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Abstract

The parabolic trough solar collector is currently one of the most mature

and prominent solar technology for production of electricity. These systems

are usually located in an open terrain where strong winds may occur and

affect their stability and optical performance, as well as, the heat exchange

between the solar receiver and the ambient air. In this context, a wind

flow analysis around a parabolic trough solar collector under real working

conditions is performed. A numerical aerodynamic and heat transfer study

based on Large Eddy Simulations is carried out to characterize the wind loads

and the heat transfer coefficients. After the study carried out by the authors

in earlier work [? ] at ReW1 = 3.9 × 105, computations are performed at a

higher Reynolds number of ReW2 = 1×106 and for various pitch angles. The

effects of wind speed and pitch angle on the averaged and instantaneous flow

have been assessed. The aerodynamic coefficients are calculated around the

solar collector and validated with measurements performed in wind tunnel

tests. The variation of the heat transfer coefficient around the heat collector
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element with the Reynolds number is presented and compared to the circular

cylinder in cross flow. Unsteady flow is studied for three pitch angles: θ = 0◦,

θ = 45◦ and θ = 90◦ and different structures and recirculation regions have

been identified. A spectral analysis has been also carried out around the

parabola and its receiver in order to detect the most relevant frequencies

related to the vortex shedding mechanism which affect the stability of the

collector.

Keywords: Parabolic trough solar collector, Wind speed effect, Large Eddy

Simulations, Heat transfer coefficient, PTC stability
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1. Introduction

Parabolic trough solar collectors (PTC) are considered as one of the most

mature, successful, and proven solar technology for electricity generation.

PTCs are typically operated at 400◦ C and a synthetic oil is commonly

used as heat transfer fluid (HTF). A PTC consists of a parabolic trough-

shaped mirror that focus sunrays onto a heat collector element (HCE) that

is mounted in the focal line of the parabola. The HTF circulates through

the solar field to transport the absorbed heat. The solar field is made up

of several solar reflectors composed in series which concentrate the direct

solar radiation by means of a Sun-tracking system. The HCE is typically

composed of a metal receiver tube and a glass envelope covering it with a

vacuum between these two to reduce the convective heat losses.

The thermal and optical performances of PTC are related to the applied

load coming from the wind action on the structure and the tracking system.

During real work conditions, the array field of solar collectors require a good

accuracy in terms of both mechanical strength and optical precision. Such

requirements are sensitive to turbulent wind conditions and should be con-

sidered in the design of these systems. Hence, a wind flow analysis plays a

major role for designing the solar collectors and can lead to a better under-

standing of the aerodynamic loading around the parabolic reflector, as well

as, the convection heat transfer from the HCE.

Since the 1970s, numerous numerical and experimental studies have been

proposed to study the heat transfer characteristics of PTC [? ? ? ]. However,

wind flow studies around the PTC are scarce. Sandia National Laboratories

has published in the early of 1980 some wind tunnel tests [? ? ] to investi-
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gate characteristics of mean wind loads produced by airflow around a PTC.

These reports were conducted in different configurations of the PTC and flow

field environments. The influence of various geometric design parameters for

isolated PTC and for a collector within an array field are assessed. More re-

cently, series of wind tunnel experiments were conducted by ? ] from March

2001 to August 2003. This wind-tunnel study includes the distribution of

local pressure across the face of the solar collector using a 1:45 model. Two

versions of instrumented collector models were used to measure the loads

and pressure distribution across the face of the collector. One was a light-

weight model for measuring wind loads using a high-frequency force balance

and the other was a pressure-tapped model designed to obtain the pressure

distribution across the face of the collector. The effect of the PTC position

in an array of solar collectors was also examined.

The majority of the numerical studies for studying the wind flow around

solar collectors are based on the Reynolds-Averaged Navier Stokes equations

(RANS) [? ? ] which suffer from inaccuracies in predictions of flow with

massive separations.

A recent study by the authors [? ] based on Large Eddy Simulations

(LES) allowed to quantify the fluid flow and heat transfer around a PTC for

various pitch angles and a fixed wind speed 1 m/s. The study showed that

this kind of detailed numerical simulations are feasible, but the effects of a

higher wind speed was not explored.

