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DECOMPOSITION SPACES, INCIDENCE ALGEBRAS
AND MÖBIUS INVERSION

IMMA GÁLVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

Abstract. We introduce the notion of decomposition space as a gen-
eral framework for incidence algebras and Möbius inversion. A decom-
position space is a simplicial ∞-groupoid satisfying an exactness con-
dition weaker than the Segal condition, expressed in terms of generic
and free maps in Delta. Just as the Segal condition expresses up-to-
homotopy composition, the new condition expresses decomposition. We
work as much as possible on the objective level of linear algebra with
coefficients in ∞-groupoids, and develop the necessary homotopy lin-
ear algebra along the way. Independently of finiteness conditions, to
any decomposition space there is associated an incidence (co)algebra
(with coefficients in ∞-groupoids), and under a completeness condition
(weaker than the Rezk condition) this incidence algebra is shown to
satisfy a sign-free version of the Möbius inversion principle. Examples
of decomposition spaces beyond Segal spaces are given by the Wald-
hausen S-construction of an abelian (or stable infinity) category. Their
incidence algebras are various kinds of Hall algebras. Another class of
examples are Schmitt restriction species. Imposing certain homotopy
finiteness conditions yields the notion of Möbius decomposition space,
covering the notion of Möbius category of Leroux (itself a common gen-
eralisation of locally finite posets (Rota et al.) and finite decomposition
monoids (Cartier–Foata)), as well as many constructions of Dür, in-
cluding the Faà di Bruno and Connes-Kreimer bialgebras. We take a
functorial viewpoint throughout, emphasising conservative ULF func-
tors, and show that most reduction procedures in the classical theory of
incidence coalgebras are examples of this notion, and in particular that
many are an example of decalage of decomposition spaces. Our main
theorem concerns the Lawvere-Menni Hopf algebra of Möbius intervals,
which contains the universal Möbius function (but does not come from a
Möbius category): we establish that Möbius intervals (in the ∞-setting)
form a decomposition space, and that it has the universal property also
with respect to Möbius inversion in general decomposition spaces.

NOTE: The notion of decomposition space was arrived at indepen-
dently by Dyckerhoff and Kapranov (arXiv:1212.3563) who call them
unital 2-Segal spaces. Our theory is quite orthogonal to theirs: the def-
initions are different in spirit and appearance, and the theories differ
in terms of motivation, examples and directions. For the few overlap-
ping results (‘decalage of decomposition is Segal’ and ‘Waldhausen’s S

is decomposition’), our approach seems generally simpler.
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6.6. Möbius intervals and the universal Möbius function 120
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-1. Introduction

Background and motivation

Leroux’s notion of Möbius category [45] generalises at the same time
locally finite posets (Rota [62]) and Cartier–Foata finite-decomposition
monoids [10], the two classical settings for incidence algebras and Möbius
inversion. An important advantage of having these classical theories
on the same footing is that the appropriate class of functors (the con-
servative ULF functors (unique lifting of factorisations) (1.4)) connect
different examples, and in particular give nice explanations of the pro-
cess of reduction which is important in getting the most interesting
algebras out of posets, a process that was sometimes rather ad hoc. As
the most classical example of this process, the divisibility poset (N×, |)
(considered as a category) admits a conservative ULF functor to the
multiplicative monoid (N×,×) (considered as a category with only one
object). This functor induces a homomorphism of incidence coalgebras
which is precisely the reduction map from the ‘raw’ incidence coalgebra
of the divisibility poset to its reduced incidence coalgebra, which is iso-
morphic to the Cartier–Foata incidence coalgebra of the multiplicative
monoid.

Shortly after Leroux’s work, Dür [17] studied more involved cat-
egorical structures to extract further examples of incidence algebras
and study their Möbius functions. In particular he realised what was
later called the Connes–Kreimer Hopf algebra as the incidence coalge-
bra of a certain category of root-preserving forest embeddings, modulo
the equivalence relation that identifies two root-preserving forest em-
beddings if their complement crowns are isomorphic forests. Another
prominent example fitting Dür’s formalism is the Faà di Bruno bialge-
bra, obtained in [30] from the category of surjections, which is however
not a Möbius category.

Our work on Faà di Bruno formulae in bialgebras of trees [23] prompted
us to look for a more general version of Leroux’s theory, which would
naturally realise the Faà di Bruno and Connes–Kreimer bialgebras as
incidence coalgebras. A sequence of generalisations and simplifications
of the theory led to the notion of decomposition space which is a main
notion in this work.

The first abstraction step is to follow the objective method, pioneered
in this context by Lawvere and Menni [43], working directly with the
combinatorial objects rather than with numbers and functions on the
vector spaces spanned by the objects, using linear algebra with coeffi-
cients in Set. In the present work, the coefficients are ∞-groupoids.
In the appendix we develop background needed in ‘homotopy linear
algebra’ and homotopy cardinality, extending many results of Baez-
Hoffnung-Walker [4] who worked with 1-groupoids. At the objective
level, where all results and proofs are naturally bijective, finiteness
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conditions do not play any essential role, since it is just as easy to
handle infinite sets as finite ones. The price to pay is the absence of
additive inverses: in particular, Möbius functions cannot exist in the
usual form of an alternating sum. However, an equation expressing the
Möbius inversion principle can be obtained by splitting into even and
odd, and under the appropriate finiteness assumptions, one can pass
from the objective level to the numerical level by taking cardinality;
the even-odd split version of Möbius inversion then yields the usual
form of an alternating sum.

There are two levels of finiteness conditions needed in order to take
cardinality and arrive at algebraic (numerical) results: namely, just in
order to obtain a numerical coalgebra, for each arrow f and for each
n ∈ N, there should be only finitely many decompositions of f into a
chain of n arrows. Second, in order to obtain also Möbius inversion,
the following additional finiteness condition is needed: for each arrow
f , there is an upper bound on the number of non-identity arrows in a
decomposition of f .

The importance of chains of arrows naturally suggests a simplicial
viewpoint, regarding a category as a simplicial set via its nerve. Ler-
oux’s theory can be formulated in terms of simplicial sets, and many
of the arguments then rely on certain simple pullback conditions, the
first being the Segal condition which characterises categories among
simplicial sets.

The fact that combinatorial objects typically have symmetries prompted
the upgrade from sets to groupoids, in fact a substantial conceptual
simplification [23]. This upgrade is straightforward, as long as the in-
volved notions are taken in a correct homotopy sense: bijections of sets
are replaced by equivalences of groupoids; the slices playing the role
of vector spaces are homotopy slices, the pullbacks and fibres involved
in the functors are homotopy pullbacks and homotopy fibres, and the
sums are homotopy sums (i.e. colimits indexed by groupoids, just as
classical sums are colimits indexed by sets). The passage to numbers
and incidence algebras in the classical sense now goes via homotopy
cardinality of groupoids. In this setting one may as well abandon also
the strict notion of simplicial object in favour of a pseudo-functorial
analogue. For example, the classifying space of (B,+, 0), the monoidal
groupoid of finite sets and bijections under disjoint union, is actually
only a pseudofunctor B : ∆op → Grpd. This level of abstraction
allows us to state for example that the incidence algebra of B is the
category of species with the Cauchy product (suggested as an exercise
by Lawvere and Menni [43]).

While it is doable to handle all the 2-category theory involved to
deal with groupoids, pseudo-functors, pseudo-natural isomorphisms,
and so on, much conceptual clarity is obtained by passing immediately
to ∞-groupoids: thanks to the monumental effort of Joyal [32], [33],
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Lurie [49] and others, ∞-groupoids can now be handled efficiently, and
at least at the elementary level we work on where all that is needed
is some basic knowledge about (homotopy) pullbacks and (homotopy)
sums, everything looks very much like the category of sets. So we work
throughout with certain simplicial ∞-groupoids. Weak categories in
∞-groupoids are precisely Rezk complete Segal spaces [60]. Our the-
ory at this level says that for any Rezk complete Segal category there is
a natural incidence coalgebra defined with coefficients in∞-groupoids,
and that the objective sign-free Möbius inversion principle holds. To
extract numerical coalgebras from this, some homotopy finiteness con-
ditions must be imposed, and the passage to numbers is then via ho-
motopy cardinality.

The final abstraction step, which becomes the starting point for the
paper, is to notice that in fact neither the Segal condition nor the Rezk
condition is needed in full in order to get a (co)associative (co)algebra
and a Möbius inversion principle. Coassociativity follows from (in fact
is essentially equivalent to) the decomposition space axiom (see 1.3 for
the axiom, and the discussion at the beginning of Section 2 for its
derivation from coassociativity): it is a simplicial ∞-groupoid sending
generic/free pushout squares in ∆ to pullbacks. Whereas the Segal
condition is the expression of the ability to compose morphisms, the
new condition is about the ability to decompose, which of course in
general is easier to achieve than composability. In order to get the
Möbius inversion principle (with coefficients in ∞-groupoids), a com-
pleteness condition is needed, but it is weaker than the Rezk axiom: it
is enough that s0 : X0 → X1 is a monomorphism. Such simplicial ∞-
groupoids we call complete decomposition spaces. Every Rezk complete
Segal space is a complete decomposition space.

It is likely that all incidence (co)algebras can be realised directly
(without imposing a reduction) as incidence (co)algebras of (complete)
decomposition spaces. The decomposition space is found by analysing
the reduction step. For example, Dür realises the q-binomial coalgebra
as the reduced incidence coalgebra of the category of finite-dimensional
vector spaces over a finite field and linear injections, by imposing the
equivalence relation identifying two linear injections if their quotients
are isomorphic. Trying to realise the reduced incidence coalgebra di-
rectly as a decomposition space immediately leads to the Waldhausen
S-construction, which is a general class of examples: we show that
for any abelian category or stable ∞-category, the Waldhausen S-
construction is a decomposition space (which is not Segal). Under
the appropriate finiteness conditions, the resulting incidence algebras
contain the (derived) Hall algebras.

As another example we show that the Connes–Kreimer bialgebra is
directly the incidence coalgebra of a decomposition space of combinato-
rial forests, without the need of reductions. This decomposition space
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is not a Segal space. In fact we fit this example into a general class
of examples of decomposition spaces, which includes also all Schmitt
coalgebras of restriction species [64]. We introduce the notion of di-
rected restriction species, a class of decomposition spaces that includes
the Connes-Kreimer bialgebra of trees as well as related constructions
with directed graphs.

The appropriate notion of morphism between decomposition spaces
is that of conservative ULF functor. These induce coalgebra homo-
morphisms. Many relationships between incidence coalgebras, and in
particular many of the reductions that play a central role in the classi-
cal theory (from Rota and Dür [17] to Schmitt [65]), are induced from
conservative ULF functors. The simplicial viewpoint taken in this work
reveals furthermore that most of these conservative ULF functors are
actually instances of the notion of decalage, which goes back to Il-
lusie [28]. Decalage is in fact an important ingredient in the theory
to relate decomposition spaces to Segal spaces: we observe that the
decalage of a decomposition space is a Segal space.

Our final example of a decomposition space constitutes our main
theorem. Lawvere showed in the 1980s that there is a Hopf algebra of
Möbius intervals which contains the universal Möbius function. The
first published account is by Lawvere–Menni [43], where the objective
method is first explored. More precisely, this Hopf algebra is obtained
from the collection of all iso-classes of Möbius intervals, and features
a canonical coalgebra homomorphism from any incidence coalgebra of
a Möbius category X , defined by sending an arrow in X to its factori-
sation interval. Although this Hopf algebra is universal for incidence
coalgebras of Möbius categories, it is not itself the incidence coalgebra
of a Möbius category.

We show that it is a decomposition space. In fact, in order for
this to work smoothly (and obtain the correct universal properties),
we are forced now to work in ∞-groupoids — this is an important
motivation for this abstraction step. We construct the decomposition
space of all intervals, and establish that it is universal for decomposition
spaces. This involves constructing homotopy-meaningful intervals from
any given simplex in any given decomposition space. The main tools
here are the universal property of pullbacks and certain factorisation
systems on various∞-categories related to decomposition spaces. The
main factorisation system, the wide/cartesian factorisation system on
the ∞-category of intervals, generalises the generic/free factorisation
system on ∆ which was the corner stone for our theory of decomposition
spaces.

Throughout we have strived for deriving all results from elementary
principles, such as pullbacks, factorisation systems and other univer-
sal constructions. It is also characteristic for our approach that we
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are able to reduce many technical arguments to simplicial combina-
torics. The main notions are formulated in terms of the generic/free
factorisation system in ∆. To establish coassociativity we explore also
the algebraist’s Delta ∆ (including the empty ordinal) and establish
and exploit a universal property of its twisted arrow category. As a
general method for establishing functoriality in free maps, we study a
certain category ∇ of convex correspondences in ∆. Finally, in order to
construct the universal decomposition space of intervals, we study the
category of finite strict intervals, yet another variation of the simplex
category, related to it by an adjunction. These ‘simplicial preliminaries’
are likely to have applications also outside the theory of decomposition
spaces.

Related work: 2-Segal spaces of Dyckerhoff and Kapranov

The notion of decomposition space was arrived at independently by
Dyckerhoff and Kapranov [19]: a decomposition space is essentially
the same thing as they call a unital 2-Segal space. We hasten to give
them full credit for having arrived at the notion first. Unaware of their
work, we arrived at the same notion from a very different path, and
the theory we have developed for it is mostly orthogonal to theirs.

The definitions are different in appearance: the definition of decom-
position space refers to preservation of certain pullbacks, whereas the
definition of 2-Segal space (reproduced in 1.3.1 below) refers to triangu-
lations of convex polygons. The coincidence of the notions was noticed
by Mathieu Anel because two of the basic results are the same: specif-
ically, the characterisation in terms of decalage and Segal spaces (our
Theorem 1.5.5) and the result that the Waldhausen S-construction of a
stable ∞-category is a decomposition space (our Theorem 4.6.9) were
obtained independently (and first) in [19].

We were motivated by rather elementary aspects of combinatorics
and quantum field theory, and our examples are all drawn from inci-
dence algebras and Möbius inversion, whereas Dyckerhoff and Kapra-
nov were motivated by representation theory, geometry, and homologi-
cal algebra, and develop a theory with a much vaster range of examples
in mind: in addition to Hall algebras and Hecke algebras they find cyclic
bar construction, mapping class groups and surface geometry (see also
[20] and [18]), construct a Quillen model structure and relate to top-
ics of interest in higher category theory such as ∞-2-categories and
operads.

In the end we think our contribution is just a little corner of a vast
theory, but an important little corner, and we hope that our viewpoints
and insights will prove useful also for the rest of the theory.
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Related work on Möbius categories

Where incidence algebras and Möbius inversion are concerned, our
work descends from Leroux et al. [45], [13], [46], Dür [17] and Lawvere-
Menni [43]. There is a different notion of Möbius category, due to
Haigh [26]. The two notions have been compared, and to some extent
unified, by Leinster [44], who calls Leroux’s Möbius inversion fine and
Haigh’s coarse (as it only depends on the underlying graph of the cat-
egory). We should mention also the K-theoretic Möbius inversion for
quasi-finite EI categories of Lück and collaborators [48], [22].

Summary by section

We proceed to summarise our results, section for section.

We begin in Section 0 with a minimal review of some elementary
notions from the theory of ∞-categories. This is hardly more than a
glossary, but it is our contention that it should be enough to render
the paper accessible also to readers without prior experience with ∞-
categories.

