'(V), yielding:

=T(N)- %, (29)

T(N —1)

T(k) = ——[opaT(k +1) - 1

Jp11
= R TR+ 140)|,

k=N-2,... K+1. (20

It remainsto discussthecomputationof 7'(NV). Let r; denote
the mean timeto absorptionin state ¢; of Y withinitia state

cy. Then:
N
> om (21)
i=K+1

Therow vector 77 = (rg11...7n
linear system:

) is the solution of the

A= —(0...01), (22)

where A isthe restriction of the transition rate matrix of ¥
to the transient states. A direct solution of (22) is possible
exploiting the upper Hessenberg structure of A and the fact
that al components except the last one of the right-hand
vector of (22) are null. Defining v; = /141 (k41 =

1), al the equations except the last one give a triangular
linear systemon v;, K + 2 < i < N which can be solved
emly Substitutingthen T by ViTK 41, K+2<1:<N,
in the last equation of (22) and using the solution for v;,
K +2 < i< N foundinthe previousstep givesan equation
on tx4+1. Solving that equation and using 7, = v Tk 41,
K+2<i< Nweobtanr;, K +2 < i< N. The
solution procedure can be described as follows:

I/K_|_1 = 1

¢Z 1WVi—1— Z sz —j— 1V]i| (23)

j=K+1
Z_A—I—Q,. , N,

1
TK+1 = N_1 g
ONVN — Z fi-l,_N—iVi (24)
i=K+1
T = ViTK 41, 1=K4+2,...,N.

3.5 Computation of the bounds

TG s, Ca s and a,(k), k € M could be computed from
the mean times to absorption vector of thetransient CTMCs
Y& tracking X from state s till exit from ;. This however
wouldinvolve the solution of |.S| linear systems of size | (7],
which isvery expensive. To avoid that requirement, a state
cloning technique is developed in [11] which reduces the
number of linear systemswhich have to be solved but intro-
duces looseness in the bounds. In this section we develop
a new computational procedure which obtains the bounds
[R], and [R]y, solvingonly 4 linear systems.

Let:

T; = TG,s + [TU,s]uba
Cy = Caq s+ Mo s]ub,
Cél = CG,s + [r]ub[TU,s]ub~

Using (3), the bounds (1), (2) for R can be expressed in
temsof 7!, Cl and C!/, s € S &s:

Rl = ggg{%}, (25)
Ry = I?easx{ 7 } (26)

The key of the new method is the derivation of forward
equations for 77, C! and C', i € (. To that end we first

7

write these varigbles in terms of «; (k) and T'(k), using

Theorem 4:
TG 7 + Z az a ? S G
keM
Ci=Cai+[rln Y ai(k)T(k), i €G,

keM



C{ =Cq;+ [rlw Z ai(k)T(k), i€ G.

keM
Each of these variables can be expressed as the sum of
a contribution associated with the visit to state ¢ plus the
corresponding variable for the next visited state. This gives
the forward equations:

Tz’/:/\i"i'z ZCkT Z Z]T/ icG, (27)

keM JEG
€ K

7 AZ Z
Cz/ = :— =+ Z —/{Ck [T]le + Z 2 C/

keM JEG
K

(28)
C§’:%+ Z ch rlu T (k +Z ”C” ieq.
' keM Jje;
(29)

Let p;; = Aij/A. The sets of equations (27), (28)
and (29) can be formulated as linear systems introduc-
ing the matrix B = | — (p”)ljegwg] and the vectors
T = (T})ica, C' = (Cieg, C" = (Ciea, 0 =
((1/X) + 2pen (Moo /M) T (K Diea. ¢ = ((ri/A) +
Yonem (Nic /APl T(k))ieq, and ¢ = ((ri/Ai) +
Y okem i /AT T (k))iea:

BT =4/, (30)
BC' =, (31)
BC” =" (32)

Matrix B can be large and iterative methods should be
used to solve the linear systems (30), (31), (32). From the
properties of B it is easy to prove [17] that Gauss-Seidel
will converge. We found that the convergence under Gauss-
Seidel was typically extremely slow. However, a decompo-
sition technique can be used to speed up the convergence.
The price is to solve one more linear system, but we have
found that then Gauss-Seidel converges very fast. See [6]
for an analysis of the convergence properties of the linear
systems obtained with the decomposition technique.