In the present work, following the previous experiences, the impact of

wind speed closer to real working conditions is considered. The independence

of the drag and lift coefficients is studied to confirm the hypotesis made by the
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experimental measurements in wind tunnels of down-scaled PTC prototypes

? ]. The natural frequencies around the PTC structure and the HCE are

also studied. To do this, the wind flow around the PTC at a wind speed of 3

m/s is studied and compared to the results obtained at 1 m/s. These cases

correspond with Reynolds numbers of ReW1 = 3.6× 105 and ReW2 = 1× 106

(the Reynolds number is defined in terms of the free-stream velocity and the

aperture ReW =
UrefW

ν
). Wind speed effects on unsteady and averaged fluid

flow and heat transfer characteristics are assessed. Furthermore, a power

spectra analysis is carried out to analyse the impact of the unsteady flow

conditions on the PTC stability.

2. PTC numerical model

2.1. Mathematical model

The same methodology presented in the previous work [? ] for solv-

ing the fluid flow and heat transfer around the PTC is here adopted.The

CFD&HT code Termofluids [? ] has been used to simulate the complex fluid

dynamics around the solar collector and its receiver by means of Large-Eddy

simulations (LES).

2.2. Definition of the case. Geometry and boundary conditions

Large-eddy simulations of the wind flow around a PTC at ReW = 106 and

different pitch angles of (θ = 0◦, 45◦, 90◦, 135◦ and 270◦) have been performed.

Here, Reynolds number has been defined in terms of the free-stream velocity

Uref and the parabola aperture W (ReW =
UrefW

ν
). This Reynolds number

corresponds with a wind speed of Uref = 3m/s which is a typical value of
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wind speed encountered in solar plants. In addition, the flow around the

parabola has been compared to that obtained by the authors at a lower

Reynolds numbers of Re = 3.6 × 105 (Uref = 1m/s) [? ].

All computed flows are around a full-scale Eurotrough solar collector [?

] and its typical HCE with a stainless steel absorber (inner/outer diameter

of 6.6/7.0 cm) and glass cover (10.9/11.5 cm of inner/outer diameter). As

in the previous work [? ], the same domain size of 25W × 9W × πW with

the same steam-, cross stream- and span-wise directions has been used. The

parabola of aperture W = 5.8m is located at 5W in the stream-wise direction

(see figure ??). For solving the computational domain, no-slip conditions at

the parabola and HCE have been imposed. At the inlet, a uniform inlet

velocity profile has been prescribed. For the top and bottom boundaries, slip

conditions have been set, whereas in the span-wise direction, the flow has

been considered to be spatially periodic, thus periodic boundary conditions

have been imposed. For solving the energy equation, temperatures of the

glass cover and ambient air are fixed to Tg = 350K and Tamb = 300K,

respectively. A Neumann boundary condition (∂T
∂n

= 0) is prescribed in the

top, bottom and outlet boundaries for temperature.

For more details about boundary conditions, the reader is referred to [? ].

In Termofluids, the governing equations have been discretised on a collocated

unstructured grid arrangement by means of finite volume techniques using

second-order conservative schemes [? ]. The 3D meshes used for solving the

computational domain have been obtained by the constant-step extrusion in

the span-wise direction of a two-dimensional unstructured grid. Although

not shown here, extensive grid refinements for each pitch angle have been
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Table 1: Details of adopted meshes for each pitch angle

Position 0◦ 45◦ 90◦ 135◦ 180◦ 270◦

Mesh plane 112322 104477 102914 99281 106223 104188

Number of planes 96 96 96 96 96 96

Grid size(MCVs) 10.78 10.02 9.87 9.53 10.19 10.0

conducted. Details of the final computational meshes for each pitch angle

are given in table ??.