In Section 1, after a few preliminaries on simplicial objects and Se-
gal spaces, we introduce the main notion of this work, decomposition
spaces:

Definition. A simplicial space X : ∆op → Grpd is called a decomposi-
tion space when it takes generic/free pushouts in ∆ to pullbacks.

We give a few equivalent pullback characterisations, and observe that
every Segal space is a decomposition space. The relevant notion of
morphism is that of conservative ULF functor (unique lifting of fac-
torisations):

Definition. A simplicial map is called ULF if it is cartesian on generic
face maps, and it is called conservative if cartesian on degeneracy maps.
We write cULF for conservative and ULF.

After some variations, we come to decalage, and establish the following
important relationship between Segal spaces and decalage:

Theorem 1.5.5. A simplicial space X is a decomposition space if
and only if both Dec⊤(X) and Dec⊥(X) are Segal spaces, and the two
comparison maps back to X are cULF.

We also introduce the notion of monoidal decomposition space, as a
monoid object in the monoidal ∞-category of decomposition spaces
and cULF maps.

In Section 2 we establish that decomposition spaces induce coalge-
bras (with coefficients in ∞-groupoids), and that cULF maps induce
coalgebra homomorphisms. We first explain how the decomposition
space axioms follow directly from a naive notion of coassociativity. To
establish coassociativity formally, we first need some more simplicial



DECOMPOSITION SPACES 9

preliminaries. In particular we introduce the twisted arrow category D

of the category of finite ordinals, which is monoidal under external sum.
We show that simplicial objects in a cartesian monoidal category can
be characterised as monoidal functors on D , and characterise decompo-
sition spaces as those simplicial spaces whose extension to D preserves
certain pullback squares. The coalgebra associated to a decomposition
space X is the slice∞-categoryGrpd/X1

, and its comultiplication map
is given by the span

X1
d1← X2

(d2,d0)
→ X1 ×X1.

The homotopy coassociativity of the incidence coalgebra is established
in terms of the monoidal structure on D . The incidence algebra of a
monoidal decomposition space is naturally a bialgebra.

For any decomposition space, the linear dual of the comultiplication
yields a convolution product in the incidence algebra. This contains,
in particular, the zeta functor ζ , given by the span X1

=
← X1 → 1,

and the counit ǫ, given by X1 ← X0 → 1. In order to establish the
Möbius inversion principle for the zeta functor, we need the following
important condition.

Definition. A decomposition space X is complete when s0 : X0 → X1

is a monomorphism.

This condition together with the decomposition space axiom ensures
that the notion of nondegenerate simplices is well-behaved. Let ~Xr ⊂
Xr denote the subspace of nondegenerate simplices, and consider the
span Φr : X1 ← ~Xr → 1. We can now establish the Möbius inversion
principle (with hopefully self-explanatory notation):

Theorem 2.3.14. For a complete decomposition space,

ζ ∗ Φeven = ǫ + ζ ∗ Φodd,

= Φeven ∗ ζ = ǫ + Φodd ∗ ζ.

In Section 3 we impose finiteness conditions in order to be able to
take homotopy cardinality and obtain results at the numerical level of
Q-algebras.

Definition. A decomposition spaceX is called locally finite (3.1.1) when
X1 is locally finite and s0 : X0 → X1 and d1 : X2 → X1 are finite maps.
It is called Möbius (3.2.1) when

∑
r
~Xr → X1 is a finite map.

The condition ‘locally finite’ extends the notion of locally finite for
posets. The condition ensures that the coalgebra structure descends to
finite-groupoid coefficients, and hence, via homotopy cardinality, to Q-
algebras. In Section 3.1 we calculate the section coefficients (structure
constants for the (co)multiplication) in some easy cases. The Möbius
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condition is needed for the general Möbius inversion formula to de-
scend to finite-groupoid coefficients and Q-coefficients. We also note
the following:

Proposition 3.2.2. If a Möbius decomposition space is a Segal space,
then it is Rezk complete.

For a Möbius decomposition space, taking homotopy cardinality yields
the following formula for the Möbius function (convolution inverse to
the zeta function):

|µ| = |Φeven| − |Φodd| .

In Section 4 we give examples. The first batch of examples, similar to
the binomial posets of Doubilet-Rota-Stanley [16] are straightforward,
but serve to illustrate three points: the incidence algebra in question is
realised directly from a decomposition space, without a reduction step;
at the objective level, the convolution algebra is a monoidal structure
of species (specifically: the usual Cauchy product of species, the shuffle
product of L-species, the Dirichlet product of arithmetic species, the
Joyal-Street external product of q-species, and the Morrison ‘Cauchy’
product of q-species). In each of these cases, a power series represen-
tation results from taking cardinality.

The next class of examples include the Faà di Bruno bialgebra, the
Butcher-Connes-Kreimer bialgebra of trees, with several variations, and
similar structures on directed graphs (cf. Manchon [54] and Manin [56]).
In Subsection 4.6 we come to an important class of examples, show-
ing that the Waldhausen S-construction on an abelian category, or a
stable ∞-category, is a decomposition space. We finish the section
by computing the Möbius function in a few cases, and commenting
on certain cancellations that occur in the process of taking cardinality,
substantiating that these cancellations are not possible at the objective
level (this is related to the distinction between bijections and natural
bijections).

In Section 5 we show that Schmitt coalgebras of restriction species
[64] (such as graphs, matroids, posets, etc.) come from decomposition
spaces. We also introduce a new notion of directed restriction species.
Whereas ordinary restriction species are presheaves of the category of
finite sets and injections, directed restriction species are presheaves
on the category of finite posets and convex inclusions. Examples cov-
ered by this notion are the Butcher-Connes-Kreimer bialgebra and the
Manchon-Manin bialgebra of directed graphs. Both ordinary and di-
rected restriction species are shown to be examples of a construction
of decomposition spaces from what we call sesquicartesian fibrations,
certain cocartesian fibrations over the category of finite ordinals that
are also cartesian over convex maps.
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In Section 6 we come to our main theorem, constructing a ‘universal
decomposition space’, the decomposition space of intervals. The idea
(due to Lawvere) is that to an arrow there is associated its category
of factorisations, which is an interval. To set this up, we exploit fac-
torisation systems and adjunctions derived from them, and start out in
Subsection 6.1 with some general results about factorisation systems.
Specifically we describe a situation in which a factorisation system lifts
across an adjunction to produce a new factorisation system, and hence
a new adjunction. Before coming to intervals in 6.3, we need flanked de-
composition spaces (6.2): these are certain presheaves on the category
Ξ of nonempty finite linear orders with a top and a bottom element.
The ∞-category of flanked decomposition spaces features the impor-
tant wide/cartesian factorisation system, where ‘wide’ is to be thought
of as endpoint-preserving, and cartesian is like ‘distance-preserving’.
There is also the basic adjunction between decomposition spaces and
flanked decomposition spaces, which in fact is the double dec construc-
tion. Intervals are first defined as certain flanked decomposition spaces
which are contractible in degree −1 (this condition encodes an initial
and a terminal object) (6.3.4), and via the basic adjunction we ob-
tain the definitive ∞-category of intervals as a full subcategory of the
∞-category of complete decomposition spaces (6.4.1); it features the
factorisation system wide/cULF (6.4.2), which extends the generic/free
factorisation system on ∆ (6.4.3). The factorisation-interval construc-
tion can now finally be described (Theorem 6.5.1) as a coreflection from
complete decomposition spaces to intervals (or more precisely, on cer-
tain coslice categories). We show that every interval is a Segal space
(6.2.17). The universal decomposition space U of intervals can finally
(6.4.5) be defined very formally as a natural right fibration over ∆
whose total space has objects wide interval maps from an ordinal. In
plain words, U consists of subdivided intervals.

Theorem 6.4.7. U is a complete decomposition space.

The factorisation-interval construction yields a canonical functor X →
U , called the classifying map.

Theorem 6.5.2. The classifying map is cULF.

We conjecture that U is the terminal object in the ∞-category of
complete decomposition spaces and cULF maps, and prove the follow-
ing partial result:

Theorem 6.5.5. For each complete decomposition space X, the space
MapcDcmpcULF(X,U) is connected.

We finish in Subsection 6.6 by imposing the Möbius condition, ob-
taining the corresponding finite results. AMöbius interval is an interval
which is Möbius as a decomposition space. We show that every Möbius
interval is a Rezk complete Segal space (6.6.6).
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Our main theorem in this section is now:

Theorem 6.6.11. The decomposition space of all Möbius intervals is
Möbius.

It follows that it admits a Möbius inversion formula with coefficients
in finite ∞-groupoids or in Q, and since every Möbius decomposition
space admits a canonical cULF functor to it, we find that Möbius
inversion in every incidence algebra (of a Möbius decomposition space)
is induced from this master formula.

In the Appendix we develop what we need about homotopy linear
algebra and homotopy cardinality. For the sake of flexibility (regard-
ing what notions of finiteness the future will bring) we first work out
the notions without finiteness conditions. The role of vector spaces is
played by groupoid slices

Grpd/S,

shown to be the homotopy-sum completion of S, and the role of linear
maps is played by linear functors, i.e. given by pullback and lower-
shriek along spans. We explain how to interpret scalar multiplication
and sums (together: linear combinations), and how to expand these
operations in coordinates. The canonical basis is given by the ‘names’,
functors pxq : 1 → S. Groupoid slices and linear functors assemble
into an ∞-category, which is monoidal closed. The tensor product is
given by

Grpd/S ⊗Grpd/T = Grpd/S×T .

In Subsection A.2 we get into the subtleties of finiteness conditions.
An ∞-groupoid B is locally finite if at each base point b the homotopy
groups πi(B, b) are finite for i ≥ 1 and are trivial for i sufficiently large.
It is called finite if furthermore it has only finitely many components.
The cardinality of a finite ∞-groupoid is the sum (over the connected
components) of the alternating product of the homotopy groups. We
work out the basic properties of this notion.

For the ∞-groupoid version of linear algebra, we are strict about
duality issues, developed in the setting of vector spaces and profinite-
dimensional vector spaces (a brief review is in A.3.1). The role of vector
spaces is played by finite-groupoid slices grpd/S (where S is a locally
finite∞-groupoid), while the role of profinite-dimensional vector spaces
is played by finite-presheaf categories grpdS. Linear maps are given

by spans of finite type, meaning S
p
← M

q
→ T in which p is a finite

map. Prolinear maps are given by spans of profinite type, where q is
a finite map. In the end we have two ∞-categories: lin−→ whose objects

are the finite-groupoid slices grpd/S and whose mapping spaces are∞-
groupoids of finite-type spans, and the ∞-category lin←− whose objects

are finite-presheaf categories grpdS, and whose mapping spaces are
∞-groupoids of profinite-type spans.
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Finally we follow Baez-Hoffnung-Walker [4] in defining cardinality in
terms of a ‘meta cardinality’ functor, which induces cardinality notions
in all slices. In our setting, this amounts to a functor

|| || : lin−→ −→ Vect

grpd/S 7−→ Qπ0S

and a dual functor

|| || : lin←− −→ vect←−−
grpdS 7−→ Qπ0S.

For each fixed ∞-groupoid S, this gives an individual notion of car-
dinality | | : grpd/S → Qπ0S (and dually | | : grpdS → Qπ0S), since
vectors are just linear maps from the ground field.

The vector space Qπ0S is spanned by the elements δs := |psq|. Dually,
the profinite-dimensional vector space Qπ0S is spanned by the char-

acteristic functions δt =
|ht|

|Ω(S,t)|
(the cardinality of the representable

functors divided by the cardinality of the loop space).
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0. Preliminaries on ∞-groupoids and ∞-categories

0.0.1. Groupoids and ∞-groupoids. Although most of our mo-
tivating examples can be naturally cast in the setting of 1-groupoids,
we have chosen to work in the setting of ∞-groupoids. This is on one
hand the natural generality of the theory, and on the other hand a
considerable conceptual simplification: thanks to the monumental ef-
fort of Joyal [32], [33] and Lurie [49], the theory of ∞-categories has
now reached a stage where it is just as workable (if not more) as the
theory of 1-groupoids! The philosophy is that, modulo a few homotopy
caveats, one is allowed to think as if working in the category of sets. A
recent forceful vindication of this philosophy is Homotopy Type The-
ory [58], in which a syntax that resembles set theory is shown to be a
powerful language for general homotopy types.

A recurrent theme in the present work is to upgrade combinatorial
constructions from sets to ∞-groupoids. To this end the first step
consists in understanding the construction in abstract terms, often in
terms of pullbacks and sums, and then the second step consists in



14 IMMA GÁLVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

copying over the construction to the∞-setting. The∞-category theory
needed will be accordingly elementary, and it is our contention that it
should be feasible to read this work without prior experience with ∞-
groupoids or ∞-categories, simply by substituting the word ‘set’ for
the word ‘∞-groupoid’. Even at the 0-level, our theory contributes
interesting insight, revealing many constructions in the classical theory
to be governed by very general principles proven useful also in other
areas of mathematics.

The following short review of some basic aspects of ∞-categories
should suffice for reading this paper, except the final Section 6, where
some slightly more advanced machinery is used.

0.0.2. From posets to Rezk categories. A few remarks may be
in order to relate these viewpoints with classical combinatorics. A 1-
groupoid is the same thing as an ordinary groupoid, and a 0-groupoid
is the same thing as a set. A (−1)-groupoid is the same thing as a
truth value: up to equivalence there exist only two (−1)-groupoids,
namely the contractible groupoid (a point) and the empty groupoid.
A poset is essentially the same thing as a category in which all the
mapping spaces are (−1)-groupoids. An ordinary category is a category
in which all the mapping spaces are 0-groupoids. Hence the theory of
incidence algebras of posets of Rota and collaborators can be seen as the
(−1)-level of the theory. Cartier–Foata theory and Leroux theory take
place at the 0-level. We shall see that in a sense the natural setting
for combinatorics is the 1-level, since this level naturally takes into
account that combinatorial structures can have symmetries. (From this
viewpoint, it looks as if the classical theory compensates for working
one level below the natural one by introducing reductions.) A Rezk
category is a category whose mapping spaces are ∞-groupoids, and
this is the level of generality at which we work.

0.0.3. ∞-categories and ∞-groupoids. By ∞-category we mean
quasi-category [32]. These are simplicial sets satisfying the weak Kan
condition: inner horns admit a filler. We refer to Joyal [32], [33] and
Lurie [49]. The definition does not actually matter much in this work.
The main point, Joyal’s great insight, is that category theory can be
generalised to quasi-categories, and that the results look the same,
although to bootstrap the theory very different techniques are required.
There are other implementations of ∞-categories, such as complete
Segal spaces, see Bergner [8] for a survey. We will only use results that
hold in all implementations, and for this reason we say ∞-category
instead of referring explicitly to quasi-categories.

An∞-groupoid is an∞-category in which all morphisms are invert-
ible. We often say space instead of ∞-groupoid, as they are a combi-
natorial substitute for topological spaces up to homotopy; for example,
to each object x in an ∞-groupoid X , there are associated homotopy
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groups πn(X, x) for n > 0. In terms of quasi-categories, ∞-groupoids
are precisely Kan complexes, i.e. simplicial sets in which every horn,
not just the inner ones, admits a filler.
∞-groupoids play the role analogous to sets in classical category

theory. In particular, for any two objects x, y in an ∞-category C

there is (instead of a hom set) a mapping space MapC (x, y) which
is an ∞-groupoid. ∞-categories form a (large) ∞-category denoted
Cat. ∞-groupoids form a (large)∞-category denotedGrpd; it can be
described explicitly as the coherent nerve of the (simplicially enriched)
category of Kan complexes. Given two ∞-categories D , C , there is a
functor ∞-category Fun(D ,C ). Since D and C are objects in the ∞-
category Cat we also have the ∞-groupoid MapCat(D ,C ), which can
also be described as the maximal sub-∞-groupoid inside Fun(D ,C ).
When interpreting D and C as quasi-categories, and hence simplicial
sets, this is just the simplicial mapping space.

