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Abstract—Continuous climb, cruise and decent operations (re-
ferred as continuous operations) may contribute to significantly
reduce fuel and emissions. Nevertheless, it is obvious that the
introduction of such procedures at large scale is not possible with
the current air traffic management concept of operations, since
flying at constant altitudes is one of the key aspects to strategically
separate flows of aircraft. This paper tries to quantify what would
be the potential savings of flying such optimised vertical profiles.
A multiphase optimal control problem is formulated and solved
by means of numerical optimisation. Optimal conventional tra-
jectories (subject to realistic air traffic management practices and
constraints) are compared with optimal continuous (and ideal)
operations, only subject to aircraft performance constraints.
Results show that the continuous cruise phase can lead to fuel
savings between 1% and 2% of the total trip fuel for an Airbus
A320. Interestingly, continuous operations show also a reduction
of trip times between 1% and 5% of the total trip time, depending
on the trip distance between origin and destination airports.

I. INTRODUCTION

In air transportation, gaseous emissions, noise and local air
quality remain major issues. At present, reducing fuel con-
sumption (and therefore emissions) is perhaps one of the main
concerns of the different aviation stakeholders. According to
[1], in 2008 fuel was the largest single cost item for the
global airline industry, representing more than the 30% of the
total operating cost. An optimal flight vertical profile in terms
of minimising fuel consumption is not composed by level
segments at constant (cruise) altitudes. In fact, the optimal
profile consists of a continuous climb, with a climb rate
that reduces progressively as long as the aircraft approaches
the altitude where drag is a global minimum, followed by a
continuous descent with the engines at idle [2]–[7].

As it is well known, however, in the current concept of
operations (ConOps) aircraft are asked to fly at constant cruise
altitudes. In this way, strategic separation is provided and the
air traffic control (ATC) tasks to maintain safe separation
among all aircraft are much more simplified. Furthermore,
climbs and descents are usually interrupted by segments of
level flight at constant altitude in order to maintain separation
of crossing flows in a terminal manoeuvring area (TMA).
Separation management may also deviate trajectories from
their optimum in the lateral (horizontal) domain (i.e. direct
routings), since in busy TMA path stretching and radar vec-
toring are common ATC practices.

The design and assessment of optimal vertical flight profiles
for commercial aircraft has been studied in the last decades
mainly focusing in TMA operations – i.e. with continuous
descent operations (CDO) and continuous climb operations
(CCO). See for instance [8]–[10] and the references therein.
Optimal cruise procedures, according to the current (con-
strained) ConOps have been assessed, as optimal control
problems, in [11] or [12] for example. In [4], a discrete search
algorithm, with a rather simplistic aircraft performance model,
was used to optimise trajectories finding also progressive
cruise climbs as optimal vertical profiles. A very complete
and promising aircraft trajectory optimisation framework is
presented in [3], showing also a comparison between a con-
ventional vertical flight profile and an optimised profile with
continuous climb, cruise and descent operations.

The conclusions arising from these works show the advan-
tages of such continuous operations. The actual quantitative
benefits, however, in terms of fuel savings and accurate
determination of the optimal vertical trajectories, are hard to
assess mainly due to approximations in aircraft and engine
performance models. Refs. [2] and [13], for instance, show
the importance to take into account air compressibility effects
into aerodynamic drag equations, which are typically ignored
in several performance models – such as the widely used
Eurocontrol’s Base of aircraft data (BADA, version 3.6 or
lower). Accurate engine models are also very important to take
into account, since actual engine performance and limitations
have a great impact on the maximum and optimum flight
altitudes and therefore, on the optimal speed profiles and trip
time and fuel figures.

The majority of the previous cited works (see for instance
[3]–[5]) do not consider some important operational restric-
tions when optimising current conventional trajectories, such
as a minimum rate of climb. Furthermore, Refs. [3], [6], [12]
focused on the development of the mathematical framework to
derive very valuable optimisation algorithms, but almost none
attempted to accurately quantify the benefits of continuous
operations considering the flight as a whole.

In this paper, the entire aircraft trajectory will be subject
of optimisation, from the take-off to landing and two specific
situations will be analysed: current conventional operations,
considering realistic and accurate current ATC constraints and



limitations on the flight; and continuous operations comprising
an uninterrupted and continuous climb, followed by a con-
tinuous descent. In both cases accurate aircraft performance
data, derived from Airbus Performance Engineering Programs
(PEP)1, have been used to model drag, engine thrust and fuel
flow. Thus, the main contribution of this paper is to try to
quantify the benefits of such perfect trajectory or ideal oper-
ations for several trip distances and aircraft landing masses,
aiming at motivating future research efforts and technologies
to make them possible.