3. Heat transfer from a circular cylinder in cross flow and wind

speed effects

In order to analyse the influence of the wind speed in the heat trans-

fer of the HCE, the numerical model has been first applied on a circular

cylinder in cross flow. In this work, simulations have been performed for

a Reynolds number of ReD = 21600 (here Reynolds number is defined in

terms of the free-stream velocity and cylinder diameter, ReD = UrefD/ν)

which corresponds with a wind speed of 3m/s. Heat transfer characteristics

around the cylinder have been calculated and compared against experimental

measurements of ? ]. In addition, results have also been compared to the

lower Reynolds number of Re = 7200 [? ] (which corresponds with wind

speed of 1m/s). The boundary conditions and mesh distribution have been

considered in a similar way as the previous section ??. The computational do-

main is extended to [−15D, 25D];[−10D, 10D];[0, πD] in the stream-, cross-

and span-wise directions respectively, and the cylinder with a diameter D is
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placed at (0,0,0). The results shown herein are computed for a finer grid of

147000 × 64 planes (i.e. 147000 CVs in the 2D planes extruded in 64 planes

yielding about 9.4 MCVs).

In figure ??, the predicted local Nusselt number around the circular cylin-

der is plotted. For comparison, the results of ? ] are also shown. As can

be observed a fair agreement between both numerical and experimental re-

sults has been obtained. In general, numerical results follow the same trend

that the experimental ones. The minimum local values of the heat trans-

fer coefficient occurs at about 85◦ from the stagnation point, whereas the

maximum values are reached at the stagnation point and at the rear end of

the cylinder. As observed in ReD = 7200 (see [? ]), large differences from

experiments are found to occur in the back size of the cylinder as the flow

fluctuations are the largest which makes more difficult experimental mea-

surements [? ]. When comparing both Reynolds numbers (see figure ??),

i.e, ReD = 7200 and ReD = 21600, it can be observed the increasing of

inertial effects due to the increasing of Reynolds number which lead to the

earlier separation of the boundary layer. Indeed, there is a displacement of

the location of the minimum Nusselt number at ReD = 21600 towards the

stagnation point. The variation of the Nusselt number in the rear zone of

the cylinder is smoother at ReD = 7200 and a secondary peak is observed

for ReD = 21600 (at about 118◦). By increasing the Reynolds number from

ReD = 7200 to ReD = 21600, the overall magnitude of the Nusselt number

increases by a factor of 2 from 52.2 to 101.1 The value reported on the exper-

iments was 103.4 (for ReD = 21600), being the average difference between
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both numerical and experimental results of about 2.2%.

4. Results and discussion

As aforementioned, simulations have been conducted to study the wind

effects around the PTC for two Reynolds numbers based on the aperture

ReW1 = 3.6 × 105 and ReW2 = 1 × 106 and different pitch angles of θ =

0◦, θ = 45◦, θ = 90◦, θ = 135◦, θ = 180◦, θ = 270◦. Thereafter, these

effects are analysed in terms of the average forces on the parabola, the flow

configurations and the instantaneous flow.

4.0.1. Wind speed effects on the averaged forces

The average forces on the parabola have been validated respect to the

experimental data [? ] in the previous work [? ]. To that end, the wind

flow was studied around a typical LS-2 parabolic trough solar collector (with-

out solar receiver) as proposed in the experimental study [5] and simulations

were performed for a full-scale case with a Reynolds number about 2 × 106.

In the present work, drag and lift coefficients have been computed for the

PTC under study at different pitch angles and for both Reynolds numbers.

The comparison with experimental measurements and those obtained for the

LS-2 PTC are depicted in figure ??. As can be seen from figure ??, numerical

results obtained are almost within the error-bars of experimental measure-

ments from the wind-tunnel data [? ]. Discrepancies between computed

and measured aerodynamic coefficients are mainly due to the unsteady flow

behaviour and ground effects, which may affect the flow structures and sepa-

rations behind the PTC and requires long measurement duration. The aver-

aged aerodynamic coefficients at both Reynolds numbers exhibit an almost
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identical profile, which proves the stability of the aerodynamic coefficients at

this range of Reynolds number. The predicted results are also in agreement

with the experimental observations of ? ]. In their scaled-down experi-

mental tests carried out at Reynolds numbers Re < 5 × 104, they concluded

that beyond Re = 5×104 load coefficients were independent of the Reynolds

numbers, being thus directly extrapolated to a full-scale PTC. In the light

of the load coefficients here presented, the aforementioned hypothesis of ?

] can be confirmed. It is also worth noting that the independence of aver-

aged aerodynamic coefficients with Reynolds numbers is also commented in

other experimental results [? ]. However, it was mentioned that it could

be affected where the leading edge is close to the alignment with the stream

causing some errors on the lift coefficient [? ].