0.0.4. Defining ∞-categories and sub-∞-categories. While in
ordinary category theory one can define a category by saying what
the objects and the arrows are (and how they compose), this from-
scratch approach is more difficult for ∞-categories, as one would have
to specify the simplicies in all dimensions and verify the filler condition
(that is, describe the∞-category as a quasi-category). In practice, ∞-
categories are constructed from existing ones by general constructions
that automatically guarantee that the result is again an ∞-category,
although the construction typically uses universal properties in such a
way that the resulting ∞-category is only defined up to equivalence.
To specify a sub-∞-category of an ∞-category C , it suffices to specify
a subcategory of the homotopy category of C (i.e. the category whose
hom sets are π0 of the mapping spaces of C ), and then pull back along
the components functor. What this amounts to in practice is to specify
the objects (closed under equivalences) and specifying for each pair of
objects x, y a full sub-∞-groupoid of the mapping space MapC (x, y),
also closed under equivalences, and closed under composition.

0.0.5. Monomorphisms. A map of ∞-groupoids f : X → Y is
a monomorphism when its fibres are (−1)-groupoids (i.e. are either
empty or contractible). In other words, it is fully faithful as a functor:
MapX(a, b) → MapY (fa, fb) is an equivalence. In some respects, this
notion behaves like for sets: for example, if f is a monomorphism, then
there is a complement Z := Y rX such that Y ≃ X + Z. Hence a
monomorphism is essentially an equivalence from X onto some con-
nected components of Y . On the other hand, a crucial difference from
sets to ∞-groupoids is that diagonal maps of ∞-groupoids are not in
general monomorphisms. In fact X → X × X is a monomorphism if
and only if X is discrete (i.e. equivalent to a set).
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0.0.6. Diagram categories and presheaves. Every 1-category
is also a quasi-category via its nerve. In particular we have the ∞-
category ∆ of non-empty finite ordinals, and for each n ≥ 0 the ∞-
category ∆[n] which is the nerve of the linearly ordered set {0 ≤ 1 ≤
· · · ≤ n}. As an important example of a functor∞-category, for a given
∞-category I, we have the ∞-category of presheaves Fun(Iop,Grpd),
and there is a Yoneda lemma that works as in the case of ordinary
categories. In particular we have the ∞-category Fun(∆op,Grpd) of
simplicial∞-groupoids, which will be one of our main objects of study.

Since arrows in an∞-category do not compose on the nose (one can
talk about ‘a’ composite, not ‘the’ composite), the 1-categorical notion
of commutative diagram does not make sense. Commutative triangle
in an ∞-category C means instead ‘object in the functor ∞-category
Fun(∆[2],C )’: the 2-dimensional face of ∆[2] is mapped to a 2-cell in C

mediating between the composite of the 01 and 12 edges and the long
edge 02. Similarly, ‘commutative square’ means object in the functor
∞-category Fun(∆[1]×∆[1],C ). In general, ‘commutative diagram of
shape I’ means object in Fun(I,C ), so when we say for example ‘sim-
plicial∞-groupoid’ it is not implied that the usual simplicial identities
hold on the nose.

0.0.7. Adjoints, limits and colimits. There are notions of adjoint
functors, limits and colimits, which behave in the same way as these
notions in ordinary category theory, and are characterised by universal
properties up to equivalence. For example, the singleton set ∗ (also
denoted 1), or any contractible ∞-groupoid is a terminal object in
Grpd.

0.0.8. Pullbacks and fibres. Central to this work is the notion of
pullback: given two morphisms of ∞-groupoids X → S ← Y , there is
a square

X ×S Y
❴
✤

//

��

Y

��
X // S

called the pullback, an example of a limit. It is defined via a universal
property, as a terminal object in a certain auxiliary ∞-category con-
sisting of squares with sides X → S ← Y . All formal properties of
pullbacks of sets carry over to ∞-groupoids.

Given a morphism of ∞-groupoids, p : X → S, and an object s ∈ S
(which in terms of quasi-categories can be thought of as a zero-simplex

of S, but which more abstractly is encoded as a map ∗
s
→ S from the

terminal ∞-groupoid ∗ = ∆[0]), the fibre of p over s is simply the
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pullback

Xs
❴
✤

//

��

X

p

��
∗ s

// S

The following Lemma is used many times in our work. It is a straight-
forward extension of a familiar result in 1-category theory:

Lemma. 0.0.9. If in a prism diagram of ∞-groupoids

·

��

// ·

��

// ·

��
· // · // ·

the outer rectangle and the right-hand square are pullbacks, then the
left-hand square is a pullback.

A few remarks are in order: note that we talk about a prism, i.e. a
∆[1]×∆[2]-diagram. Although we have only drawn two of the squares
of the prism, there is a third, whose horizontal sides are composites
of the two indicated arrows. The triangles of the prism are not drawn
either, because they are the fillers that exist by the axioms of quasi-
categories. The proof follows the proof in the classical case, except
that instead of saying ‘given two arrows such and such, there exists
a unique arrow making the diagram commute, etc.’, one has to argue
with equivalences of mapping spaces (or slice ∞-categories). See for
example Lurie [49], Lemma 4.4.2.1 (for the dual case of pushouts).

0.0.10. Homotopy sums. In ordinary category theory, a colimit
indexed by a discrete category (that is, a set) is the same thing as a
sum (coproduct). For ∞-categories, the role of sets is played by ∞-
groupoids. A colimit indexed by an ∞-groupoid is called a homotopy
sum. In the case of 1-groupoids, these sums are ordinary sums weighted
by inverses of symmetry factors. Their importance was stressed in [23]:
by dealing with homotopy sums instead of ordinary sums, the formulae
start to look very much like in the case of sets. For example, given a
map of ∞-groupoids X → S, we have that X is the homotopy sum of
its fibres.

0.0.11. Slice categories and polynomial functors. Maps of ∞-
groupoids with codomain S form the objects of a slice ∞-category
Grpd/S, which behaves very much like slice categories in ordinary cat-
egory theory. For example, for the terminal object ∗ we haveGrpd/∗ ≃
Grpd. Pullback along a morphism f : T → S defines an ∞-functor
f∗ : Grpd/S → Grpd/T . This functor is right adjoint to the functor
f! : Grpd/T → Grpd/S given by post-composing with f . (This con-
struction requires some care: as composition is not canonically defined,
one has to choose composites. One can check that different choices yield
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equivalent functors.) The following Beck-Chevalley rule (push-pull for-
mula) [24] holds for ∞-groupoids: given a pullback square

·
❴
✤

f //

p

��

·

q

��
· g

// ·

there is a canonical equivalence of functors

(1) p! ◦ f∗ ≃ g∗ ◦ q!.

0.0.12. Families. Amap of∞-groupoidsX → S can be interpreted as
a family of∞-groupoids parametrised by S, namely the fibres Xs. Just
as for sets, the same family can also be interpreted as a presheaf S →
Grpd. Precisely, for each ∞-groupoid S, we have the fundamental
equivalence

Grpd/S
∼→ Fun(S,Grpd),

which takes a family X → S to the functor sending s 7→ Xs. In the
other direction, given a functor F : S → Grpd, its colimit is the total
space of a family X → S.

0.0.13. Symmetric monoidal ∞-categories. There is a notion of
symmetric monoidal ∞-category, but it is technically more involved
than the 1-category case, since in general higher coherence data has to
be specified beyond the 1-categorical associator and Mac Lane penta-
gon condition. This theory has been developed in detail by Lurie [51,
Ch.2], subsumed in the general theory of ∞-operads. In the present
work, a few monoidal structures play an important role, but since they
are directly induced by cartesian product, we have preferred to deal
with them in an informal (and possibly not completely rigorous) way,
with the same freedom as one deals with cartesian products in ordinary
category theory. In these specific cases the formal treatment should not
present any technical difficulties.

1. Decomposition spaces

1.1. Simplicial preliminaries

Our work relies heavily on simplicial machinery. We briefly review
the notions needed, to establish conventions and notation.

1.1.1. The simplex category (the topologist’s Delta). Recall
that the ‘simplex category’ ∆ is the category whose objects are the
nonempty finite ordinals

[k] := {0, 1, 2, . . . , k},

and whose morphisms are the monotone maps. These are generated
by the coface maps di : [n−1]→ [n], which are the monotone injective
functions for which i ∈ [n] is not in the image, and codegeneracy maps
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si : [n + 1] → [n] which are monotone surjective functions for which
i ∈ [n] has a double preimage. We write d⊥ := d0 and d⊤ := dn for the
outer coface maps.

1.1.2. Generic and free maps. The category ∆ has a generic-free
factorisation system.1 A morphism of ∆ is termed generic, and written
g : [m] → \ [n] if it preserves end-points, g(0) = 0 and g(m) = n. A
morphism is termed free, and written f : [m] ֌ [n] if it is distance
preserving, f(i+1) = f(i)+1 for 0 ≤ i ≤ m−1. The generic maps are
generated by the codegeneracy maps and the inner coface maps, and
the free maps are generated by the outer coface maps.

The amalgamated ordinal sum over [0] of two objects [m] and [n],
denoted [m]± [n], is given by the pushout of free maps

(2)

[0] //
(d⊤)n

//

��
(d⊥)m

��

[n]
��
(d⊥)m

��
[m] //

(d⊤)n
// [m]± [n] = [m+ n]

❴✤

This operation is not functorial on all maps in ∆, but on the sub-
category ∆gen of generic maps it is functorial and defines a monoidal
structure on ∆gen (dual to ordinal sum (cf. Lemma 2.1.2)).

The free maps f : [n] ֌ [m] are precisely the maps that can be
written

f : [n] ֌ [a]± [n]± [b].

Every generic map with source [a]± [n]± [b] splits as

( [a]
g1 ✤// [a′] ) ± ( [n]

g ✤// [k] ) ± ( [b]
g2 ✤// [b′] )

With these observations we can be explicit about the generic-free
factorisation:

Lemma. 1.1.3. With notation as above, the generic-free factorisation
of a free map f followed by a generic map g1 ± g ± g2 is given by

(3)

[n] // f//

g

❴��

[a]± [n]± [b]

g1±g±g2
❴��

[k] // // [a′]± [k]± [b′]

1The notions of generic and free are general notions in category theory (see [69],
[70]; the notion goes back to [31]), and make sense for example whenever there is
a cartesian monad on a presheaf category C : in the Kleisli category, the free maps
are those from C , and the generic maps are those generated by the monad. In the
case at hand ∆ arises from the free-category monad on the category of directed
graphs: ∆ is the restriction of the Kleisli category to the subcategory of non-empty
linear graphs.
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1.1.4. Identity-extension squares. A square (3) in which g1 and g2
are identity maps is called an identity-extension square.

Lemma. 1.1.5. Generic and free maps admit pushout along each
other, and the resulting maps are again generic and free. In fact,
generic-free pushouts are precisely the identity extension squares.

[n] // //

❴��

[a]± [n]± [b]

❴��
[k] // // [a]± [k]± [b]

These pushouts are fundamental to this work. We will define de-
composition spaces to be simplicial spaces X : ∆op → Grpd that send
these pushouts to pullbacks.

The previous lemma has the following easy corollary.

Corollary. 1.1.6. Every codegeneracy map is a pushout (along a free
map) of s0 : [0] → [1], and every generic coface maps is a pushout
(along a free map) of d1 : [2]→ [1].

1.2. Segal spaces

1.2.1. Simplicial ∞-groupoids. Our main object of study will be
simplicial ∞-groupoids subject to various exactness conditions, all for-
mulated in terms of pullbacks. More precisely we work in the functor
∞-category

Fun(∆op,Grpd),

whose vertices are functors from the∞-category ∆op to the∞-category
Grpd. In particular, the simplicial identities for X : ∆op → Grpd are
not strictly commutative squares; rather they are ∆[1]×∆[1]-diagrams
inGrpd, hence come equipped with a homotopy between the two ways
around in the square. But this is precisely the setting for pullbacks.

Consider a simplicial ∞-groupoid X : ∆op → Grpd. We recall the
Segal maps

(∂0,1, . . . , ∂r−1,r) : Xr −→ X1 ×X0 · · · ×X0 X1 r ≥ 0.

where ∂k−1,k : Xr → X1 is induced by map [1] ֌ [r] sending 0,1 to
k − 1, k.

A Segal space is a simplicial ∞-groupoid satisfying the Segal condi-
tion, namely that the Segal maps should be equivalences.

Lemma. 1.2.2. The following conditions are equivalent, for any sim-
plicial ∞-groupoid X:

(1) X satisfies the Segal condition,

Xr
≃
−→ X1 ×X0 · · · ×X0 X1 r ≥ 0.
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(2) The following square is a pullback for all p, q ≥ r

Xp−r+q

dp+1
q−r

��

❴
✤

d0
p−r

// Xq

dr+1
q−r

��
Xp

d0
p−r

// Xr

(3) The following square is a pullback for all n > 0

Xn+1

d⊤
��

❴
✤

d⊥ // Xn

d⊤
��

Xn
d⊥

// Xn−1

(4) The following square is a pullback for all p, q ≥ 0

Xp+q

dp+1
q

��

❴
✤

d0
p

// Xq

d1
q

��
Xp

d0
p

// X0

Proof. It is straightforward to show that the Segal condition implies
(2). Now (3) and (4) are special cases of (2). Also (3) implies (2):
the pullback in (2) is a composite of pullbacks of the type given in
(3). Finally one shows inductively that (4) implies the Segal condition
(1). �

A map f : Y → X of simplicial spaces is cartesian on an arrow
[n]→ [k] in ∆ if the naturality square for f with respect to this arrow
is a pullback.

Lemma. 1.2.3. If f : Y → X is a map of simplicial spaces that is
cartesian on outer face maps, and if X is a Segal space, then Y is a
Segal space too.

1.2.4. Rezk completeness. Let J denote the ∞-groupoid generated
by one isomorphism 0→ 1; it can be seen as a combinatorial model of
the infinity sphere Ω∞S0. A Segal space X is Rezk complete when the
natural map (obtained by precomposing with J → ∗)

Map(∗, X)→ Map(J,X)

is an equivalence of ∞-groupoids. It means that the space of identity
arrows is equivalent to the space of equivalences. (See [60], [8] and
[37].) A Rezk complete Segal space is also called a Rezk category.
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1.2.5. Ordinary nerve. Let C be a small 1-category. The nerve of
C is the simplicial set

NC : ∆op −→ Set

[n] 7−→ Fun([n],C ),

where Fun([n],C ) is the set of strings of n composable arrows. Sub-
examples of this are given by any poset or any monoid. The simplicial
sets that arise like this are precisely those satisfying the Segal condition
(which is strict in this context). If each set is regarded as a discrete∞-
groupoid, NC is thus a Segal space. In general it is not Rezk complete,
since some object may have a nontrivial automorphism. As an example,
suppose C is a one-object groupoid (i.e. a group). Then inside (NC )1
the space of equivalences is the whole set (NC )1. But the degeneracy
map s0 : (NC )0 → (NC )1 is not an equivalence (unless the group is
trivial).