II. BACKGROUND

The optimisation of an aircraft trajectory, as a 4 dimen-
sional continuum, is a multi-phase constrained optimal control
problem. These kinds of problems are not easy to solve,
especially when nonlinear functions appear in the definition
of the optimisation objective and/or the constraints [14].

Generally speaking, optimal control problems for real world
applications do not have analytic solutions and typically,
numerical methods are used to solve them. In the last decade,
with the availability of more powerful computers, numeric
approaches are enabling to solve realistic problems in short
computational times. There are several ways to address these
type of problems and in this study the direct collocation
method described in [15] has been used. Such direct methods
transform the original continuous (and thus infinite) optimal
control problem into a (discrete and finite) nonlinear program-
ming (NLP) optimisation problem. The advantage of these
methods is the possibility of solving very complex problems
with a minimum effort of mathematical analysis. In fact, only
the physical equations need to be coded and the necessary
conditions do not have to be derived. Therefore, the direct
collocation methods can be used to solve a wide amount of
practical problems, such as trajectory optimisation problems
for commercial aircraft typical missions [12].

A. Optimal control problem formulation

Let us divide the trajectory optimisation problem into N
phases. For each phase i ∈ {1, N}, defined over the time
period [t

(i)
0 , t

(i)
f ], a state vector x(i)(t), a control vector u(i)(t)

and parameter vector2 p(i) are defined. The goal of an optimal
control problem is to find the best control and parameter vector
functions for each phase that minimise a given cost functional
J , defined over the whole time period [t

(1)
0 , t

(N)
f ]:

J
(
x(1)(t),u(1)(t),p(1),x(2)(t),u(2)(t),p(2),

. . . ,x(N)(t),u(N)(t),p(N)
)
.

(1)

Notice that the cost functional may depend on quantities
computed in each of the N phases. In order to guarantee a fea-
sible and acceptable trajectory, as a result of this optimisation

1Airbus PEP software provides high degree of precision in the certified
aircraft performance data and uses specific Flight Management System (FMS)
algorithms for the computations.

2formally defined as a vector of variables that are not time dependent

process, several constraints must be considered. In particular
the dynamics of the system (dynamics of the state vector),
expressed by non-linear vector functions f (i) as:

dx(i)

dt
= ẋ(i)(t) = f (i)

(
x(i)(t),u(i)(t),p(i), t

)
. (2)

In addition, the solution might satisfy some algebraic event
constraints e(i) (i.e. initial and final conditions at the different
phases), expressed in the general form with vector functions:

e
(i)
L 6e(i)

(
x(i)(t

(i)
0 ),x(i)(t

(i)
f ),u(i)(t

(i)
0 ),

u(i)(t
(i)
f ),p(i)

)
6 e

(i)
U ,

(3)

some algebraic path constraints h(i) such as

h
(i)
L 6 h(i)

(
x(i)(t),u(i)(t),p(i)

)
6 h

(i)
U (4)

and simple bounds on the state, control and time variables
(box constraints):

x
(i)
L (t) 6 x(i)(t) 6 x

(i)
U (t)

u
(i)
L (t) 6 u(i)(t) 6 u

(i)
U (t)

p
(i)
L 6 p(i) 6 p

(i)
U

t
(i)
0L

6 t
(i)
0 6 t

(i)
0U

t
(i)
fL

6 t
(i)
f 6 t

(i)
fU
.

(5)

For those problems defined over more than one phase, the
dynamics of the system, the event, path and box constraints
might be different. However, it might be desirable to link
some state variables across two consecutive phases, in order
to enforce some continuity to those variables. This leads to
another set of constraints also known as link constraints Ψ:

ΨL 6 Ψ
(
x(1)(t

(1)
0 ),x(1)(t

(1)
f ), t

(1)
0 , t

(1)
f ,

x(2)(t
(2)
0 ),x(2)(t

(2)
f ), t

(2)
0 , t

(2)
f , . . . ,

x(N)(t
(N)
0 ),x(N)(t

(N)
f ), t

(N)
0 , t

(N)
f

)
6 ΨU .

(6)

In the previous notation, (·)L and (·)U are respectively the
lower and upper bounds for these constraints. It should be
noted that equality constraints can be defined by setting the
lower bound equal to the upper bound, i.e. (·)L = (·)U .