Yet, there are also some differences between numerical results of the LS-

2 PTC and Eurotrough PTC which are due to the geometry of both solar

collectors. It should be pointed out that from a numerical point of view the

results presented for the LS-2 are statistically more converged in time than

those for the Eurotrough. This is due to the complex grid used in the sim-

ulation of the Eurotrough PTC. In the latter, the geometry considered also

included the receiver tube (which was not included in the LS-2 simulations),

which imposes a large difference in scales between the parabola and the re-

ceiver. Thus, in the numerical simulations the explicit algorithm requires

smaller time-steps (of about 5 × 10−5) for solving all the relevant temporal

scales of the flow, dominated by the flow around the receiver. This decrease

in the time-step, together with the more complex flow around the receiver

impose larger simulation time in order to reach a statistical averaged flow.
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4.0.2. Wind speed effects on the averaged flow

The time-averaged flow is also studied for different pitch angles and com-

pared for both Reynolds numbers. Different structures and recirculation

regions are encountered around the collector and the HCE. These flow struc-

tures are strongly related to the collector orientation and the pitch angle.

The effect of the wind speed on the structures and recirculation regions ob-

served around the PTC has also been assessed. By increasing the Reynolds

number, the flow pattern does not change and the recirculation regions are

similar to those found at ReW = 3.6 × 105 with small variation of the recir-

culation length behind the parabola as shown in figure ??. The recirculation

length for different pitch angles and for both Reynolds number is determined

and presented in table ??. It can be seen from this table that the recircu-

lation length is almost in the same range for both Reynolds numbers. This

similarity has also been depicted in the comparison of averaged streamlines

for both Reynolds numbers (see figure ??). However, in general terms it is

observed that the recirculation length enlarges with the Reynolds number

when the concave surface of the parabola is exposed to the wind direction,

i.e θ < 90◦, and shrinks for the convex surface configuration (θ > 90◦).

At vertical position of θ = 0◦, a large recirculation region is observed

behind the PTC with a maximum drag and minimum lift forces. This

region increases with the Reynolds number and extends up to 8.32W at

ReW2 = 1 × 106. By moving the PTC to a pitch angle of 45◦, the recir-

culation decreases compared to the vertical position and the shear layer is

reduced. However, its length at ReW2 is almost a 30% larger than for ReW1

extending up to 3.06W . The drag coefficient decreases whereas the absolute
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Table 2: Variation of the ratio of the non-dimensional recirculation length (Lr/W ) to

collector aperture with pitch angle and comparison between both Reynolds numbers

Pitch angle θ = 0◦ θ = 45◦ θ = 90◦ θ = 135◦ θ = 180◦ θ = 270◦

ReW1 = 3.6 × 105 7.65 2.21 0.09 1.6 9 0.2

ReW2 = 1 × 106 8.32 3.06 0.1 1.47 8.3 0.17

value of the lift coefficient increases.

The minimum of recirculation length occurs at the horizontal position of

90◦, where only small eddies are encountered in the leeward side of the PTC.

This value is about 0.1W for both Reynolds numbers. The drag forces also

reach their minimum values at this position. At a pitch angle of 135◦, the

recirculation region enlarges again and a pair of medium-sized eddies are

formed behind the PTC where negative pressure is observed. However, due

to the aerodynamic profile of the collector, the recirculation length shrinks

with Reynolds number and extends up to 1.47W at ReW2. By moving the

PTC to the vertical position at 180◦, the recirculation length reaches a new

maximum and similar to θ = 0◦ two large eddies are formed behind the PTC.

The shear layer is again elevated and drag forces are also increased. Com-

paring both Reynolds numbers at this pitch angle, the recirculation length is

about 7% smaller for the higher Reynolds number which is due to the con-

vex surface configuration. When the PTC is placed at the stow position, i.e

θ = 270◦, the recirculation region is sharply reduced similarly to the working

position θ = 90◦. Therefore, the drag forces decrease as well. At this po-
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sition, the recirculation length remain almost unchanged with the Reynolds

number around 0.2W .