1.2.6. The fat nerve of an essentially small 1-category. In most
cases it is more interesting to consider the fat nerve, defined as the
simplicial groupoid

X : ∆op −→ Grpd

[k] 7−→ Map(∆[k],C ),

where Map(∆[k],C ) is the mapping space, defined as the maximal
subgroupoid of the functor category Fun(∆[k],C ). In other words,
(NC )n is the groupoid whose objects are strings of n composable arrows
in C and whose morphisms are connecting isos between such strings:

· //

∼

��

·

∼

��

// · //

∼

��

· · · // ·

∼

��
· // · // · // · · · // ·

It is straightforward to check the Segal condition, remembering that
the pullbacks involved are homotopy pullbacks. For instance, the pull-
back X1×X0X1 has as objects strings of ‘weakly composable’ arrows, in
the sense that the target of the first arrow is isomorphic to the source
of the second, and a comparison isomorphism is specified. The Segal
map X2 → X1×X0 X1 is the inclusion of the subgroupoid consisting of
strictly composable pairs. But any weakly composable pair is isomor-
phic to a strictly composable pair, and the comparison isomorphism is
unique, hence the inclusion X2 →֒ X1 ×X0 X1 is an equivalence. Fur-
thermore, the fat nerve is Rezk complete. Indeed, it is easy to see that
inside X1, the equivalences are the invertible arrows of C . But any
invertible arrow is equivalent to an identity arrow.

Note that if C is a category with no non-trivial isomorphisms (e.g. any
Möbius category in the sense of Leroux) then the fat nerve coincides
with the ordinary nerve, and if C is just equivalent to such a category
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then the fat nerve is level-wise equivalent to the ordinary nerve of any
skeleton of C .

1.2.7. Joyal-Tierney t! — the fat nerve of an ∞-category. The
fat nerve construction is just a special case of the general construction
t! of Joyal and Tierney [37], which is a functor from quasi-categories to
complete Segal spaces, meaning specifically certain simplicial objects in
the category of Kan complexes: given a quasi-category C , the complete
Segal space t!C is given by

∆op −→ Kan

[n] 7−→
[
[k] 7→ sSet(∆[n]×∆′[k],C )

]

where ∆′[k] denotes the groupoid freely generated by a string of k
invertible arrows. They show that t! constitutes in fact a (right) Quillen
equivalence between the simplicial sets with the Joyal model structure,
and bisimplicial sets with the Rezk model structure.

Taking a more invariant viewpoint, talking about ∞-groupoids ab-
stractly, the Joyal-Tierney t! functor associates to an ∞-category C

the Rezk complete Segal space

∆op −→ Grpd

[n] 7−→ Map(∆[n],C ).

1.2.8. Fat nerve of bicategories with only invertible 2-cells.
From a bicategory C with only invertible 2-cells one can get a complete
Segal bigroupoid by a construction analogous to the fat nerve. (In fact,
this can be viewed as the t! construction applied to the so-called Duskin
nerve of C .) The fat nerve of a bicategory C is the simplicial bigroupoid

∆op −→ 2Grpd

[n] 7−→ PsFun(∆[n],C ),

the 2-groupoid of normalised pseudofunctors.

1.2.9. Monoidal groupoids. Important examples of the previous
situation come from monoidal groupoids (M ,⊗, I). The fat nerve con-
struction applied to the classifying space BM yields in this case a
complete Segal bigroupoid, with zeroth space BM eq, the classifying
space of the full subcategory M eq spanned by the tensor-invertible
objects.

The fat nerve construction can be simplified considerably in case
M eq is contractible. This happens precisely when every tensor-invertible
object is isomorphic to the unit object I and I admits no non-trivial
automorphisms.



24 IMMA GÁLVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

Proposition. 1.2.10. If (M ,⊗, I) is a monoidal groupoid such that
M eq is contractible, then the simplicial bigroupoid given by the classi-
fying space is equivalent to the simplicial 1-groupoid

∆op −→ 1-Grpd

[n] 7−→ M ×M × · · · ×M =: M
n.

where the outer face maps project away an outer factor, the inner face
maps tensor together two adjacent factors, and the degeneracy maps
insert a neutral object.

We have omitted the proof, to avoid going into 2-category theory. (Note
that the simplicial 1-groupoid that we obtain is not strictly simplicial,
unless the monoidal structure is strict.)

Examples of monoidal groupoids satisfying the conditions of the
Proposition are the monoidal groupoid (FinSet,+, 0) of finite sets
and bijections or the monoidal groupoid (Vect,⊕, 0) of vector spaces
and linear isomorphisms under direct sum. In contrast, the monoidal
groupoid (Vect,⊗, k) of vector spaces and linear isomorphisms under
tensor product is not of this kind, as the unit object has many au-
tomorphisms. The assignment [n] 7→ Vect⊗n does constitute a Segal
1-groupoid, but it is not Rezk complete.

1.3. Decomposition spaces

Recall from Lemma 1.1.5 that generic and free maps in ∆ admit
pushouts along each other.

Definition. A decomposition space is a simplicial ∞-groupoid

X : ∆op → Grpd

such that the image of any pushout diagram in ∆ of a generic map g
along a free map f is a pullback of ∞-groupoids,

X




[p]
❴
✤

[m]
g′oo

[q]

f ′

OO

[n]g
oo

f

OO


 =

Xp

f ′∗

��

g′∗ //

❴
✤

Xm

f∗

��
Xq

g∗
// Xn.

Remark. 1.3.1. The notion of decomposition space can be seen as an
abstraction of coalgebra, cf. Section 2 below: it is precisely the condi-
tion required to obtain a coassociative comultiplication on Grpd/X1

.
The notion is equivalent to the notion of unital (combinatorial) 2-

Segal space introduced by Dyckerhoff and Kapranov [19] (their Defi-
nition 2.3.1, Definition 2.5.2, Definition 5.2.2, Remark 5.2.4). Briefly,
their definition goes as follows. For any triangulation T of a convex
polygon with n vertices, there is induced a simplicial subset ∆T ⊂ ∆[n].
A simplicial space X is called 2-Segal if, for every triangulation T of
every convex n-gon, the induced map Map(∆[n], X)→ Map(∆T , X) is
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a weak homotopy equivalence. Unitality is defined in terms of pullback
conditions involving degeneracy maps, similar to our (4) below. The
equivalence between decomposition spaces and unital 2-Segal spaces
follows from Proposition 2.3.2 of [19] which gives a pullback criterion
for the 2-Segal condition.

1.3.2. Alternative formulations of the pullback condition. To
verify the conditions of the definition, it will in fact be sufficient to
check a smaller collection of squares. On the other hand, the definition
will imply that many other squares of interest are pullbacks too. The
formulation in terms of generic and free maps is preferred both for
practical reasons and for its conceptual simplicity compared to the
smaller or larger collections of squares.

Recall from Lemma 1.1.5 that the generic-free pushouts used in the
definition are just the identity extension squares,

[n]
��

��

g ✤// [k]
��

��
[a]± [n]± [b]

id±g±id

✤// [a]± [k]± [b]

Such a square can be written as a vertical composite of squares in which
either a = 1 and b = 0, or vice-versa. In turn, since the generic map
g is a composite of inner face maps di : [m − 1] → [m] (0 < i < m)
and degeneracy maps sj : [m + 1] → [m], these squares are horizontal
composites of pushouts of a single generic di or sj along d⊥ or d⊤. Thus,
to check that X is a decomposition space, it is sufficient to check the
following special cases are pullbacks, for 0 < i < n:

X1+n

d⊥
��

❴
✤

d1+i // Xn

d⊥
��

Xn
di

// Xn−1,

Xn+1

d⊤
��

❴
✤

di // Xn

d⊤
��

Xn
di

// Xn−1,

(4)

X1+n

s1+j //

❴
✤

d⊥
��

X1+n+1

d⊥
��

Xn sj
// Xn+1,

Xn+1

d⊤
��

❴
✤

sj // Xn+1+1

d⊤
��

Xn sj
// Xn+1.

In fact, we can be more economic: instead of checking all 0 < i < n
it is enough to check all n ≥ 2 and some 0 < i < n, and instead of
checking all 0 ≤ j ≤ n it is enough to check the case j = n = 0.

Proposition. 1.3.3. A simplicial ∞-groupoid X is a decomposition
space if and only if the following diagrams are homotopy pullbacks for
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all n ≥ 2:

X1
s1 //

❴
✤

d⊥
��

X2

d⊥
��

X0 s0
// X1,

X1

d⊤
��

❴
✤

s0 // X2

d⊤
��

X0 s0
// X1.

and the following diagrams are homotopy pullbacks for some choice of
i = in, 0 < i < n, for each n ≥ 2:

X1+n

d⊥
��

❴
✤

d1+i // Xn

d⊥
��

Xn
di

// Xn−1,

Xn+1

d⊤
��

❴
✤

di // Xn

d⊤
��

Xn
di

// Xn−1,

Proof. To see the non-necessity of the other degeneracy cases, observe
that for n > 0, every degeneracy map sj : Xn → Xn+1 is the section of
an inner face map di (where i = j or i = j + 1). Now in the diagram

X1+n

s1+j //

d⊥
��

X1+n+1

d⊥
��

d1+i // X1+n

d⊥
��

Xn sj
// Xn+1

di

// Xn,

the horizontal composites are identities, so the outer rectangle is a
pullback, and the right-hand square is a pullback since it is one of cases
outer face with inner face. Hence the left-hand square, by Lemma 0.0.9,
is a pullback too. The case s0 : X0 → X1 is the only degeneracy map
that is not the section of an inner face map, so we cannot eliminate
the two cases involving this map. The non-necessity of the other inner-
face-map cases is the content of the following lemma. �

Lemma. 1.3.4. The following are equivalent for a simplicial ∞-
groupoid X.

(1) For each n ≥ 2, the following diagram is a pullback for all
0 < i < n:

X1+n

d⊥
��

❴
✤

d1+i // Xn

d⊥
��

Xn
di

// Xn−1,


resp.

Xn+1

d⊤
��

❴
✤

di // Xn

d⊤
��

Xn
di

// Xn−1,




(2) For each n ≥ 2, the above diagram is a pullback for some 0 <
i < n.
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(3) For each n ≥ 2, the following diagram is a pullback:

X1+n

d⊥
��

❴
✤

d2
n−1

// X2

d⊥
��

Xn
d1

n−1
// X1



resp.

Xn+1

d⊤
��

❴
✤

d1
n−1

// X2

d⊤
��

Xn
d1

n−1
// X1




Proof. The hypothesised pullback in (2) is a special case of that in (1),
and that in (3) is a horizontal composite of those in (2), since there is
a unique generic map [1] → [n] in ∆ for each n. The implication (3)
⇒ (1) follows by Lemma 0.0.9 and the commutativity for 0 < i < n of
the diagram

X1+n
❴
✤

d1+i //

d⊥
��

Xn
❴
✤

d2
n−1

//

d⊥
��

X2

d⊥
��

Xn
di

// Xn−1
d1

n−1
// X1

Similarly for the ‘resp.’ case. �

Proposition. 1.3.5. Any Segal space is a decomposition space.

Proof. Let X be Segal space. In the diagram (n ≥ 2)

Xn+1

d⊥
��

dn // Xn

d⊥
��

❴
✤

d⊤ // Xn−1

d⊥
��

Xn
dn−1

// Xn−1
d⊤

// Xn−2,

since the horizontal composites are equal to d⊤◦d⊤, both the outer rec-
tangle and the right-hand square are pullbacks by the Segal condition
(1.2.2 (3)). Hence the left-hand square is a pullback. This establishes
the third pullback condition in Proposition 1.3.3. In the diagram

X1

d⊥
��

s1 // X2

d⊥
��

❴
✤

d⊤ // X1

d⊥
��

X0 s0
// X1

d⊤

// X0,

since the horizontal composites are identities, the outer rectangle is a
pullback, and the right-hand square is a pullback by the Segal condi-
tion. Hence the left-hand square is a pullback, establishing the first
of the pullback conditions in Proposition 1.3.3. The remaining two
conditions of Proposition 1.3.3, those involving d⊤ instead of d⊥, are
obtained similarly by interchanging the roles of ⊥ and ⊤. �

Remark. 1.3.6. This result was also obtained by Dyckerhoff and
Kapranov [19] (Propositions 2.3.3, 2.5.3, and 5.2.6).
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Corollary 1.1.6 implies the following important property of decom-
position spaces.

Lemma. 1.3.7. In a decomposition space X, every generic face map
is a pullback of d1 : X2 → X1, and every degeneracy map is a pullback
of s0 : X0 → X1.

Thus, even though the spaces in degree ≥ 2 are not fibre products of
X1 as in a Segal space, the higher generic face maps and degeneracies
are determined by ‘unit’ and ‘composition’,

X0
s0 // X1 X2.

d1oo

In ∆op there are more pullbacks than those between generic and free.
Diagram (2) in 1.1.2 is a pullback in ∆op that is not preserved by all
decomposition spaces, though it is preserved by all Segal spaces. On
the other hand, certain other pullbacks in ∆op are preserved by general
decomposition spaces. We call them colloquially ‘bonus pullbacks’:

Lemma. 1.3.8. For a decomposition space X, the following squares
are pullbacks:

Xn+1
❴
✤

dj //

si
��

Xn

si
��

Xn+2
dj+1

// Xn+1

for all i < j, and

Xn+1
❴
✤

dj //

si+1

��

Xn

si
��

Xn+2
dj

// Xn+1

for all j ≤ i.

Proof. We treat the case i < j; for the other case, interchange the roles
of ⊤ and ⊥. The case where j = ⊤ is clear since d⊤ is free, so from
now on we assume that dj is inner. The i = 0 case,

Xn+1
❴
✤

dj //

s0
��

Xn

s0
��

Xn+2
dj+1

// Xn+1

is seen to be a pullback by noting that s0 is a section to the outer face
map d0, and applying the standard argument using Lemma 0.0.9. The
square in the general case is obtained by base-change along iterates
of d⊥ of the square in the i = 0 case, and therefore it is again a
pullback. �

Lemma. 1.3.9. For a decomposition space X, the following squares
are pullbacks for all i < j:

Xn
❴
✤

sj−1 //

si
��

Xn+1

si
��

Xn+1 sj
// Xn+2
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Proof. Just observe that sj is a section to dj+1, and apply the standard
argument: if dj+1 is an outer face map then the square is a basic
generic-free pullback; if dj+1 is inner, we can use instead the previous
lemma. �

1.4. Conservative ULF functors

Definition. A simplicial map F : Y → X is called ULF (unique lifting
of factorisations) if it is a cartesian natural transformation on generic
face maps of ∆. It is called conservative if it is cartesian on degeneracy
maps. It is called cULF if it is both cartesian and ULF.

Lemma. 1.4.1. For a simplicial map F : Y → X, the following are
equivalent.

(1) F is cartesian on all generic maps (i.e. cULF).
(2) F is cartesian on every inner face map and on every degeneracy

map.
(3) F is cartesian on every generic map of the form [1]→ [n].