B. NLP transcription and starting point

Collocation methods discretise the time histories of control
and state variable at a set of nodal or collocation points, being
the system of ordinary differential equations (2) approximated
by some continuous function (such as polynomials) over each
collocation step. The values of these discretised variables,
along with the non-time dependent parameters, become the
unknowns of the new finite variable problem, which can be for-
mally as a NLP problem and solved by standard NLP solvers.
Several collocation schemes are proposed in the literature,
being the trapezoidal collocation method the approach used
in this paper. Trapezoidal collocation shows a good trade-off



between accuracy and execution time needed to solve highly
constrained NLP problems [14].

NLP solvers are always executed from a starting point with
all the variables of the problem (unknowns of the problem)
initialised to some value. Typically, the user can specify these
starting values and otherwise, the solver will just set all the
unknowns to zero or to another random value. Then, from this
starting point, the internal algorithm of the NLP solver aims to
find a feasible (i.e. that fulfils all the constraints) and optimal
(i.e. that minimises/maximises the cost functional) solution.

An appropriate starting point or initial guess can dra-
matically reduce the convergence time of the optimisation,
being for some complex problems, a key aspect influencing
the solver’s success on convergence too, which cannot even
converge if the guess solution is not good enough [16]. It
should be noted that, since NLP solvers cannot guarantee a
global optimum, different initial guesses could lead to different
sub-optimal solutions.

III. AIRCRAFT PERFORMANCE MODEL

In this section the aircraft dynamic equations, along with
drag and engine performance models, are presented. A nonlin-
ear point-mass representation of the aircraft (where forces are
applied at its centre of gravity) is used. The aircraft dynamics
are described in the air reference frame assuming flat non-
rotating earth and neglecting wind components [17]:

dv
dt

= v̇ =
T −D
m

− g sin γ

ds
dt

= ṡ = v cos γ

dh
dt

= ḣ = v sin γ

dm
dt

= ṁ = −FF

(7)

where the state vector x = [v, s, h,m] is formed respectively,
by the true airspeed, the along path distance, altitude and the
mass of the aircraft; T is the total thrust; D is the aerodynamic
drag; g is the gravity acceleration (assumed to be constant); γ
is the aerodynamic flight path angle and FF is the fuel flow.

The control vector considered is u = [π, γ], where π is the
throttle setting.

Regarding the atmosphere, the International Standard At-
mosphere [18] model is considered, which defines the density
ρ, pressure p and temperature τ magnitude as functions of the
altitude. The following normalised magnitudes are also used
in this paper:

δ =
p

p0
; θ =

τ

τ0
; σ =

ρ

ρ0
; (8)

where p0, τ0 and ρ0 are, respectively the standard pressure,
temperature and density values at sea level.

Operational constraints are usually given in terms of the
Mach number M = v/vc (being vc the speed of sound) or
calibrated airspeed (CAS), which is computed as a function
of the true airspeed and atmospheric magnitudes as follows:

vCAS =

√√√√ 2p0
µρ0

[(
δ

((
µv2

2Rτ
+ 1

) 1
µ

− 1

)
+ 1

)µ
− 1

]
(9)

where µ = γa−1
γa

and vc =
√
γaRτ ; being γa the specific heat

ratio of the air and R the perfect gases constant.
All aerodynamic and engine parameters are represented by

continuous polynomials, that ensure continuity for the first and
second derivatives as it is required for numerical reasons by
NLP solvers. These models are described below.

A. Drag model

The aerodynamic drag is modelled as:

D =
1

2
ρSv2CD (10)

where CD is the drag coefficient and S the wing area.
The drag coefficient is expressed as a function of the

lift coefficient CL and M . This relationship considers air
compressibility effects, which cannot be neglected for nominal
cruising speeds of typical commercial aircraft (between M.78
and M.82 approximately). In this paper, a polynomial fitting
similar to the model proposed in [13] is used, giving a very
accurate approximation of the drag coefficient:

CD = CD0 +Ki(CL − CL0)2. (11)

Coefficients CD0, Ki and CL0 depend on the flaps/slats
setting and M . For each aircraft configuration these coeffi-
cients are obtained after a fitting function process with aircraft
aerodynamic data obtained from PEP’s data base:

CD0 = CD0min + ∆CD0M

Ki = Kimin + ∆Ki1M + ∆Ki2M
2

CL0 = CL0min + ∆CL01M + ∆CL02M
2.

(12)

B. Engine model

Typically, throttle setting (π ∈ [0, 1]) directly commands the
revolutions of the engine fan (N1):

π =
N1−N1idle

N1max −N1idle
. (13)

The maximum revolutions of the engine fan N1max and
the residual revolutions, when the throttle is zero (N1idle) are
modelled with a third degree polynomial approximation as:

N1k =

3∑
i=0

3∑
j=0

ckijθ
iM j k ∈ {max, idle} . (14)

Following the same methodology, T and FF are also
modelled by a third order polynomial as a function of the
reduced revolutions of the engine fan (N1/

√
θ) and M [19]:



T = neδ

3∑
i=0

3∑
j=0

cTij

(
N1√
θ

)i
M j

FF = neδ
√
θ

3∑
i=0

3∑
j=0

cFFij

(
N1√
θ

)i
M j

(15)

being ne the number of engines of the airplane.