4.0.3. Wind speed effects on the heat transfer around the HCE

As it has been discussed in the previous work [? ], the convection taking

place around the HCE is divided into forced convection (for pitch angles of

θ = 0◦, 45◦, 90◦ and 270◦) and mixed (free and forced) convection (for pitch

angles of 135◦ and 180◦). In figure ??, the distribution of the local Nusselt

number for different pitch angles together with the comparison between both

Reynolds numbers is shown. According to this figure, the profile of Nusselt

number around the HCE is affected with the pitch angle and the displace-

ment of the fluid structure around the HCE due to the tilt of the parabola.

At higher wind speed, i.e. higher Reynolds numbers, the profile of Nusselt

number follows a similar trend to that observed at the lower speed ReW1.

However, there is an increase in the magnitude and the peaks become more

pronounced at all pitch angles. Moreover, the effect of the parabola and

the ground becomes more significant with increasing the Reynolds number.

While at the lower Reynolds number the local distribution of the Nusselt

number was observed to follow the same trend to that of a circular cylinder

in cross flow [? ], this is not the case for ReW2. This can be clearly observed

in figure ??, where the distribution at pitch angles of θ = 90◦ and θ = 270◦

(working and stow modes), together with the circular cylinder in cross-flow

are depicted. Large differences in the behaviour are obtained in the rear

zone. At these positions, the combined effect of the parabola and the ground

tend to reduce the large fluctuations of the near wake leading to a smoother
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distribution of the Nusselt number in the rear zone especially when it comes

to the minimum and maximum magnitudes.

Table ?? summarizes the average, front stagnation, maximum and mini-

mum Nusselt numbers (Nuavg, Nufsp, Numax, Numin, respectively) together

with the location where the extrema occurs for both Reynolds number ReW1

and ReW2. These results are also compared with available experimental data

[? ] and the correlation of Zukauskas [? ], for a circular cylinder and the

numerical results presented in previous work [? ].

As expected, the higher the Reynolds number, the higher the average

magnitude of the Nusselt number. Furthermore, compared to the circular

cylinder in cross flow at the same Reynolds number there is a reduction in

the average Nusselt number. This is mainly due to the effect of the parabola

which is desirable as it reduces the heat losses from the HCE, thus improv-

ing the performance of the PTC. When the parabola is placed at the vertical

position of θ = 0◦, the averaged Nusselt number is increased by 70% com-

pared to the lower wind speed case and reduced to 59% compared to the

circular cylinder in cross flow case. At a pitch angle of θ = 45◦, the averaged

Nusselt number is increased by 68% compared to the lower wind speed case

and reduced to 40% compared to the circular cylinder in cross flow case. Al-

though the effect of the parabola is less important than the vertical position

θ = 0◦, the peaks for a pitch angle of 45◦ increase considerably at high wind

speed (see also figure ??-b). The profile of Nusselt number still follows the

tilt of the parabola and remains unchanged with increasing the Reynolds

number. The distribution of the Nusselt number at the working position

θ = 90◦ is symmetric (see figure ??-c) and its averaged magnitude increased
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by 85% when compared to the lower wind speed case. At a pitch angle of

θ = 135◦, the averaged Nusselt number is increased by 72% compared to the

lower wind speed case and reduced to 55% compared to the circular cylinder

in cross flow case. At this position mixed convection occurs and the profile

of Nusselt number is quite different to that of the circular cylinder in cross

flow. The effect of wind speed is significant and the peaks increase sharply

compared to the lower wind speed which exhibits a flatter profile (see figure

??-d). A similar behaviour takes also place at θ = 180◦ where mixed convec-

tion occurs. The averaged Nusselt number at ReW2 is a 61% higher than at

ReW1 and about 64% compared to the circular cylinder. By moving the PTC

to the stow position θ = 270◦, the Nusselt number profile is also symmetric

(see figure ??-f) and similar to the working position θ = 90◦. The averaged

Nusselt number is a 62% higher at ReW2 compared to the lower wind speed

case and 30.5% compared to the circular cylinder.
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4.1. Wind speed effects on the unsteady flow

The study of the unsteady flow field around the PTC at different pitch

angles might be useful to gain insight into the flow behaviour in order to be

able of controlling undesirable fluctuating forces. It should be borne in mind

that the collector structure should sustain wind loads as well as keep accurate

sun tracking. Vortex shedding in the wake of the PTC induces alternating

forces perpendicular to the wind direction which might affect its structure.