Proof. That (1) implies (2) is trivial. The implication (2)⇒ (3) is easy
since the generic map [1]→ [n] factors as a sequence of inner face maps
(or is a degeneracy map if n = 0). For the implication (3) ⇒ (1), for
a general generic map [n] → [m] observe that we have unique [1] →
[n]→ [m] and since the ones starting in [1] have cartesian component,
also the map [n]→ [m] must have cartesian component. �

Lemma. 1.4.2. A simplicial map F : Y → X between decomposition
spaces is cULF if and only if it is cartesian on the generic maps [1]→
[2] and [1]→ [0],

Y1

��

Y2
oo

✤
❴

��
X1 X2

oo

Y0

��

//

❴
✤

Y1

��
X0

// X1.

Proof. Using Lemma 1.3.7, an exercise with pullbacks shows that F
being cartesian on s0 : [1]→ [0] and d1 : [1]→ [2] implies it is cartesian
on all other degeneracy and inner face maps. �

Remark. 1.4.3. The notion of cULF can be seen as an abstraction of
coalgebra homomorphism, cf. 2.2.6 below: ‘conservative’ corresponds
to unit preservation, ‘ULF’ corresponds to comultiplicativity.

In the special case where X and Y are fat nerves of 1-categories,
then the condition that the square

Y0

��

//

❴
✤

Y1

��
X0

// X1
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be a pullback is precisely the classical notion of conservative functor
(i.e. if f(a) is invertible then already a is invertible).

Similarly, the condition that the square

Y1

��

Y2
oo

✤
❴

��
X1 X2

oo

be a pullback is an up-to-isomorphism version of the classical notion
of ULF functor, implicit already in Content–Lemay–Leroux [13], and
perhaps made explicit first by Lawvere [42]; see Street [67] for the 2-
categorical notion. In the case of the Möbius categories of Leroux,
where there are no invertible arrows around, the two notions of ULF
coincide. Furthermore, in this case, where identities are indecompos-
able, every ULF functor is conservative. This explains why the functor
notion emphasised by Lawvere and Menni [43] (and Leinster [44]) is
ULF rather than explicitly cULF.

Example. 1.4.4. Here is an example of a functor which is not cULF
in Lawvere’s sense (is not cULF on classical nerves), but which is cULF
in the homotopical sense. Namely, let OI denote the category of finite
ordered sets and monotone injections. Let I denote the category of
finite sets and injections. The forgetful functor OI → I is not cULF in
the classical sense, because the identity monotone map 2 → 2 admits
a factorisation in I that does not lift to OI , namely the factorisation
into two nontrivial transpositions. However, it is cULF in our sense,
as can easily be verified by checking that the square

OI1

��

OI2oo
✤
❴

��
I1 I2oo

is a pullback by computing the fibres of the horizontal maps over a
given monotone injection.

1.4.5. Right and left fibrations. A functor of Segal spaces f : Y →
X is called a right fibration if it is cartesian on d⊥ and on all generic
maps, or a left fibration if it is cartesian on d⊤ and on generic maps.
Here the condition on generic degeneracy maps is in fact a consequence
of that on the face maps. These notions are most meaningful when the
Segal spaces involved are Rezk complete.

Lemma. 1.4.6. If X is a decomposition space and f : Y → X is
cULF then also Y is a decomposition space.

1.5. Decalage

1.5.1. Decalage. (See Illusie [28]). Given a simplicial space X as
the top row in the following diagram, the lower dec Dec⊥(X) is a new
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simplicial space (bottom row in the diagram) obtained by deleting X0

and shifting everything one place down, deleting also all d0 face maps
and all s0 degeneracy maps. It comes equipped with a simplicial map
d⊥ : Dec⊥(X)→ X given by the original d0:

X0 s0 // X1
d0

oo

d1oo
s0 //
s1 //

X2

d0

oo
d1oo

d2oo

s0 //
s1 //
s2 //

X3

d0

oo
d1oo
d2oo

d3oo

···

X1

d0

OO

s1 // X2
d1

oo

d2oo

d0

OO

s1 //
s2 //

X3

d1

oo
d2oo

d3oo

d0

OO

s1 //
s2 //
s3 //

X4

d1

oo
d2oo
d3oo

d4oo

d0

OO

···

Similarly, the upper dec, denoted Dec⊤(X) is obtained by instead
deleting, in each degree, the last face map d⊤ and the last degeneracy
map s⊤.

1.5.2. Decalage in terms of an adjunction. (See Lawvere [41].)
The functor Dec⊥ can be described more conceptually as follows. There
is an ‘add-bottom’ endofunctor b : ∆ → ∆, which sends [k] to [k + 1]
by adding a new bottom element. This is in fact a monad; the unit
ǫ : Id ⇒ b is given by the bottom coface map d⊥. The lower dec is
given by precomposition with b:

Dec⊥(X) = b∗X

Hence Dec⊥ is a comonad, and its counit is the bottom face map d⊥.
Similarly, the upper dec is obtained from the ‘add-top’ monad on

∆. In Section 6 we shall exploit crucially the combination of the two
comonads.

1.5.3. Slice interpretation. If X is the strict nerve of a category C
then there is a close relationship between the upper dec and the slice
construction. For the strict nerve, X = NC, Dec⊤ X is the disjoint
union of all (the nerves of) the slice categories of C:

Dec⊤X =
∑

x∈X0

N(C/x).

(In general it is a homotopy sum.)
Any individual slice category can be extracted from the upper dec,

by exploiting that the upper dec comes with a canonical augmentation
given by (iterating) the bottom face map. The slice over an object x
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is obtained by pulling back the upper dec along the name of x:

1

pxq
��

NC/x
oo

✤
❴

��
X0 Dec⊤ X

d⊥

oo

There is a similar relationship between the lower dec and the coslices.

Proposition. 1.5.4. If X is a decomposition space then Dec⊤(X)
and Dec⊥(X) are Segal spaces, and the maps d⊤ : Dec⊤(X) → X and
d⊥ : Dec⊥(X)→ X are cULF.

Proof. We put Y = Dec⊤(X) and check the pullback condition 1.2.2
(3),

Yn+1

d⊤
��

❴
✤

d⊥ // Yn

d⊤
��

Yn
d⊥

// Yn−1.

This is the same as

Xn+2

d⊤−1

��

❴
✤

d⊥ // Xn+1

d⊤−1

��
Xn+1

d⊥

// Yn

and since now the horizontal face maps that with respect to Y were
outer face maps, now become inner face maps in X , this square is one
of the decomposition square axiom pullbacks. The cULF conditions
says that the various d⊤ form pullbacks with all generic maps in X .
But this follows from the decomposition space axiom for X . �

Theorem. 1.5.5. For a simplicial ∞-groupoid X : ∆op → Grpd, the
following are equivalent

(1) X is a decomposition space
(2) both Dec⊤(X) and Dec⊥(X) are Segal spaces, and the two com-

parison maps back to X are ULF and conservative.
(3) both Dec⊤(X) and Dec⊥(X) are Segal spaces, and the two com-

parison maps back to X are conservative.
(4) both Dec⊤(X) and Dec⊥(X) are Segal spaces, and the following

squares are pullbacks:

X1
s1 //

❴
✤

d⊥
��

X2

d⊥
��

X0 s0
// X1,

X1

d⊤
��

❴
✤

s0 // X2

d⊤
��

X0 s0
// X1.
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Proof. The implication (1)⇒ (2) is just the preceding Proposition, and
the implications (2) ⇒ (3) ⇒ (4) are specialisations. The implication
(4) ⇒ (1) follows from Proposition 1.3.3. �

Remark. 1.5.6. Dyckerhoff and Kapranov [19] (Theorem 6.3.2) ob-
tain the result that a simplicial space is 2-Segal (i.e. a decomposition
space except that there are no conditions imposed on degeneracy maps)
if and only if both dec’s are Segal spaces.

Proposition. 1.5.7. If f : Y → X is a conservative ULF functor
between decomposition spaces, then Dec⊥(f) : Dec⊥(Y ) → Dec⊥(X)
is a right fibration of Segal spaces, cf. 1.4.5. Similarly, Dec⊤(f) :
Dec⊤(Y )→ Dec⊤(X) is a left fibration.

Proof. It is clear that if f is cULF then so is Dec⊥(f). The further
claim is that Dec⊥(f) is also cartesian on d0. But d0 was originally a
d1, and in particular was generic, hence has cartesian component. �

1.6. Monoidal decomposition spaces

The ∞-category of decomposition spaces (as a full subcategory of
simplicial∞-groupoids), has finite products. Hence there is a symmet-
ric monoidal structure on the∞-categoryDcmpcULF of decomposition
spaces and cULF maps. We still denote this product as ×, although of
course it is not the cartesian product in DcmpcULF.

Definition. Amonoidal decomposition space is a monoid object (X,m, e)
in (DcmpcULF,×, 1). A monoidal functor between monoidal decom-
position spaces is a monoid homomorphism in (DcmpcULF,×, 1).

Example. 1.6.1. Recall that a category E with finite sums is extensive
[9] when the natural functor E/A×E/B → E/A+B is an equivalence. The
fat nerve of an extensive 1-category is a monoidal decomposition space.
The multiplication is given by taking sum, the neutral object by the
initial object, and the extensive property ensures precisely that given a
factorisation of a sum of maps, then each of the maps splits into sums
of maps in a unique way.

Lemma. 1.6.2. The dec of a monoidal decomposition space has again
a natural monoidal structure, and the counit is a monoidal functor.

2. Incidence (co)algebras and Möbius inversion

The goal in this section is to define a coalgebra (with ∞-groupoid
coefficients) from any decomposition space. The following brief discus-
sion explains the origin of the decomposition space axioms. For any
simplicial space X , the span

X1 X2
d1oo

(d2,d0)// X1 ×X1
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defines a linear functor, the comultiplication

∆ : Grpd/X1
−→ Grpd/(X1×X1)

(S
s
→ X1) 7−→ (d2, d0)! ◦ d∗1 (s).

The desired coassociativity diagram (which should commute up to
equivalence)

Grpd/X1

∆
��

∆ // Grpd/X1×X1

∆×id
��

Grpd/X1×X1 id×∆
// Grpd/X1×X1×X1

is induced by the spans in the outline of this diagram:

X1 X2
d1oo

(d2,d0) // X1 ×X1

X2

d1

OO

(d2,d0)
��

X3
✤
❴

✤❴

d2oo

d1

OO

(d22,d0)
��

(d3,d0d0)
// X2 ×X1

d1×id

OO

(d2,d0)×id
��

X1 ×X1 X1 ×X2
id×d1

oo
id×(d2,d0)

// X1 ×X1 ×X1

Coassociativity will follow from Beck-Chevalley isomorphisms if the
interior part of the diagram can be established, with pullbacks as in-
dicated. Consider the upper right-hand square: it will be a pullback if
and only if its composite with the first projection is a pullback:

X2

(d2,d0) // X1 ×X1

pr1 // X1

X3

✤❴d1

OO

(d3,d0d0)
// X2 ×X1

✤❴d1×id

OO

pr1
// X2

d1

OO

But demanding the outer rectangle to be a pullback is precisely one of
the basic decomposition space axioms. This argument is the origin of
the decomposition space axioms.

Just finding an equivalence is not enough, though. Higher coherence
has to be established, which will be accounted for by the full decompo-
sition space axioms. To establish coassociativity in a strong homotopy
sense we must deal on an equal footing with all ‘reasonable’ spans

∏
Xnj
←
∏

Xmj
→
∏

Xki

which could arise from composites of products of the comultiplication
and counit. We therefore take a more abstract approach, relying on
some more simplicial machinery. This also leads to another characteri-
sation of decomposition spaces, and is actually of independent interest.
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2.1. More simplicial preliminaries

2.1.1. The category ∆ of finite ordinals (the algebraist’s Delta).
We denote by ∆ the category of all finite ordinals (including the empty
ordinal) and monotone maps. Clearly ∆ ⊂ ∆ (presheaves on ∆ are
augmented simplicial sets), but this is not the most useful relationship
between the two categories. We will thus use a different notation for
the objects of ∆, given by their cardinality, with an underline:

n = {1, 2, . . . , n}.

The category ∆ is monoidal under ordinal sum

m+ n := m+ n,

for which 0 is the neutral object.
The cofaces di : n−1 → n and codegeneracies si : n+1 → n in ∆

are, as usual, the injective and surjective monotone maps which skip
and repeat the ith element, respectively, but note that now the index
is 1 ≤ i ≤ n.

Lemma. 2.1.2. There is a canonical equivalence of monoidal cate-
gories (an isomorphism, if we consider the usual skeleta of these cate-
gories)

(∆,+, 0) ≃ (∆op
gen,±, [0])

k ↔ [k]

Proof. The map from left to right sends k ∈ ∆ to

Hom∆(k, 2) ≃ [k] ∈ ∆op
gen.

The map in the other direction sends [k] to the ordinal

Hom∆gen([k], [1]) ≃ k.

In both cases, functoriality is given by precomposition. �

In both categories we can picture the objects as a line with some dots.
The dots then represent the elements in k, while the edges represent
the elements in [k]; a map operates on the dots when considered a map
in ∆ while it operates on the edges when considered a map in ∆gen.
Here is a picture of a certain map 5→ 4 in ∆ and of the corresponding
map [5]← [4] in ∆gen.
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2.1.3. A twisted arrow category of ∆. Consider the category D

whose objects are the arrows n→ k of ∆ and whose morphisms (g, f)
from a : m→ h to b : n→ k are commutative squares

m

a
��

g //

(g,f)

n

b
��

h k.
f

oo

(5)

That is, Dop is the twisted arrow category [52, 6] of ∆.
There is a canonical factorisation system on D : any morphism (5)

factors uniquely as

m

a=fbg
��

= //

ϕ

m

bg
��

g //

γ

n

b
��

h k
f

oo k=
oo

The maps ϕ = (id, f) : fb→ b in the left-hand class of the factorisation
system are termed segalic,

m
= //

fb
��

ϕ

m

b
��

h k.
f

oo

(6)

The maps γ = (g, id) : bg → b in the right-hand class are termed
ordinalic and may be identified with maps in the slice categories ∆/h

m
g //

bg
��

γ

n

b
��

h h.=
oo

(7)

Observe that ∆ is isomorphic to the subcategory of objects with target
h = 1, termed the connected objects of D ,

∆
=
−−→ ∆/1

⊆
−−→ D .(8)

The ordinal sum operation in ∆ induces a monoidal operation in D :
the external sum (n → k) ⊕ (n′ → k′) of objects in D is their ordinal
sum n+ n′ → k + k′ as morphisms in ∆. The neutral object is 0→ 0.
The inclusion functor (8) is not monoidal, but it is easily seen to be
oplax monoidal by means of the codiagonal map 1 + 1→ 1.

Each object m
a
−→ k of D is an external sum of connected objects,

a = a1 ⊕ a2 ⊕ · · · ⊕ ak =
⊕

i∈k

(
mi

ai−−→ 1
)
,(9)

where mi is (the cardinality of) the fibre of a over i ∈ k.
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Any segalic map (6) and any ordinalic map (7) in D may be written
uniquely as external sums

ϕ = ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕh =
⊕

j∈h




mj
= //

��
ϕj

mj

bj
��

1 kj
oo


(10)

γ = γ1 ⊕ γ2 ⊕ · · · ⊕ γh =
⊕

j∈h

(
mj

γj
−−→ nj

)
(11)

where each γj is a map in ∆/1 = ∆.

In fact D is a universal monoidal category in the following sense.

Proposition. 2.1.4. For any cartesian category (C ,×, 1), there is an
equivalence

Fun(∆op,C ) ≃ Fun⊗((D ,⊕, 0), (C ,×, 1))

between the categories of simplicial objects X in C and of monoidal
functors X : D → C . The correspondence between X and X is deter-
mined by following properties.