IV. TRAJECTORY OPTIMISATION

The optimisation process presented in this paper is a con-
strained non-lineal optimal control problem, as defined in
section II. This study aims at computing minimum trip fuel
trajectories and therefore, the cost functional (1) becomes:

J =

∫ t
(N)
f

t
(1)
0

FF (t) dt, (16)

while dynamic equations (2) are particularised by the point-
mass model given by (7).

Event constraints (3) for the state variables fix the initial
and final conditions of the problem. In this paper, the initial
and final points are taken, respectively, at the moment the
slats are retracted (after the take-off) and extended (before the
landing). The remaining parts of the take-off and approach
are not optimised because almost no degrees of freedom are
left for optimisation, since the trajectory is heavily constrained
with operational procedures.

The whole state vector is fixed at the final point of the
optimisation (x(t

(N)
f )) with the values of the state variables

obtained with the initial guess trajectory at this point (see sec-
tion IV-C). For the initial point of the optimisation (x(t

(1)
0 )),

however, the mass of the aircraft is not fixed (it will be
determined be the optimisation itself, since the trip fuel is
being minimised) being all the remaining state variables fixed
to the corresponding values of the initial guess trajectory at
this initial point (slats retraction).

Generic box constraints on the state and control variables
(5) are specified as follows:

γmin 6 γ 6 γmax ; 0 6 π 6 1; (17)

where γmin and γmax are aircraft dependent scalars. Note that
there is no need to bound the state variable v, since it will be
bounded implicitly by the following path constraints set for
vCAS and M :

M 6MMO ; vCAS 6 VMO; (18)

where MMO and VMO are, respectively, the maximum
operational Mach and calibrated speed.

Link constraints (6) are defined at each phase boundary
imposing continuity to all state variables:

x(i)(t
(i)
f ) = x(i+1)(t

(i+1)
0 ) ; i = 1, . . . , N − 1 (19)

Current (or conventional) operations are subject to several
operational constraints. In this paper, these operations are

compared with an hypothetical unconstrained flight (or perfect
flight). Next, the different constraints modelled in the two
proposed scenarios are specified.

A. Constraints for conventional operations

The most important constraint of current ConOps is perhaps
the requirement to fly at a constant cruise altitude. In general,
the lower the aircraft mass the higher the most fuel-efficient
cruise altitude. Thus, since aircraft is continuously burning fuel
(and thus, losing weight) operators can plan in advance one
or more step-climbs for long-haul flights. These changes of
altitude are always subject to ATC approval and are typically
performed with 2000 ft intervals. Minimum distances and/or
times are typically enforced to avoid too short cruises.

According to FAA and EASA regulations, a minimum rate
of climb of ROCmin = 500 ft/min is enforced to all aircraft
in order to ensure that controllers can predict flight profiles
to maintain standard separation. Moreover, in some controlled
airspaces aircraft should not operate with a climb or descent
rate exceeding 8000 ft/min [20]. These constraints are enforced
in the whole trajectory, being minimum ROC especially rel-
evant for the climbs between two cruise altitudes, since it
can limit the capability to climb to a higher cruise altitude.
Moreover, ATC procedures typically restrict the calibrated
speed of aircraft under FL100 to 250 kt [21].

All previous requirements are modelled in terms of addi-
tional path constraints (4) and are in general phase dependent.

For the cruise phases (at constant Mach and altitude), climb
phases in between are modelled to enable step climbs as fuel
is burned. Path constraints are specified in such a way that
the optimiser can freely chose the number of steps climbs
to perform. Before reaching the top of descent (TOD), a
deceleration cruise phase (at constant altitude) is introduced
allowing the aircraft to reach the optimal descent Mach.

Constant Mach, CAS or altitude phases are imposed by
means of optimisation parameters that are bounded with upper
and lower values. Let p(i)M , p(i)vCAS and p

(i)
h be these new

optimisation parameters at phase i and respectively for M ,
vCAS and h constraints. It should be noted that p(i)vCAS and p(i)M
can take any continuous value between the upper and lower
bounds. On the other hand, in order to comply with ATC rules,
pih is restricted to take discrete values given by flight levels.