These vortices, depending on the pitch angle, are shed at a determined fre-

quency and might produce undesirable effects such as deflections, vibrations,

torsional moments, resonance with the structure and, at the end, stresses

leading to the structure failure. Thus, in order to study the unsteady be-

haviour, instantaneous flow structures and frequencies have been examined

at three pitch angles of θ = 0◦, θ = 45◦ and θ = 90◦. These angles describe

the three possible positions occupied by the parabola, i.e. vertical, inclined

and horizontal positions.

Single-point measurements have been carried out by positioning probes at

different locations around the parabola. The frequencies of the fluctuations of

the cross-stream velocity component have been computed by using the Lomb

periodogram technique [? ] and the resulting spectra have been averaged in

the periodic direction. For the sake of brevity only 3 probes for each pitch

angle are shown and compared for both Reynolds numbers. Only the most

relevant results are here presented. The location of these probes are given in

figure ??.

For all pitch angles, and due to the sharp edges of the parabola the fluid

undergoes a rapid transition to turbulence. Depending on the pitch angle,
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the sharp edges produce flow separation which prevents the pressure from

recovering (large recirculation region behind the parabola) and therefore, a

high pressure drag is observed. The separated flow at the sharp edges forms

a shear-layer which resembles to be much like that formed behind a square

cylinder or a normal plate [? ]. These shear layers are characterised by

the formation of instabilities which cause the fluid to become unstable in

the presence of sharp corners. These instabilities increase in amplitude and

accumulate into large vortical structures which are shed into the wake. As it

will be further explained, depending on the pitch angle the level of coherence

of these structures might form a turbulent wake similar to a von Kármán

vortex street.

In figure ?? the velocity flow field of the three pitch angles and both

Reynolds numbers (ReW1 and ReW2) are depicted. Qualitatively, the in-

stantaneous flow field are quite similar for both Reynolds numbers. A large

separated zone is observed at θ = 0◦. The turbulent flow in the detached

region produces a large depression region in the back of the PTC being the

responsible for the large value of the drag coefficient obtained. The shear

layer is more elevated at this position and the flow seems to follow the curva-

ture of the PTC. However, the height of the recirculation zone decreases as

the Reynolds number increases and the flow becomes more turbulent. Sim-

ilar to previous observations [? ], the height of the detached flow tends to

decrease as the pitch angle moves from θ = 0◦ to θ = 90◦. The latter is

the most favourable position for the PTC to work in terms of both unsteady

forces and magnitude of averaged aerodynamic coefficients.

The structures formed at the different pitch angles are also observed by
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means of the instantaneous pressure map (see figure ??). A striking fact is

that depending on the pitch angle the wake structure is completely different.

Starting from θ = 0◦, shear-layer instabilities at both sides of the parabola

are observed (see figure ??a). These structures grow-up, but as a consequence

of the interaction of the bottom shear-layer with the ground, the transverse

motion of the separated shear layers is suppressed with the formation of

vortices flowing downstream in a parallel manner. As a result, the level

of coherence of the flow is low and only a small peak in the spectrum of

the cross-stream velocity fluctuations is observed. This peak is captured at

probe P2 (see figure ??) for ReW2 at StW = fW
Uref

= 0.34. The peak is more

pronounced at the higher Reynolds number than for the lower one but still

it can be seen at StW = 0.28 as a small footprint in the energy for ReW1 .

At θ = 45◦, as the bottom corner moves off the ground, both shear-

layers are allowed to interact and vortices shed into the wake form a von

Kármán-like vortex street (see figure ??b). By analysing the energy spectrum

for cross-stream velocity fluctuations of probe P1 (see figure ??), one can

notice that for the higher Reynolds number the peak in the energy is more

distinguishable indicating a high coherence in the signal. In fact, the signal

capture what can be identified as a double-peak mechanism. As the process

of vortex shedding is asymmetric vortices formed at the top corner have a

slight different period than those formed at the bottom corner leading to the

double-peak observed in the energy spectrum. The same double-peak is also

captured at the lower Reynolds number but at a lower frequency. Note also

that at the lower Reynolds number, the flow is not so coherent and turbulent

fluctuations are less energetic.
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Finally, when the parabola is at θ = 90◦, leading-edge corner shear-layers

instabilities move downstream and interacts with those structures formed in

the wake of the receiver, breaking down into more complicated and disorgan-

ised structures near the trailing-edge corner (see figure ??c). As a result, the

energy spectrum around the PTC at this position can not capture a distin-

guishable peak corresponding to the vortex shedding phenomenon (see figure

?? ).