(a) The functors X : ∆op → C and X : D → C agree on the
common subcategory ∆op

gen
∼= ∆,

∆op
gen

∼=

��

�

� // ∆op

X

((◗◗
◗◗

◗◗
◗◗

C .

∆ �

� // D X

66❧❧❧❧❧❧❧❧❧

(b) Let (m
a
→ k) =

⊕
i(mi

a
→ 1) be the external sum decomposition

(9) of any object of D, and denote by fi : [mi] ֌ [m1]±· · ·±[mk] = [m]
the canonical free map in ∆, for i ∈ k. Then

X




m
= //

��
ϕ

m
a��

1 koo


 = (X(f1), . . . , X(fk)) : Xm −→

∏

i∈k

Xmi

and each X(fi) is the composite of X(ϕ) with the projection to Xi.

Proof. Given X , property (a) says that there is a unique way to define
X on objects and generic maps. Conversely, given X , then for any
object a : m→ k in D we have

Xa =
∏

i∈k

Xai =
∏

i∈k

Xmi

using (9), and for any ordinalic map γ we have

X(γ) =
∏

i∈k

X(γi) =
∏

i∈k

X(gi)
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using (11), where gi ∈ ∆op
gen corresponds to γi ∈ ∆.

Thus we have a bijection between functors X defined on ∆op
gen and

functors X defined on the ordinalic subcategory of D . Now we consider
the free and segalic maps. Given X , property (b) says that for any free
map fr : [mr]→ [m] we have

X(fr) =


Xm

X(ϕ)
−−−→

∏

i∈k

Xmi
։ Xmr




We may assume k = 3: given the factorisation

ϕ =




m
= //

��
ϕ2

m<r +mr +m>r

��

= //

��
ϕ1⊕id⊕ϕ3

∑
i∈k mi

��
1 3oo koo




one sees the value X(fr) is well defined from the following diagram

Xm

X(ϕ2) //

X(fr)

//

Xm<r ×Xmr ×Xm>r

X(ϕ1)×id×X(ϕ3) //

++ ++❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱

∏
i∈k Xmi

����
Xmr .

Functoriality of X on a composite of free maps, say [m3] ֌ [
∑4

2mi] ֌

[
∑5

1mi], now follows from the diagram

X∑5
1 mi

((◗◗
◗◗

◗◗
◗◗

◗◗
◗

//
∏5

1Xmi

%% %%❑
❑❑

❑❑
❑❑

// // Xm3

Xm1 ×X∑4
2 mi
×Xm5

66♠♠♠♠♠♠♠♠♠♠♠

(( ((❘❘
❘❘

❘❘
❘❘

❘

∏4
2Xmi

;; ;;✇✇✇✇✇✇✇

X∑4
2 mi

99ssssssss

in which the first triangle commutes by functoriality of X .
Conversely, given X , then property (b) says how to define X on

segalic maps with connected domain and hence, by (10), on all segalic
maps. Functoriality of X on a composite of segalic maps, say (id, 1←
h← k), follows from functoriality of X :

Xm

(X([mi]֌[m]))i∈k

44

(X([mj ]֌[m]))j∈h //
∏

j∈h

Xmj

∏
j∈h(X([mi]֌[mj ]))i∈kj //

∏

j∈h

∏

i∈kj

Xmi

It remains only to check that the construction of X from X (and of X
from X) is well defined on composites of ordinalic followed by segalic
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(free followed by generic) maps. One then has the mutually inverse
equivalences required. Consider the factorisations in D ,

m

��

= //

ϕ

m

��

g //

γ

m′

��
1 koo k=

oo

=

m

��

g //

γ′

m′

��

= //

ϕ′

m′

��
1 1=
oo k.oo

To show that X is well defined, we must show that the diagrams

Xm

X(ϕ)=(X(f1),...,X(fk)) //

X(γ′)=X(g̃)

��

∏
Xmi

X(γ′)=
∏

X(g̃i)
��

// // Xmr

X(g̃r)

��
Xm′

X(ϕ′)=(X(f ′
1),...,X(f ′

k))

//
∏

Xm′
i

// // Xm′
r
,

commute for each r, where g̃, g̃i in ∆gen correspond to g, gi in ∆. This
follows by functoriality ofX , since g̃ restricted tom′

r is the corestriction
of g̃r. Finally we observe that this diagram, with k = 3 and r = 2, also
serves to show that the construction of X from X is well defined on

[m1 +m2 +m3] [m2]oof2oo

[m′
1 +m′

2 +m′
3]

g̃

❴OO

m′
2

g̃2

❴OO

oo
f ′
2

oo

�

Lemma. 2.1.5. In the category D, ordinalic and segalic maps admit
pullback along each other, and the result is again maps of the same
type.

Proof. This is straightforward: in the diagram below, the map from a
to b is segalic (given essentially by the bottom map f) and the map
from a′ to b is ordinalic (given essentially by the top map g′):

(12) m′

g′

xx♣ ♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

��✤
✤

=

''◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

h

m
a
��

=

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆ m′

g′

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

a′��
h

=

88♣
♣

♣
♣

♣
♣

♣
♣

♣
♣

♣
♣

k

f

gg◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆

m
b ��
k

f

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

=

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
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To construct the pullback, we are forced to repeat f and g′, completing
the squares with the corresponding identity maps. The connecting map
in the resulting object is fbg′ : m′ → h. It is clear from the presence
of the four identity maps that this is a pullback. �

We now have the following important characterisation of decompo-
sition spaces.

Proposition. 2.1.6. A simplicial space X : ∆op → Grpd is a decom-
position space if and only if its extension X : D → Grpd preserves
pullback squares of the kind described in 2.1.5.

Proof. Since an ordinalic map is a sum, it can be decomposed into a
sequence of maps in which each map has only one nontrivial summand.
This means that a pullback diagram like (12) is a sum of diagrams of the
form in which h = 1. So to prove that these pullbacks are preserved, it
is enough to treat the case h = 1. In this case, the map g′ in the square
is just a map in ∆, so it can be decomposed into face and degeneracy
maps. The X-image is then a diagram of the form

Xm
//

��

Xm1 × · · · ×Xmk

��
Xn

// Xn1 × · · · ×Xnk
,

where the map on the left is a face map or a degeneracy map. It follows
that the map on the right is a product of maps in which all factors are
identity maps except one, say the ith factor (which is again a face or a
degeneracy map). Now whether or not this is a pullback can be checked
on the projections onto the nontrivial factor:

Xm
//

��

Xm1 × · · · ×Xmk

��

// Xmi

��
Xn

// Xn1 × · · · ×Xnk
// Xni

But by construction of X , the composite horizontal maps are precisely
free maps in the sense of the simplicial space X , and the vertical maps
are precisely generic maps in the sense that it is an arbitrary map in
∆ and hence (in the other direction) a generic map in ∆, under the
duality in 2.1.2. Since the right-hand square is always a pullback, by
the standard pullback argument 0.0.9, the total square is a pullback
(i.e. we have a decomposition space) if and only if the left-hand square
is a pullback (i.e. the pullback condition on X is satisfied). �
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2.2. Incidence coalgebras

2.2.1. Comultiplication and counit. For any decomposition space
X , the diagram

X1 X2
mX

d1

oo pX

(d2,d0)
// X1 ×X1

defines a linear functor, the comultiplication

∆ : Grpd/X1
−→ Grpd/(X1×X1)

(S
s
→ X1) 7−→ pX ! ◦m∗X(s),

and the diagram

X1 X0
uX

s0
oo tX // 1

defines a linear functor, the counit

ǫ : Grpd/X1
−→ Grpd

(S
s
→ X1) 7−→ tX ! ◦ u∗X(s).

We proceed to establish that this makes Grpd/X1
a coassociative

and counital coalgebra in a strong homotopy sense. We have more
generally, for any n ≥ 0, the generalised comultiplication maps

∆n : Grpd/X1
−→ Grpd/X1×···×X1

(13)

given by the spans

X1 ← Xn → X1 × · · · ×X1.(14)

The case n = 0 is the counit map, and n = 1 gives the identity. The
coassociativity will say that all combinations (composites and tensor
products) of these agree whenever they have the same source and tar-
get. For this we exploit the category D introduced in 2.1, designed
exactly to encode also cartesian powers of the various spaces Xk.

Definition. A reasonable span in D is a span a
g
← m

f
→ b in which g

is ordinalic and f is segalic. Clearly the external sum of two reason-
able spans is reasonable, and the composite of two reasonable spans is
reasonable (by Lemma 2.1.5).

Let X : ∆op → Grpd be a fixed decomposition space, and interpret
it also as a monoidal functor X : D → Grpd. A span in Grpd of the
form

(15) Xa ← Xm → Xb

is called reasonable if it is induced by a reasonable span in D . Since X
sends external sums to products, and sends pullbacks between ordinalic
and segalic maps to pullbacks, it follows that reasonable spans like (15)
are stable under products and under composition.

A linear map between slices of Grpd is called reasonable if it is
given by a reasonable span like (15). That is, it is a pullback along a
ordinalic map followed by a lowershriek along a segalic map.
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The interest in these notions is of course that the generalised comul-
tiplication maps ∆n are reasonable, see (13,14) above.

In conclusion:

Lemma. 2.2.2. Tensor products of reasonable linear maps are reason-
able. For a decomposition space, composites of reasonable linear maps
are reasonable.

Proposition. 2.2.3. Any reasonable linear map

Grpd/X1
−→ Grpd/X1×···×X1

, n ≥ 0

is canonically equivalent to the nth comultiplication map.

Proof. We have to show that the only reasonable span of the form
X1 ←

∏
Xmi

→ X1 × · · · ×X1 is (14). Indeed, the left leg must come
from an ordinalic map, so since X1 has only one factor, the middle
object has also only one factor, i.e. is the image of m → 1. On the
other hand, the right leg must be segalic, which forces m = n. �

Corollary. 2.2.4. For a decomposition space X the comultiplica-
tion is coassociative and counital, and Grpd/X1

is a strong homotopy
comonoid.

2.2.5. Coalgebra homomorphisms. The conservative ULF func-
tors are important in our context in particular because they induce
coalgebra homomorphisms:

Lemma. 2.2.6. If F : X → Y is a conservative ULF map between
decomposition spaces then F! : Grpd/X1

→ Grpd/Y1
is a coalgebra

homomorphism.

Proof. In the diagram

X1

F1

��

Xn
goo

✤
❴

f //

Fn

��

Xn
1

Fn
1

��
Y1 Yn

g′
oo

f ′

// Y n
1

the left-hand square is a pullback since F is conservative (case n = 0)
and ULF (cases n > 1). Hence by the Beck-Chevalley condition we have
an equivalence of functors g′∗ ◦ F1! ≃ Fn! ◦ g∗, and by postcomposing
with f ′

! we arrive at the coalgebra homomorphism condition ∆′
nF1!

∼=
F1

n
! ∆n �

Remark. 2.2.7. If Y is a Segal space, then the statement can be
improved to an if-and-only-if statement.

Remark. 2.2.8. There is also a contravariant functoriality, but we
shall not need it in this work. See Content–Lemay–Leroux [13, Prop. 5.6]
and Leinster [44] for analysis of this.
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2.2.9. Example. An important class of cULF maps are counits of
decalage, cf. 1.5.4:

d⊥ : Dec⊥ X → X and d⊤ : Dec⊤ X → X.

We shall see that many coalgebra maps in the classical theory of inci-
dence coalgebras, notably reduction maps, are induced from decalage
in this way (4.1.1, 4.2.1, 4.1.3, 4.4.1, 4.3.1, 4.5.2 below).

2.2.10. Bialgebras. For a monoidal decomposition space as in 1.6 the
resulting coalgebra is also a bialgebra. Indeed, the fact that the monoid
multiplication is cULF means that it induces a coalgebra homomor-
phism, and similarly with the unit. Note that this notion of bialgebra
is not symmetric: while the comultiplication is induced from internal,
simplicial data in X , the multiplication is induced by extra structure
(the monoid structure). In the applications, the monoid structure will
typically be given by categorical sum, and hence is associative up to
canonical isomorphisms, something that seems much stricter than the
comultiplication.

Proposition. 2.2.11. If f : X → Y is a cULF monoidal functor be-
tween monoidal decomposition spaces, then f! : Grpd/X1

→ Grpd/Y1

is a bialgebra homomorphism.

2.3. Convolution product and Möbius inversion

Let X be a decomposition space. In this section we examine the
incidence algebra GrpdX1 which can be obtained from the incidence
coalgebra Grpd/X1

by taking the linear dual (see A.1.12).

2.3.1. Convolution. Consider two linear functors

F,G : Grpd/X1
−→ Grpd

given by spans X1 ←M → 1 and X1 ← N → 1. Their tensor product
F ⊗G is then given by the span

X1 ×X1 ←M ×N → 1.

Their convolution is the composite of F ⊗G with the comultiplication,

F ∗G : Grpd/X1
−→ Grpd/X1

⊗Grpd/X1
−→ Grpd,

given by the composite of spans

X1

X2

OO

��

M ∗Noo

��

ff▲▲▲▲▲▲▲▲▲▲▲

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲▲✤

❴

X1 ×X1 M ×Noo // 1.

The neutral functor for the convolution product is ǫ.
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2.3.2. The zeta functor. The zeta functor

ζ : Grpd/X1
→ Grpd

is the linear functor defined by the span

X1
=
← X1 → 1 .

As an element of the linear dual (A.1.12), this corresponds to the termi-
nal presheaf. We will see later that in the locally finite situation 3.1.1,
upon taking the homotopy cardinality of the zeta functor one obtains
the constant function 1 on π0X1, that is, the classical zeta function.

It is clear from the definition of the convolution product that the kth
convolution power of the zeta functor is given by

ζk : X1
g
← Xk → 1,

where g : [1]→ [k] is the unique generic map in degree k.

We also introduce the following elements of the incidence algebra
GrpdX1 : for each a ∈ X1, let (X1)[a] be the component of X1 contain-
ing a, and let δa be the linear functor given by the span

δa : X1 ← (X1)[a] → 1,

We also have the representable functors

ha := Map(a,−) : X1 −→ Grpd

which viewed as linear functors Grpd/X1
→ Grpd are given by the

spans

ha : X1
paq
← 1→ 1.

Hence we have

ζ =
∑

a∈π0X1

δa =

∫ a

ha.

We are interested in the invertibility of the zeta functor under the
convolution product. Unfortunately, at the objective level it can prac-
tically never be convolution invertible, because the inverse µ should
always be given by an alternating sum (cf. 2.3.14)

µ = Φeven − Φodd.

We have no minus sign available, but following the idea of Content–
Lemay–Leroux [13], developed further by Lawvere–Menni [43], we es-
tablish that

ζ ∗ Φeven = ǫ+ ζ ∗ Φodd.

In the category case (cf. [13] and [43]), Φeven (resp. Φodd) are given by
even-length (resp. odd-length) chains of non-identity arrows. (We keep
the Φ-notation in honour of Content–Lemay–Leroux). In the general
setting of decomposition spaces we cannot talk about arrows but we
can still talk about non-degenerate simplices. In order for these to
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behave well, it is necessary to impose a monomorphism condition (see
0.0.5)

2.3.3. Complete decomposition spaces. Call a decomposition
space X complete if s0 : X0 → X1 is a monomorphism.

2.3.4. Discussion. It is clear that a Rezk complete Segal space is com-
plete in the sense of 2.3.3. It makes sense also to state the Rezk com-
pleteness condition for decomposition spaces. We prefer the cheaper
condition 2.3.3 for two reasons: first of all it is sufficient for its purpose,
namely to ensure a meaningful notion of non-degenerate simplices. Sec-
ond, it covers some important examples which are not Rezk complete.
In particular, the classical nerve of a group is a complete decomposi-
tion space in the sense of 2.3.3, but is clearly not Rezk complete. The
incidence algebra of the classical nerve of a group is the group algebra,
certainly an example worth covering.