To describe the decomposition technique let us consider
the generic problem of computing for : € G the expected
accumulated reward up to absorption V; of the transient
CTMC Y{, withinitial state tracking X till exit from G for
the generic reward rate structure v;, i € GG. Notethat T}, C/
and C!' canbeformulated as V; with v; equal to, respectively,
L+ em Aia T(R), i+ e Ao [rIn T (k) and ri +
ZkEM /\i,Ck [T]ubT(k’). Let the vectors V = (Vi)iEG and
b = (vi/M\)ieqg. Then, V is the solution of the linear
system:

BV =b.

Without loss of generality let us assume that the state o in

which all components are up hasindex 1. Let V; denotethe
expected accumulated reward to absorption or hit of state
1. Let +; denote the probability that Y. will exit G without

hitting state 1. Decomposing V; in its two contributions
delimited by the time at which Y/ gets absorbed or hits
state 1, we obtain:

Vi=Vi+ (1—y)V1, i €G, (33
The set of equations (33) can besolvedin V;, ¢ € G, yield-
ing:

Vi= Vit 1 e,

ga!
Notethat V; isthe expected accumulated reward to absorp-
tion of thetransient CTMC Y, obtained from Y. by direct-
ing to the absorbing state the entries in state 1. Then, V;

i € (G can be computed as V;, ¢ € (&, using the matrix B:

T —p12 —1,G|
= o 1 —pP2)Gl
B =

0 —paz 1

instead of B. Let thevectors T = (T¥)icc, C = (Y)iec
~

C = (C’;’)Z»Eg. Applying the previous result we have that
these vectors are the solutions of the linear systems:

BT =/, (34)
BC =, (35)
BC =¢". (36)

The probabilities +; can be formulated as the expected
accumulated reward up to absorption of 1763 with reward
rate \; ;. Then, letting the vectors v = (i )ieq and w =
(Ai,r/Ni)iea, v isthesolution of the linear system:

By = w. (37)
Finadly, T/, C% and C!, s € S can be computed using:
7=y L (38)
"
~ 1— v ~
=04 — 0, (39)
"
~ 1— v ~
cr=0r gy —— ey, (40)
"

The compl ete method to computethe bounds can besum-
marized as follows:

Algorithm

1. Compute /i using (10) and ¢;~ using (15), (16), (13),
(14) and (19
Compute T'(N) using (23), (24) and (21).
Compute T'(k), K + 1 < k < N using (19), (20).
Generate thetransient CTMC Y.
Solvethe linear systems (34), (35), (36) and (37).
Compute 77, C! and C?/, s € S using (38), (39) and
(40).
7. Compute [R]1p,, [R]ub using (25), (26).

o0 swN
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Figure 2. Block diagram of the example.