For all pitch angles, the observed frequencies are better captured for the

high Reynolds number where the energy peak is more pronounced. From

the stability point of view of the PTC, even though the magnitude of the

drag forces at vertical positions are higher, turbulence fluctuations are more

important at intermediate positions (0◦ < θ < 90◦). At these positions, the

interaction between the shear-layer formed at both corners of the parabola

produces an unsteady flow with a highly coherent vortex shedding which

might lead to vibrations and the horizontal position is also demonstrated to

be the most favourable position as it presents the minimum drag forces and

turbulence fluctuations.

In addition, the spectral analysis is also carried out around the HCE to

detect the relevant frequencies related to the receiver tube. Depending on

the pitch angle, vortex shedding behind the HCE is also detected (see figure

?? ). Similar to the parabola, it is better captured at the higher Reynolds

number but less coherent than the signal captured in the flow past a circular

cylinder (see for instance [? ] ). This is due to the interaction of the flow with

the parabola and to the turbulent fluctuations that this interaction produces

which might be seen as broaden peaks (see for instance figure ??b,c) being
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the energy distributed along a large range of frequencies.

In spite of this, vortex shedding is captured and the results show that

as the pitch angle increases from 0◦ to 90◦ the vortex shedding frequency

increases and approaches to the typical value encountered in circular cylinder

StD = fD
Uref

= 0.2 [? ? ]. Indeed, the value of Strouhal number turns from

StD = 0.05 at pitch angle θ = 0◦ to StD = 0.19 at pitch angle θ = 90◦.

This can be explained by the effect of the parabola on the HCE which

decreases by moving to the horizontal position. It should be pointed out

that the unsteady flow and spectral analysis presented in this work for three

pitch angles, i.e. 0◦, 45◦ and 90◦ can be extrapolated to the other positions

because of the similarity of the flow configuration.

5. Conclusions

In the present work, a numerical study based on LES of the fluid flow

and heat transfer around a parabolic trough solar collector and its receiver

tube has been performed. The effects of wind speed and pitch angle on the

aerodynamic behaviour and heat transfer characteristics around the PTC at

Reynolds numbers similar to that encountered in working conditions have

been addressed. It has been concluded that the averaged aerodynamic coeffi-

cient are stable with the Reynolds numbers in conformity with experimental

results from literature. Furthermore, the structures and recirculation regions

observed in the time-averaged flow around the PTC and the HCE are quite

similar for the Reynolds numbers studied. However, a small variation of the

recirculation length behind the parabola has been identified due to the aero-

dynamic profile and depending to the collector orientation. Heat transfer
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coefficients around the HCE are also calculated and compared for different

pitch angles and wind speeds. The distribution of Nusselt number for the

higher wind speed shows a similar trend to the lower wind speed with higher

magnitude and significant peaks. By studying the unsteady flow around the

PTC, undesirable effects on the stability of the collector have been addressed

for different pitch angles. Indeed, instantaneous flow structures and frequen-

cies have been studied and compared for different orientations and Reynolds

numbers. It has been observed that the turbulence is incoherent in the ver-

tical position and becomes much more coherent by moving to intermediate

positions allowing the interaction between upper and lower shear layers. This

interaction is the consequence of the formation of a von Kármán-like vortex

street and has been clearly detected in different stations. In general, the

observed frequencies around the PTC are better captured at high Reynolds

number and turbulence fluctuations are more important at inclined position.

As a result, care must be taken when operating the collector at these posi-

tions, specially under high wind loads, as these turbulent fluctuations might

be responsible for vibrations and stresses which lead to structure failure.

Similar to the parabola, vortex shedding frequency has also been detected

behind the HCE. This frequency varies with the pitch angle and approaches

to the typical value encountered in circular cylinder when the parabola is

placed at horizontal position.
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