We will come eventually to the Möbius condition (3.2.1), which
makes sense for complete decomposition spaces. We shall see that
if a Möbius decomposition space is a Segal space then it is also Rezk
complete (3.2.2).

Lemma. 2.3.5. In a complete decomposition space, all degeneracy
maps are monomorphisms.

Proof. This follows from Lemma 1.3.7. �

An important motivating feature of the notion of complete decom-
position space is that the notion of degeneracy is well behaved: we
shall see that all issues about degeneracy can be settled in terms of the
canonical projection map Xn → (X1)

n sending a simplex to its prin-
cipal edges. This feature is essential to construct (the odd and even
parts of) the Möbius functor.

Throughout this section, X is a complete decomposition space.

2.3.6. Degenerate simplices. Consider the alphabet with three let-
ters {0, 1, a}. Here 0 is to indicate degenerate edges s0(x) ∈ X1, the
letter a denotes the edges specified to be non-degenerate, and 1 denotes
the edges which are not specified to be degenerate or non-degenerate.
More precisely we denote by X0 ⊂ X1 the full subgroupoid of degener-
ate edges, and denote by Xa the complement of s0 : X0 → X1, the full
subgroupoid of non-degenerate edges, so that

X1 = X0 +Xa.

Now let w be a word of length n in the alphabet {0, 1, a}. Put

Xw :=
∏

i∈w

Xi ⊂ (X1)
n.

This inclusion is full since Xa ⊂ X is full by completeness. Denote
by Xw the ∞-groupoid of n-simplices whose principal edges have the
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types indicated in the word w, or more explicitly as full subgroupoid
of Xn given by the pullback diagram,

(16)

Xw
❴
✤

//

��

Xn

��
Xw // (X1)

n.

Lemma. 2.3.7. Let v, v′ be words in the alphabet {0, 1, a}. Then

Xv1v′ = Xv0v′ +Xvav′ .

Proof. Consider the diagram

Xv0v′

❴
✤

//

��

Xv1v′

��

Xvav′
oo

✤
❴

��

Xv0v′ // Xv1v′ Xvav′oo

The two squares are pullbacks, by Lemma 0.0.9, since horizontal com-
position of either with the pullback square (16) for w = v1v′ gives again
the pullback square (16), for w = v0v′ or w = vav′.

Since the bottom row is a sum diagram, it follows that the top row
is also (since ∞-groupoids form a locally cartesian closed, and in par-
ticular extensive, ∞-category). �

2.3.8. Nondegenerate simplices. We put

~Xn = Xa···a ⊂ Xn,

by construction a full subgroupoid of Xn.

Proposition. 2.3.9. We have ~Xn = Xn \
∑n

i=0 Im(si).

As usual in this paper, the notation Im refers to the homotopy notion,
the essential image of the degeneracy functor.

Proof. From (16) it is clear that the image of s0 : Xn−1 → Xn is
precisely X01···1, and similarly with the other degeneracy maps. �

Lemma. 2.3.10. If a complete decomposition space X is a Segal space,
then ~Xn ⊂ Xn ≃ X1 ×X0 · · · ×X0 X1 is the ∞-groupoid of strings of n
composable non-degenerate arrows.

This follows immediately from (16). Note that if furthermore X is
Rezk complete, we can say non-invertible instead of non-degenerate.

Lemma. 2.3.11. For X a complete decomposition space, the square

X1w

��

// X2

��
X1 ×Xw

// X1 ×X1

is a pullback.
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Proof. Let n be the length of the word w. The square is the top rec-
tangle in the diagram

X1w

��

// X1+n

��

❴
✤

// X2

��
X1 ×Xw

��

// X1 ×Xn

��

// X1 ×X1

X1 ×Xw // (X1)
1+n

The left-hand outer rectangle is a pullback by definition of X1w. The
bottom square is obviously a pullback, hence the top-left square is a
pullback. But also the right-hand square is a pullback because X is a
decomposition space. �

We define Φn to be the linear functor given by the span

X1
m
←− ~Xn −→ 1

If n = 0 then ~X0 = X0 by convention and Φ0 is given by the span

X1
u
←− X0 −→ 1.

That is, Φ0 is the linear functor ǫ. Note that Φ1 = ζ−ǫ. The minus sign
makes sense here, since X0 (representing ǫ) is really a full subgroupoid
of X1 (representing ζ).

Lemma. 2.3.12. We have Φn = (Φ1)
n = (ζ− ǫ)n, the nth convolution

product of Φ1 with itself.

Proof. This follows from the definitions and (16). �

Proposition. 2.3.13. The linear functors Φn satisfy

ζ ∗ Φn = Φn + Φn+1 = Φn ∗ ζ.

Proof. We can compute the convolution ζ ∗ Φn by Lemma 2.3.11 as

X1

X2

OO

��

X1a···a
oo

��

ff▲▲▲▲▲▲▲▲▲▲▲

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲✤

❴

X1 ×X1 X1 × ~Xn
oo // 1

But Lemma 2.3.7 tells us that X1a···a = X0a···a +Xaa···a = ~Xn + ~Xn+1,
where the identification in the first summand is via s0. This is an
equivalence of ∞-groupoids over X1 so the resulting span is Φr +Φr+1

as desired. The second identity claimed follows similarly from evident
variations of the two lemmas. �
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Put

Φeven :=
∑

n even

Φn, Φodd :=
∑

n odd

Φn.

Theorem. 2.3.14. For a complete decomposition space, the following
Möbius inversion principle holds:

ζ ∗ Φeven = ǫ + ζ ∗ Φodd,

= Φeven ∗ ζ = ǫ + Φodd ∗ ζ.

Proof. This follows immediately from the proposition: all four linear
functors are in fact equivalent to

∑
r≥0Φr. �

2.3.15. Conservative ULF functors, compatibilities with de-
generacy, and algebra homomorphisms. We finish this subsection
observing that all the notions treated are well-behaved under cULF
functors. Note first of all that by duality, cULF functors induce homo-
morphisms of incidence algebras.

Throughout the remainder of this section, X and Y are complete
decomposition spaces. In fact if X is complete and Y → X is conser-
vative, it follows that Y is also complete.

Lemma. 2.3.16. If f : Y → X is conservative, then the following
square is a pullback:

Y1

��

~Y1
✤
❴

oo

��

X1
~X1.oo

Proof. This square is the complement of the pullback saying what con-
servative means. But it is general in extensive categories that in the
situation

A′ //

��

A′ +B′

��

B′oo

��
A // A+B B,oo

one square is a pullback if and only if the other is. �

Corollary. 2.3.17. If f : Y → X is conservative, then for every word
w, the following square is a pullback:

Yn

��

Yw
oo

✤
❴

��
Xn Xw.oo
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Proof. From 2.3.16 it follows that

(Y1)
n

��

Y woo
✤
❴

��
(X1)

n Xwoo

is a pullback. Now the conclusion follows by a pullback argument with
two squares of the form (16), using Lemma 0.0.9. �

Proposition. 2.3.18. If f : Y → X is cULF, then the following
square is a pullback:

Y1

��

~Yn
oo

✤
❴

��

X1
~Xn.oo

Proof. Just compose the square of Corollary 2.3.17 (with w = a · · · a)
with the square

Y1

��

Yn
oo

✤
❴

��
X1 Xn,oo

which is a pullback since f is ULF. �

Corollary. 2.3.19. If f : Y → X is cULF, then f∗Φn = Φn for all
n ≥ 0.

3. Locally finite decomposition spaces

We introduce two finiteness conditions: locally finite (3.1.1) is what is
needed just for the coalgebra structure to have a cardinality. Secondly
Möbius (3.2.1) is what is needed for also the Möbius inversion principle
to descend to algebras over Q.

3.1. Incidence (co)algebras and section coefficients

3.1.1. Locally finite decomposition spaces. A decomposition
space X : ∆op → Grpd is called locally finite if X1 is locally finite
and both s0 : X0 → X1 and d1 : X2 → X1 are finite maps. This notion
extends the notion of locally finite for posets.

From Lemma 1.3.7 and Lemma A.2.12 we immediately get:

Corollary. 3.1.2. A decomposition space X is locally finite if and only
if Xn is locally finite for every n, and g : Xm → Xn is finite for every
generic map g : [n]→ [m] in ∆.

Corollary. 3.1.3. If a decomposition space X is locally finite then so
are Dec⊥(X) and Dec⊤(X).
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3.1.4. Numerical incidence algebra. It follows from A.3.4 that for
any locally finite decomposition space X , the comultiplication maps
n ≥ 0

∆n : Grpd/X1
−→ Grpd/X1×X1×···×X1

given by the spans

X1 Xn
moo p // X1 ×X1 × · · · ×X1

restrict to linear functors

∆n : grpd/X1
−→ grpd/X1×X1×···×X1

Hence it makes sense to take cardinality of the linear functors

grpd
ǫ
←− grpd/X1

∆
−→ grpd/X1×X1

to obtain a coalgebra structure,

Q
|ǫ|
←− Qπ0X1

|∆|
−→ Qπ0X1 ⊗Qπ0X1

termed the numerical incidence coalgebra of X .

3.1.5. Morphisms. It is worth noticing that for any conservative
ULF functor F : Y → X , the induced coalgebra homomorphism F! :
Grpd/Y1

→ Grpd/X1
restricts to a functor grpd/Y1

→ grpd/X1
. In

other words, there are no further finiteness conditions to impose on
morphisms.

3.1.6. Incidence bialgebras. If the locally finite decomposition space
is monoidal, then the incidence coalgebra is in fact a bialgebra. Note
that since the algebra structure in our setting is given simply by a low-
ershriek map, by the previous remark there are no finiteness conditions
needed in order for it to descend to the numerical level.

We also have the notion of incidence algebra, defined as the (profinite-
dimensional) linear dual of the incidence coalgebra. In the presence of a
monoidal structure on the decomposition space, this causes a potential
ambiguity regarding algebra structures. We make the convention that
incidence bialgebra always refers to the incidence coalgebra with its
extra multiplication.

3.1.7. Numerical convolution product. By duality, if X is locally
finite, the convolution product descends to the profinite-dimensional
vector space Qπ0X1 obtained by taking cardinality of grpdX1 . It fol-
lows from the general theory of homotopy linear algebra of Section A.1
(specifically A.7.1) that the cardinality of the convolution product is
the linear dual of the cardinality of the multiplication. Since it is the
same span that defines the comultiplication and the convolution prod-
uct, it is also the exact same matrix that defines the cardinalities of
these two maps. It follows that the structure constants for the convo-
lution product (with respect to the pro-basis {δx}) are the same as the
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structure constants for the comultiplication (with respect to the basis
δx). These are classically called the section coefficients, and we proceed
to derive formulae for them in simple cases.

Throughout this subsection, let X be a locally finite decomposition
space. The comultiplication at the objective level

grpd/X1
−→ grpd/X1×X1

pfq 7−→
[
Rf : (X2)f → X2 → X1 ×X1

]

yields a comultiplication of vector spaces by taking cardinality (remem-
bering that |pfq| = δf ):

Qπ0X1 −→ Qπ0X1 ⊗Qπ0X1

δf 7−→ |Rf |

=

∫ (a,b)∈X1×X1

|(X2)f,a,b| δa ⊗ δb

=
∑

a,b

∣∣(X1)[a]
∣∣ ∣∣(X1)[b]

∣∣ |(X2)f,a,b| δa ⊗ δb.

where (X2)f,a,b is the fibre over the three face maps. The integral sign is
a sum weighted by homotopy groups. These weights together with the
cardinality of the triple fibre are called the section coefficients, denoted

cfa,b := |(X2)f,a,b| ·
∣∣(X1)[a]

∣∣ ∣∣(X1)[b]
∣∣ .

In the case where X is a Segal space (and in particular, when X0 is
a 1-groupoid), we can be very explicit about the section coefficients.
For a Segal space we have X2 ≃ X1 ×X0 X1, which helps to compute
the fibre of X2 → X1 ×X1:

Lemma. 3.1.8. The pullback

S
❴
✤

//

��

X1 ×X0 X1

��
1

pa,bq
// X1 ×X1

is given by

S =

{
Ω(X0, y) if d0a ≃ y ≃ d1b

0 else.

Proof. We can compute the pullback as

S
❴
✤

//

��

X1 ×X0 X1
❴
✤

��

// X0

diag

��
1

pa,bq
// X1 ×X1

d0×d1

// X0 ×X0,
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and the result follows since in general

A×C B
❴
✤

��

// C

diag
��

A× B // C × C.

�

Corollary. 3.1.9. Suppose X is a Segal space, and that X0 is a 1-
groupoid. Given a, b, f ∈ X1 such that d0a ∼= y ∼= d1b and ab = f , then
we have

(X2)f,a,b = Ω(X0, y)× Ω(X1, f).

Proof. In this case, since X0 is a 1-groupoid, the fibres of the diagonal
map X0 → X0 × X0 are 0-groupoids. Thus the fibre of the previous
lemma is the discrete space Ω(X0, y). When now computing the fibre
over f , we are taking that many copies of the loop space of f . �

Corollary. 3.1.10. With notation as above, the section coefficients
for a locally finite Segal 1-groupoid are

caba,b =
|Aut(y)| |Aut(ab)|

|Aut(a)| |Aut(b)|
.

Coassociativity of the incidence coalgebra says that the section co-
efficients {caba,b} form a 2-cocycle,

caba,bc
abc
ab,c = cbcb,cc

abc
a,bc.

In fact this cocycle is cohomologically trivial, given by the coboundary
of a 1-cochain,

caba,b = ∂(φ)(a, b) = φ(a)φ(ab)−1φ(b),

In fact, if one fixes s, t such that s+ t = 1, the 1-cochain may be taken
to be

φ(x
a
→ y) =

|Aut(x)|s|Aut(y)|t

|Aut(a)|
.

3.1.11. ‘Zeroth section coefficients’: the counit. Let us also say
a word about the zeroth section coefficients, i.e. the computation of the
counit: the main case is when X is complete (in the sense that s0 is a
monomorphism). In this case, clearly we have

ǫ(f) =

{
1 if f degenerate

0 else.

If X is Rezk complete, the first condition is equivalent to being invert-
ible.
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The other easy case is when X0 = ∗. In this case

ǫ(f) =

{
Ω(X1, f) if f degenerate

0 else.

3.1.12. Example. The strict nerve of a 1-category C is a decompo-
sition space which is discrete in each degree. The resulting coalgebra
at the numerical level (assuming the due finiteness conditions) is the
coalgebra of Content–Lemay–Leroux [13], and if the category is just a
poset, that of Rota et al. [29].

For the fat nerve X of C , we find

ha ∗ hb =

{
Ω(X0, y) h

ab if a and b composable at y

0 else,

as follows from 3.1.8. Note that the cardinality of the representable ha

is generally different from the canonical basis element δa.