Table I wraps-up, for each phase, the different path con-
straints needed to model current conventional operations. It
should be noted that for the sake of simplicity, the phase
dependency has been dropped from the notation in this table,
except for those cases where confusion could be possible.
Thus, equations appearing at each row of this table should
be considered only for the concerned phase.

B. Constraints for continuous operations

For continuous operations, the trajectory has been modelled
with just one phase in absence of additional constraints.
Therefore, only event constraints in order to fix the initial and
final conditions of the problem along with generic box (17)
and path (18) constraints have been considered.



TABLE I
PATH, BOX AND EVENT CONSTRAINTS FOR EACH PHASE OF THE CONVENTIONAL OPERATIONS TRAJECTORY MODEL

Phase Description Path Constraints Event or Box Constraints

1 Initial acceleration v̇CAS(t) > 0

2 Constant CAS climb vCAS(t) = p
(2)
CAS ; p

(2)
CAS 6 250 kt

3 Climb acceleration v̇CAS(t) > 0 h(t0) = 10000 ft

4 Constant CAS climb vCAS(t) = p
(4)
CAS ; p

(4)
CAS 6 VMO

5 Constant Mach climb M(t) = p
(5)
M ; p

(5)
M 6 MMO

6 Cruise M(t) = p
(6)
M ; p

(6)
M 6 MMO tf > t0 + ∆t

(cruise)
min

h(t) = (2p
(6)
h + 1)1000 ft ; 14 6 p

(6)
h 6 21 s(tf ) > s(t0) + ∆s

(cruise)
min

7 Step climb M(t) = p
(7)
M ; p

(7)
M 6 MMO tf 6 t0 + h(8)−h(6)

ROCmin

8 Cruise M(t) = p
(8)
M ; p

(8)
M 6 MMO tf > t0 + ∆t

(cruise)
min

(
p
(8)
h − p

(6)
h

)
h(t) = (2p

(8)
h + 1)1000 ft ; 14 6 p

(8)
h 6 21 s(tf ) > s(t0) + ∆s

(cruise)
min

(
p
(8)
h − p

(6)
h

)
· · · · · · · · · · · ·

k Step climb M(t) = p
(k)
M ; p

(k)
M 6 MMO tf 6 t0 + h(k+1)−h(k−1)

ROCmin

k + 1 Cruise M(t) = p
(k+1)
M ; p

(k+1)
M 6 MMO tf > t0 + ∆t

(cruise)
min

(
p
(k+1)
h − p

(k−1)
h

)
h(t) = (2p

(k+1)
h + 1)1000 ft ; 14 6 p

(k+1)
h 6 21 s(tf ) > s(t0) + ∆s

(cruise)
min

(
p
(k+1)
h − p

(k−1)
h

)
· · · · · · · · · · · ·

N − 6 Cruise h(t) = (2p
(N−6)
h + 1)1000 ft ; 14 6 p

(N−6)
h 6 21 tf > t0 + ∆t

(cruise)
min

(
p
(N−6)
h − p

(N−8)
h

)
− ∆t(N−5)

s(tf ) > s(t0) + ∆s
(cruise)
min

(
p
(N−6)
h − p

(N−8)
h

)
− ∆s(N−5)

N − 5 Cruise deceleration h(t) = (2p
(N−5)
h + 1)1000 ft ; 14 6 p

(N−5)
h 6 21

N − 4 Constant Mach descent M(t) = p
(N−4)
M ; p

(N−4)
M 6 MMO

N − 3 Constant CAS descent vCAS(t) = p
(N−3)
CAS ; p

(N−3)
CAS 6 VMO

N − 2 Descent deceleration v̇CAS(t) 6 0

N − 1 Constant CAS descent vCAS(t) = p
(N−1)
CAS ; p

(N−1)
CAS 6 250 kt h(t0) = 10000 ft

N Final deceleration v̇CAS(t) 6 0

NOTE: For this paper we have considered ∆t
(cruise)
min = 5 min and ∆s

(cruise)
min = 50 NM for all conventional trajectories.

C. Generation of the initial guess trajectory

The initial guess trajectory generated in this study for
both conventional and continuous operations consists of an
uninterrupted continuous climb followed by a single cruise
at a constant altitude and a continuous descent towards the
destination airport. Each segment is divided in several phases
with different models and standard operational procedures
(such as constant CAS or constant Mach climbs and descents).
Then an initial value problem is set for each phase and the
trajectory is found by numerical integration of (7).