4 Numerical results

In this section we illustrate the bounding method using
an example having a number of states precluding its ex-
act numerical solution. The example is the fault-tolerant
database system whose block diagram is given in Figure 2.
The system is made up of two processing subsystems, each
including one processor P and two memories M, two sets of
controllers C1 and C2, each with two controllers, and four
sets of disks D1, D2, D3 and D4, each with three disks.
The system is up if at least one processor and one memory
connected to it are operational, one controller of each set
is operational, and two disks of each set are operational.
Processors fail withrate \p = 10~°; a processor failureis
soft with probability Sp = 0.8 and hard with probability
1 — Sp = 0.2. In addition, either being soft or hard, a pro-
cessor failure contaminates (fail s) the operational memories
to which it is connected with probability 1 — Cp = 0.05.
Memories fail with rate Ay; = 10~%, controllers fail with
rate A\c = 2 x 10~°. Disks fail with rates Ap; = 1076,
Ap2 = 1.5x 1075 Ap3 =2 x107%, and A\ps = 3 x 107°.
There are two repairmen. One performs restarts of pro-
cessors in soft failure and the other performs all the other
maintenance actions with first priority given to disks, next
to controllers, next to processors and next to memories.
Componentswith the same repair priority are chosen at ran-
dom. The policy is preemptive-resume. Figure 3 gives the
phasetypedistributionsfor all repair actions, with theinitial
probabilities shown inside the circles denoting the states of
Z;. The state of the system can be described by giving the
number of components of each class which are operational
and the number of components of each class in each state
of the phase type distributions. The complete model has
about 4.9 x 10° states, clearly outside of current computing
capabilities.

Next, weillustrate the bounding method using the exam-
ple. The example has 10 component classes and N = 22
components. Table 1 givesthefailure bags of themodel and
for each failure bag e the upper bound [A(e)]yy, for its rate.

processor repair

(63)05

o

memory repair controller repair
OMOWNC: OMOWO,
"iﬁi&. N e

disk repair

@ 0.5 @ 0

Figure 3. Phasetyperepair distributionsfor the repair
actions of the example.

processor restart

O+O+O-O+O

Table 1. Failure bags e and [A(e)]u, for the example.

e [A(e)]ub
P[] 107
P11 M1[1] | 5x 107
P1[1] M1[2] | 5x 107

M1[1] 2% 1074
P2[1] 107
P2[1 M2[1] | 5 x 107
P[] M1[2] | 5x 107

M2[1] 2% 1074
C1[1] 4% 1075
c2[1] 4% 1070
DA[1] 3% 1076
D2[1] 4.5% 10"
D3[1] 6% 106
D4[1] 9% 10-°

We use the notation ¢[n] to indicate n instances of compo-

nent class c. The upper bounds f;F; are f;, = 5.225x 1074,

fify = 107% and ff; = 1075, The upper bound Xy, is
Aub = 5.245x 104 Wedsohaveht = 5,¢~ = 0.997384
and g; = 0.199477.

Table 2 gives the boundsfor the steady-state unavail abil -
ity (R with r; = 1 for down states and r; = 0 for up states
and, therefore, [#], = 0 and [r]u, = 1) obtainedfor K = 2,
3,4 and 5. We dso give the number of detailed states (|]).
By profiling the code we have found out that about 75% of
the CPU time is devoted to the generation of the detailed
models, while the solution of the four linear systems ac-
counts for the remaining 25%. The CPU timefor K = 5
was about 10 minutes in a SPARC10 workstation.

The 4-Erlang phase type distribution used for processor



Table 2. Resultsfor the example and increasing K .

K |G| lower bound upper bound

2 519 6.62938 x 1077 1.50585 x 107"
3| 5259 6.69364 x 1072 3.26380 x 1078
4 | 38914 6.75319x 1077 6.82341 x 107°
5 | 224950 6.75578 x 102  6.78371 x 10~

Table 3. Results for the example with &' = 5 and in-
creasing number of stages of the k-Erlang distribution

of processor restart time.

k |G| lower bound upper bound

1] 119257 6.75662 x 1077  6.78303 x 10~7
2| 151,026 6.75607 x 1072  6.78343 x 10~°
3| 186,257 6.75588 x 107°  6.78361 x 10~°
4 | 224,950 6.75578 x 107°  6.78371 x 10~°

restarts can be imagined as an approximation to a determin-
isticrestart timeof value 1. The goodnessof the approxima-
tion improves with the number of exponentia stages k. We
explored that issue for the model under consideration and
obtained resultswith increasing & for X' = 5. Table 3 gives
the results. We can note that the steady-state unavailability
is quite insensitive to the shape of the restart time distribu-
tion and a small value of % is enough to obtain an accurate
approximation.