Since the take-off mass at the origin airport is unknown
(depends on the trip fuel, which is unknown) a backwards
integration of (7) is initially done up to a given cruise altitude,
starting at the runway threshold and assuming a thrust-idle
descent. Then an estimation of the take-off mass is done, based
on historical data from previous simulations and a forward
integration is done from the departing runway threshold up
to the TOD. An iterative process is implemented in order to
refine at each step the initial mass estimation up to the point
the mass discrepancy at the TOD with previous backwards
integration is below a user defined tolerance.

Another iterative process is also implemented in order to

determine the best cruise altitude. This results with a very
accurate (and feasible) trajectory that helps significantly the
convergence and reduces the execution time of the optimisa-
tion algorithm.

V. NUMERICAL RESULTS

This section compares the results (in terms of fuel consump-
tion and flight time) between conventional and continuous
operations for several case studies using an Airbus A320, a
typical twin-engine, narrow-body, transport aircraft.

A. Experimental setup

A set of representative A320 trip distances between 400 NM
and 2400 NM have been chosen for this study. For each trip
distance, the optimal conventional and continuous operations
trajectories from slats retraction to flaps extension have been
computed for several landing masses between the operative
empty mass and maximum landing mass (MLM). Results were
obtained using solvers CONOPT (as NLP) and SBB as MINLP
(mixed integer nonlinear programming), both bundled into the
GAMS software suite. Finally, in this study and regarding
conventional operations, odd flight levels have been considered



(a) Optimal trajectories for 87% of maximum landing mass

(b) Optimal trajectories for 99% of maximum landing mass

Fig. 1. Examples of optimal trajectories

allowing the algorithm to perform a maximum number of three
possible step climbs. Fig. 1 shows two examples of optimal
trajectories computed with previous algorithms.

These results are consistent with those found in the literature
[3], [5], [22], where unconstrained trajectories follow the so
called a cruise climb, i.e. a continuous climb up to the TOD,
where the continuous descent is initiated. For aircraft equipped
with jet engines, the higher the altitude the more fuel-efficient
the engine becomes and therefore, the aircraft seeks to achieve
the maximum altitude in the minimum amount of time. An
optimal altitude is found where fuel consumption is minimised
by flying at the most efficient speed and engine setting. As
fuel is burned and aircraft weight decreases, the amount of
lift needed and, consequently, the drag are reduced meaning
that the required thrust is also lower. If throttle is reduced
then the engine is not longer operating at the most efficient
setting. Therefore, the optimal procedure is to maintain the
most efficient speed and power setting and using the excess
thrust to slowly climb the aircraft. Cruise climb ends when the
optimum descent path is intercepted. This path is the result of
descending continuously at minimum gradient (or minimum
drag) speed, which allows the aircraft to maximise the flown
distance at idle thrust.

Conventional procedures shown in Fig. 1 are also consistent

with optimal constrained flight profiles [3], [12], where step
climbs are performed at the moment this excess thrust allows
the aircraft to climb at the minimum rate of climb required by
operational constraints. Due to this restriction, conventional
vertical profiles are always below continuous climb profiles:
for a given mass, increasing the altitude decreases the specific
excess power and therefore, the rate of climb performance.
Thus a maximum altitude will be found, such as the aircraft
can reach it with the minimum allowed rate of climb. Then,
as fuel is burned while cruising at this constant altitude the
rate of climb available increases up to the point a step climb
can be performed up to the next available cruise altitude.

B. Results

Fig. 2 shows the optimal trip fuel for both conventional
and continuous operations, as a function of the considered
distances and landing masses. As expected, the amount of
fuel needed increases with the total trip distance and landing
mass. Moreover, for a same case continuous operations require
less fuel if compared with the conventional scenario. Fig. 3
shows these fuel savings in absolute and relative terms. These
results agree with those obtained in the AIRE flight trials [23],
where potential savings around 300 kg of fuel where observed
on the route Keflavik-Seattle (6680 NM). As seen from Fig.
3(b), large relative savings are also observed for long-haul
flights. In this case, however, is much harder to establish a
correlation between the relative savings and the landing mass
of the aircraft.

The discontinuities observed in the previous plots are mainly
due to the discrete behavior of the conventional operations. For
example, as long as the landing mass decreases progressively,
the optimal altitude increases progressively too. Yet, since
only discrete cruise altitudes are allowed, this optimal flight
altitude will suddenly change at some landing mass, producing
a discontinuity to the fuel consumption.

It should be noted that in our analysis the conventional
flight is somehow idealised since climb and descent paths
have relaxed constraints allowing continuous climbs and de-
scents. Nowadays, these continuous operations are not usually
performed as level-offs and/or path stretching are mandated
by ATC in order to maintain separation, especially in busy
terminal airspaces. Moreover, in some controlled airspaces
the ATC may also bound upper and/or lower airspeeds in
order to facilitate the traffic flow separation and the ATC
tasks. These speed restrictions may also induce some extra fuel
consumption, since climbs and/or descents cannot be longer
flown at the optimal speeds.

Ref. [8], for instance, studies the effect of level segments
in descent procedures, showing average fuel savings of ap-
proximately 200 kg flight. Another quantitative example is
given in [24], where some flights trials from Edinburg to
London were performed flying an uninterrupted climb to cruise
altitude followed by a direct route (at constant altitude) and
an uninterrupted descent. For these trials, fuel reduction was
found to be around the 10% of the total trip fuel (also around
300 kg). Thus, the observed fuel savings in our study are



(a) Conventional operations (b) Continuous operations

Fig. 2. Total trip fuel obtained after the optimisation process as a function of trip distance and landing mass

(a) Total trip fuel saved (b) Percentage of trip fuel saved

(c) Total trip time saved (d) Percentage of trip time saved

Fig. 3. Trip fuel and trip time savings by flying continuous operations with respect to conventional operations

mainly achieved by the possibility to fly a continuous cruise
climb and should be added to these potential savings due to
continuous climb/descent operations and direct routings.

In this study, trip time differences have also been analysed.
Fig. 3 presents these differences in absolute and relative terms.
It is very interesting to note that continuous operations not only
represent lower fuel consumptions but also shorter trip times.

As shown in [2], for a given mass the Mach that minim-
ses fuel consumption increases with altitude and an optimal
altitude can also be found (with its corresponding optimal
Mach). Yet, this altitude cannot always be reached due to
engine performance limitations. In continuous operations, the
aircraft is following this optimal altitude (that increases as
long as the mass of the aircraft decreases). For conventional



operations, however, the aircraft must cruise at a lower altitude
in order to have the required excess thrust needed to fulfill
the minimum rate of climb constraint. Thus, the aircraft flies
at a less fuel-efficient altitude, which leads to a lower cruise
speed (if compared with the higher speed that it would have
at the optimal altitude). Consequently, this difference in cruise
altitude produces more fuel consumption and more trip time.

VI. CONCLUSION

The reduction of fuel consumption (and gaseous emissions)
is one of the major drivers of current research efforts in air
transportation. Even small amounts of fuel savings become
significant at aggregate level, especially when we consider
the high volume of traffic that is operating every day. This
paper has focused on the potential savings of the introduction
of eventual continuous cruise climb operations for an Airbus
A320, showing already some remarkable figures in terms of
fuel consumption, mainly for longer routes.

Another important remark that arises from this study is that
continuous operations not only reduce fuel consumption, but
also the trip time. This is particularly interesting since aircraft
operators typically seek to optimise a trade-off between fuel
and time consumption for a given flight. Thus, the economic
benefit of such continuous operations is twofold.

In this paper, conventional operations have been computed
considering a maximum range scenario (i.e. the operator aims
at minimising the total trip fuel). Current operations, however,
are performed at higher cruise speeds (thus, incurring extra
fuel consumption), since the cost of the time is also considered
for flight planning. Therefore, fuel savings of continuous
cruise climb operations would be even larger if compared with
these cost-based operations.

Future work will study long-haul aircraft (such as the A330
or A340), since fuel and time savings are expected to be more
relevant. Moreover, a sensibility study on the influence of
real weather scenarios (and in particular wind fields) on fuel
consumption figures is also foreseen. Also a scenario based
investigation with a variation of the relevant parameters (e.g.
realistic climb/descent rates) would have been interesting and
should be focused in future work.

According to SESAR and NextGen paradigms, new avionic
systems will be able to support trajectory-based operations
in the forthcoming years. In a futuristic scenario, we could
envisage that aircraft themselves are responsible for keeping
separation amongst each other, thus delegating air traffic con-
trol responsibilities to the pilot by means of airborne separation
assurance systems (ASAS) [25]. Fuel and time savings shown
in this paper can endorse and motivate future research efforts
in separation assurance to make such continuous cruise climb
operations safe and operationally sound.

ACKNOWLEDGMENT

The authors would like to thank Airbus Industrie for the use
of PEP (Performance Engineers Program) suite, which allowed
us to undertake realistic aircraft performances simulations.

REFERENCES

[1] IATA, “IATA economic briefing. Airline fuel and labour cost share,”
2010.

[2] E. L. Miller, “Optimal cruise performance,” Journal of Aircraft, vol. 30,
no. 3, pp. 403–405, May 1993.

[3] M. Soler, A. Olivares, E. Staffetti, and D. Zapata, “Framework for
aircraft trajectory planning toward an efficient air traffic management,”
Journal of Aircraft, vol. 49, no. 1, pp. 341–348, Jan. 2012.