5 Conclusons

A method to bound the steady-state availability with
phase type repair distributions has been developed. Pre-
vious bounding methods assumed alower bound repair rate
totheleft greater than zero and are not applicablein generd
to model s having phase typerepair, sincethe smallest repair
rate to the left may be zero. In addition previous bounding
methods either had to solve many linear systems to obtain
the tightest possible bounds or introduced looseness if state
cloning techniques were used to reduce the number of linear
systems to be solved, whereas our method does not clone
statesand requiresthe solution of only 4 linear systemsof the
size of the generated state space, being the time devoted to
the solution of these linear systems small compared with the
timeto generate the detailed model. Aswe have pointed out
our method per seis not confined to compute boundsfor the
steady-state availability: it can be used to compute bounds
for the steady-state reward rate of any model exhibiting a
similar structure.

Appendix: Proof of Theorem 3

Without loss of generality, assume that the transient
states of Y are sorted following the subset ordering
By, Ba, ..., B,. Fornotationa concisenesslet r, = 7(¢,Y)
and 7, = 7(By,Y). Notethat 7, > 0. Let the vectors
7 = (%)ien, ™ = (m)icp and let A be thetransition rate
matrix of Y restrictedto B. r satisfiesthe linear system:

7TA = —=7. (41)

Let wf = 7;/rl,i € B, 1 < k < n. Notethat wf > 0
and Y, 5 w; = 1. Defining the column vectors w(k) =
(w¥)ien,, ©(k) = (7)ien,, we can rewrite (41) as:

All Aln

Anl Ann

where Ay; are the blocks of A induced by the partition of
B. Thisblock decomposition givesthe set of equations:

> Hwk) Ay = —w()T, 1< <.
k=1

Postmultiplying by 1, a column vector of al ones with ap-
propriate dimension:

> Awk) Apl=—m(l)T1, 1<1<n.
k=1
Defining =, =

w(k) Al = Yicp,
—w(k)T Agrl, we get:

ﬂ(k)Tl = ZiEBkFi’ /\ék,bz
wf/\inl, k 75 {, and /\ék =

n
Z T’i ék,b, _Tl/ ;71 = _7Tl/a 1<i<n.
k=1
k2l
Thus, 7" = (7}, )1<k<n SAisfiesthelinear system:
7_/TA/ — _ﬂ_/T’

withn' = (ﬂ-;c)lfkfn and

! ! !
A A, Abs b
A gV Y
A/ — ba,by b2 b2,bn . (42)
! ! !
Abuibr Ababa =,

In summary, under the condition X\, , = X, —
Zrl;;é Mgty =2 0,1 < k<N, 7 = 7(Bg,Y) (< o0

since dl statesin B of Y aretransient) is the mean time to



absorption in state b, of the transient CTMC Y’ with state
space {b1,ba,...,bn} U {a}, transition rate matrix (42),
and initial probability distribution P[Y'(0) = bg] = =,
1 <k < N. Thetransition rates \; , sdtisfy the condi-
tions of the theorem. It remains to show that the transition
rates to the absorbing state A, , also satisfy those condi-
tionsand are > 0. Firgt, notethat the output rates of Y/ can
be written as:

ék = —W(k’)TAkkl = Z wf/\l — Z wf/\ink.

i€ By i€ By
H / o/ 7 / R .
Then, using A}, , = A, — Ef;ﬁ Abe by A Aig = A; —
n .
2oim iy
n
/ / /
br,a by Z /\bk,bz
=1
£k
n
k k k
= D wihi- ) wiim =) ) wiis,
1€ By 1€By ;;é 1€By
n
k k
= Zwi (/\i_z/\inl) = Zwi/\iaZOD
i€ By =1 i€ By
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