[4] R. H. Veenstra, “Commercial aircraft trajectory optimization and effi-
ciency of air traffic control procedures,” Master’s thesis, University of
Minnesota, Nov. 2011.

[5] J. A. Lovegren and R. J. Hansman, “Estimation of potential aircraft fuel
burn reduction in cruise via speed and altitude optimization strategies,”
MIT International Center for Air Transport (ICAT), Cambridge, USA,
Tech. Rep., Feb. 2011.

[6] J. A. Sorensen and M. H. Waters, “Generation of optimum vertical
profiles for and advanced flight management system,” NASA, Mountain
View, California, Tech. Rep. 165674, march 1981.

[7] H. Erzberger, J. D. Mclean, and J. F. Barman, “Fixed-range optimum
trajectories for short-haul aircraft,” NASA, Washington, D.C., Tech. Rep.
D-8115, Dec. 1975.

[8] T. Thompson, B. Miller, C. Murphy, S. Augustine, T. White, and
S. Souihi, “Environmental impacts of continuous-descent operations in
Paris and New York regions. Isolation of ATM/airspace effects and
comparison of models,” in Proceedings of the Tenth USA/Europe Air
Traffic Management Research and Development Seminar (ATM2013),
Chicago, Illinois (USA), Jun. 2013.

[9] J. B. Clarke, N. T. Ho, L. Ren, J. A. Brown, K. R. Elmer, K. Zou,
C. Hunting, D. L. McGregor, B. N. Shivashankara, K. Tong, A. W.
Warren, and J. K. Wat, “Continuous descent approach: Design and flight
test for Louisville international airport,” Journal of Aircraft, vol. 41,
no. 5, pp. 1054–1066, Sep. 2004.

[10] L. Jin, Y. Cao, and D. Sun, “Investigation of potential fuel savings due
to continuous-descent approach,” Journal of Aircraft, vol. 50, no. 3, pp.
807–816, Feb. 2013.

[11] A. Valenzuela, “Aircraft trajectory optimization using parametric opti-
mization theory,” Ph.D. dissertation, Univeristy of Seville, Nov. 2012.

[12] J. T. Betts and E. J. Cramer, “Application of direct transcription
to commercial aircraft trajectory optimization,” Journal of Guidance,
Control, and Dynamics, vol. 18, no. 1, pp. 151–159, Jan. 1995.

[13] M. Kaiser, M. Schultz, and H. Fricke, “Enhanced jet performance model
for high precision 4D flight path prediction,” in Proceedings of the 1st
International Conference on Application and Theory of Automation in
Command and Control Systems (ATACCS), 2011, pp. 33–40.

[14] J. T. Betts, Practical methods for optimal control using nonlinear
programming, ser. Advances in Design and Control. Philadelphia, U.E:
Society for Industrial and Applied Mathematics (SIAM), 2001, vol. 3.

[15] ——, “Survey of numerical methods for trajectory optimization,” Jour-
nal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207,
Mar. 1998.

[16] GAMS, GAMS: The Solver Manuals, GAMS Development Corporation,
Nov. 2013.

[17] D. G. Hull, Fundamentals of airplane flight mechanics, 1st ed. Springer
Publishing Company, Incorporated, 2007.

[18] ICAO, “Manual of the ICAO Standard Atmosphere: Extended to 80
Kilometres (262500 Feet),” International Civil Aviation Organization,
Montreal, Canada, Tech. Rep., 1993.

[19] Air Force Test Pilot School, Edwards AFB, CA, “Cruise performance
theory,” in Performance phase, Sep. 1993, vol. 1, ch. 11.

[20] G. B. C. A. Authority, “Aeronautical information publication (AIP)
United Kingdom: En-route (ENR) 1.1 - general rules,” 2013.

[21] F. A. A. U.S. Dept. of Transportation, “Aeronautical information publi-
cation (AIP): Subchapter F - Part 91,” pp. 579–844, Jan. 2012.

[22] J. Garcı́a-Heras, F. J. Sez-Nieto, and R. Román, “Aircraft trajectory
simulator using a three degrees of freedom aircraft point mass model,”
in Proceedings of the 3rd International Conference on Application and
Theory of Automation in Command and Control Systems (ATACCS),
2013, pp. 114–117.

[23] SESAR Joint Undertaking, “AIRE project results 2009,” 2010.
[24] NATS, “NATS Fuel Efficiency Metric,” Jan. 2012.
[25] Eurocontrol, “Review of ASAS applications studied in europe,”

CARE/ASAS Action – Activity 4, Technical report, Feb 2002.