3.1.13. Finite support. It is also interesting to consider the subalge-
bra of the incidence algebra consisting of functions with finite sup-
port, i.e. the full subcategory grpdX1

fin.sup ⊂ grpdX1 , and numeri-

cally Qπ0X1
fin.sup ⊂ Qπ0X1 . Of course we have canonical identifications

grpdX1
fin.sup ≃ grpd/X1

, as well as Qπ0X1
fin.sup ≃ Qπ0X1 , but it is impor-

tant to keep track of which side of duality we are on.
That the decomposition space is locally finite is not the appropriate

condition for these subalgebras to exist. Instead the requirement is
that X1 be locally finite and the functor

X2 → X1 ×X1

be finite. (This is always the case for a locally finite Segal 1-groupoid,
by Lemma 3.1.8.) Similarly, one can ask for the convolution unit to
have finite support, which is to require X0 → 1 to be a finite map.

Dually, the same conditions ensure that comultiplication and counit
extend from grpd/X1

to Grpd
rel.fin
/X1

, which numerically is some sort

of vector space of summable infinite linear combinations.

3.1.14. Examples. If X is the strict nerve of a 1-category C , then
the finite-support convolution algebra is precisely the category algebra
of C . (For a finite category, of course the two notions coincide.)

Note that the convolution unit is

ǫ =
∑

x

δidx =

{
1 for id arrows

0 else,

the sum of all indicator functions of identity arrows, so it will be finite
if and only if the category has only finitely many objects.

In the case of the fat nerve of a 1-category, the finiteness condition
for comultiplication is implied by the condition that every object has
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a finite automorphism group (a condition implied by local finiteness).
On the other hand, the convolution unit has finite support precisely
when there is only a finite number of isoclasses of objects, already
a more drastic condition. Note the ‘category algebra’ interpretation:
compared to the usual category algebra there is a symmetry factor
(cf. 3.1.12):

ha ∗ hb =

{
Ω(X0, y) h

ab if a and b composable at y

0 else.

Finally, the finite-support incidence algebras are important in the
case of the Waldhausen S-construction: they are the Hall algebras,
cf. 4.6 below. The finiteness conditions are then homological, namely
finite Ext0 and Ext1.

3.2. Möbius inversion at the algebraic level

3.2.1. Möbius condition. A complete decomposition space X is
called Möbius if the restricted composition map

∑

r

d1
r−1 :

∑

r

~Xr → X1

is finite. In other words, the spans defining Φeven and Φodd are of finite
type, and hence descend to the finite groupoid-slices grpd/X1

.
If X is a Segal space, the Möbius condition says that for each ar-

row a ∈ X1, the factorisations of a into non-degenerate ai ∈ ~X1 have
bounded length. In fact we have:

Proposition. 3.2.2. If a Möbius decomposition space X is a Segal
space, then it is Rezk complete.

This extends the classical fact that a Möbius category in the sense of
Leroux does not have non-identity invertible arrows [43, Lemma 2.4].

Proof. If X is not Rezk complete, then there exists a nondegenerate
invertible arrow a ∈ X1. Since for Segal spaces we have ~Xr ≃ ~X1 ×X0

· · · ×X0
~X1 (by 2.3.10), we can use the arrow a and its inverse going

back an forth any number of times to create nondegenerate simplices
of any length. Hence

∑
~Xr → X1 cannot be finite. �

Lemma. 3.2.3. If a Möbius decomposition space X is a Segal space,
then all its generic maps are finite.

Proof. It is enough to show that d1 : X2 → X1 is finite. In the word
notation of 2.3.6 we have altogether

X2 = ~X2 +X0a +Xa0 +X00.

Since X is Segal, we have X0a ≃ Xa0 ≃ X1, and X00 ≃ X0. The
restriction to ~X2 is finite by the Möbius condition. The restriction to
the next two pieces are clearly finite. The restriction to X00 coincides
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with s0, which is finite since X is complete as a decomposition space.
Hence altogether d1 is finite. �

Proposition. 3.2.4. If f : Y → X is cULF and X is a Möbius
decomposition space, then also Y is a Möbius decomposition space.

Proof. We know that Y is a decomposition space by Lemma 1.4.6, and
the cULF condition in fact ensures it is complete. It will furthermore
be Möbius by Proposition 2.3.18. �

3.2.5. Möbius inversion at the algebraic level. The diagram

X1 X1
=oo // 1 defines the zeta functor (cf. 2.3.2), which as a

presheaf is ζ =
∫ t

ht, the homotopy sum of the representables. Its
cardinality is the usual zeta function in the incidence algebra Qπ0X1 .

The diagrams X1
~Xr

oo // 1 define the Phi functors

Φr : grpd/X1
−→ grpd,

with Φ0 = ǫ. The cardinality of these functors are functions |ζ | :
π0(X1)→ Q and |Φr| : π0(X1)→ Q, elements in the incidence algebra
Qπ0X1.

For a Möbius decomposition space X , we can take cardinality of the
abstract Möbius inversion formula of 2.3.14 to get:

Theorem. 3.2.6. If X is Möbius then the cardinality of the zeta
functor |ζ | : Qπ0X1 → Q is convolution invertible with inverse |µ| :=
|Φeven| − |Φodd|:

|ζ | ∗ |µ| = |ǫ| = |µ| ∗ |ζ | .

4. Examples

It is characteristic for the classical theory of incidence (co)algebras of
posets that most often it is necessary to impose an equivalence relation
on the set of intervals in order to arrive at the interesting ‘reduced’
(co)algebras. This equivalence relation may be simply isomorphism of
posets, or equality of length of maximal chains as in binomial posets
[16], or it may be more subtle order-compatible relations [17], [65].
Content, Lemay and Leroux [13] remarked that in some important
cases the relationship between the original incidence coalgebra and the
reduced one amounts to a conservative ULF functor, although they did
not make this notion explicit. From our global simplicial viewpoint, we
observe that very often these cULF functors arise from decalage, but
often of a decomposition space which not a poset and perhaps not even
a Segal space.

4.0.7. Decomposition spaces for the classical series. Classically,
the most important incidence algebras are the power series representa-
tions. From the perspective of the objective method, these representa-
tions appear as cardinalities of various monoidal structures on species,
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realised as incidence algbras with ∞-groupoid coefficients. We list six
examples illustrating some of the various kinds of generating functions
listed by Stanley [66] (see also Dür [17]).

(1) Ordinary generating functions, the zeta function being ζ(z) =∑
k≥0 z

k. This comes from ordered sets and ordinal sum, and
the incidence algebra is that of ordered species with the ordinary
product.

(2) Exponential generating functions, the zeta function being ζ(z) =∑
k≥0

zk

k!
. Objectively, there are two versions of this: one coming

from the standard Cauchy product of species, and one coming
from the shuffle product of L-species (in the sense of [7]).

(3) Ordinary Dirichlet series, the zeta function being ζ(z) =
∑

k>0 k
−s.

This comes from ordered sets with the cartesian product.
(4) ‘Exponential’ Dirichlet series, the zeta function being ζ(z) =∑

k>0
k−s

k!
. This comes from the Dirichlet product of arithmetic

species [3], also called the arithmetic product [53].

(5) q-exponential generating series, with zeta function ζ(z) =
∑

k≥0
zk

[k]!
.

This comes from the Waldhausen S-construction on the cat-
egory of finite vector spaces. The incidence algebra is that
of q-species with a version of the external product of Joyal–
Street [36].

(6) Some variation with zeta function ζ(z) =
∑

k≥0
zk

#Aut(Fk
q )
, which

arises from q-species with the ‘Cauchy’ product studied by Mor-
rison [57].

Of these examples, only (1) and (3) have trivial section coefficients and
come from a Möbius category in the sense of Leroux. We proceed to
the details.

4.1. Additive examples

We start with several easy examples that serve to reiterate the im-
portance of having incidence algebras of posets, monoids and monoidal
∞-groupoids on the same footing, with conservative ULF functors con-
necting them.

4.1.1. Linear orders and the additive monoid. Let L denote the
nerve of the poset (N,≤), and letN be the nerve of the additive monoid
(N,+). Imposing the equivalence relation ‘isomorphism of intervals’
on the incidence coalgebra of L gives that of N, and Content–Lemay–
Leroux observed that this reduction is induced by a conservative ULF
functor r : L→ N sending a ≤ b to b− a. In fact we have:

Lemma. 4.1.2. There is an isomorphism of simplicial sets

Dec⊥(N)
≃
−→ L
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given in degree k by

(x0, . . . , xk) 7−→ [x0 ≤ x0 + x1 ≤ · · · ≤ x0 + · · ·+ xk]

and the conservative ULF functor r is isomorphic to the structure map

d⊥ : Dec⊥(N)→ N, (x0, . . . , xk) 7→ (x1, . . . , xk).

The comultiplication on Grpd/N1
is given by

∆(pnq) =
∑

a+b=n

paq⊗ pbq

and, taking cardinality, the classical incidence coalgebra is the vector
space spanned by symbols δn with comultiplication ∆(δn) =

∑
a+b=n

δa⊗

δb. The incidence algebra is the profinite-dimensional vector space
spanned by the symbols δn with convolution product δa ∗ δb = δa+b,
and is isomorphic to the ring of power series in one variable,

IncN
≃
−→ Q[[z]]

δn 7−→ zn

(N
f
→ Q) 7−→

∑
f(n) zn.

4.1.3. Injections and the monoidal ∞-groupoid of sets under
sum. Let I be the nerve of the category of finite sets and injections,
and let B be the nerve of the monoidal ∞-groupoid (B,+, 0) of finite
sets and bijections, or of the corresponding 1-object bicategory (see
Proposition 1.2.10). Dür [17] noted that imposing the equivalence re-
lation ‘having isomorphic complements’ on the incidence coalgebra of
I gives the binomial coalgebra. Again, we can see this reduction map
as induced by a conservative ULF functor from a decalage:

Lemma. 4.1.4. There is an equivalence of simplicial ∞-groupoids

Dec⊥(B)
≃
−→ I

given in degree k by

(x0, . . . , xk) 7−→ [x0 ⊆ x0 + x1 ⊆ · · · ⊆ x0 + · · ·+ xk]

and a conservative ULF functor r : I→ B is given by

d⊥ : Dec⊥(B)→ B, (x0, . . . , xk) 7→ (x1, . . . , xk).

The isomorphism may also be represented diagrammatically using
diagrams reminiscent of those in Waldhausen’s S-construction (cf. 4.6
below). As an example, both groupoids I3 and Dec⊥(B)3 = B4 are
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equivalent to the groupoid of diagrams

x3

��
x2

��

// x2 + x3

��
x1

//

��

x1 + x2

��

// x1 + x2 + x3

��
x0

// x0 + x1
// x0 + x1 + x2

// x0 + x1 + x2 + x3

The face maps di : I3 → I2 and di+1 : B4 → B3 both act by deleting
the column beginning xi and the row beginning xi+1. In particular
d⊥ : I → B deletes the bottom row, sending a string of injections to
the sequence of successive complements (x1, x2, x3). We will revisit this
theme in the treatment of the Waldhausen S-construction.

From Lemma 1.6.2 and Proposition 2.2.11 we have:

Lemma. 4.1.5. Both I and B are monoidal decomposition spaces
under disjoint union, and I ≃ Dec⊥(B) → B is a monoidal functor
inducing a quotient of bialgebras Grpd/I1 → Grpd/B1

.

Formula 3.1.10 gives the comultiplication on Grpd/B1
as

∆(pSq) =
∑

A,B

Bij(A+B, S)

Aut(A)× Aut(B)
· pAq⊗ pBq =

∑

A,B⊂S
A∪B=S, A∩B=∅

pAq⊗ pBq.

It follows that the convolution product on GrpdB is just the Cauchy
product on groupoid-valued species

(F ∗G)[S] =
∑

A+B=S

F [A]×G[B].

For the representables, the formula says simply hA ∗ hB = hA+B.
The decomposition space B is locally finite, and taking cardinality

gives the classical binomial coalgebra, spanned by symbols δn with

∆(δn) =
∑

a+b=n

n!

a! b!
δa ⊗ δb.

As a bialgebra we have (δ1)
n = δn and one recovers the comultiplication

from ∆(δn) =
(
δ0 ⊗ δ1 + δ1 ⊗ δ0

)n
.

Dually, the incidence algebraQπ0B is the profinite-dimensional vector
space spanned by symbols δn with convolution product

δa ∗ δb =
n!

a! b!
δa+b,

This is isomorphic to the algebra Q[[z]], where δn corresponds to zn/n!
and the cardinality of a species F corresponds to its exponential gen-
erating series.
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4.1.6. Finite ordered sets, and the shuffle product of L-species.
Let OI denote (the fat nerve of) the category of finite ordered sets and
monotone injections. This is the decalage of the decomposition space Z
with Zn = OI/n, the groupoid of arbitrary maps from a finite ordered
set S to n, or equivalently of n-shuffles of S. The incidence coalgebra
of Z is the shuffle coalgebra. The section coefficients are the binomial
coefficients, but on the objective level the convolution algebra is the
shuffle product of L-species (cf. [7]). This example will be subsumed
in our theory of restriction species, developed in Section 5.

There is a map Z → B that takes an n-shuffle to the underlying
n-tuple of subsets, and the decalage of this functor is the cULF functor
OI→ I given by forgetting the order, see Example 1.4.4.

Lemma. 4.1.7. There is a commutative diagram of decomposition
spaces and cULF functors,

OI
≃ //

��

Dec⊥(Z)

��

d⊥ // Z

��
I

≃ // Dec⊥(B)
d⊥ // B

Let A be a fixed set, an alphabet. The slice category ∆inj
/A is the

category of finite words (sequences) in A and subword inclusions (sub-
sequences), cf. Lothaire [47] (see also Dür [17]). Again it is the de-
calage of the A-coloured shuffle decomposition space ZA of A-words
and complementary subword inclusions. More precisely, this space has
in degree k the groupoid of A-words equipped with a non-necessarily-
order-preserving map to k. Precisely, the objects are spans

k ← n→ A.

The counit takes a subword inclusion to its complement word. This
gives the Lothaire shuffle algebra of words. Again, it all amounts to
observing that A-words admit a forgetful cULF functor to 1-words,
which is just the decomposition space Z from before, and that this in
turn admits a cULF functor to B.

Note the difference between ZA and the free monoid on A: the lat-
ter is like allowing only the trivial shuffles, where the subword inclu-
sions are only concatenation inclusions. In terms of the structure maps
n→ k, the free-monoid nerve allows only monotone maps, whereas the
shuffle decomposition space allows arbitrary set maps.

4.1.8. Alternative, strict, version. The following strict version of
B will come in handy in the treatment of restriction species in Sec-
tion 5. First, an application of the Grothendieck construction gives an
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equivalence of groupoids over B,

Bk

��❄
❄❄

❄❄
❄❄

❄

∼ // B/k

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

B,

that takes a k-tuple of finite sets to their disjoint union
∑

i∈k Si with
the obvious projection map to k. Conversely, a map S → k defines
a the k-tuple (S1, . . . , Sk) by taking fibres. Contrary to the (B,+, 0),
the groupoids B/k form a strict simplicial groupoid. The generic maps
(generated by inner faces and degeneracies) are given by postcompo-
sition of S → k with the corresponding map k → k′. The outer faces
d = d⊥, d⊤ : B/k → B/k−1 take S → k to the pullback

S ′

❴
✤

//

��

S

��
k−1

d
// k

The simplicial identities can be arranged to hold on the nose: the only
subtlety is the pullback construction involved in defining the outer
face maps, but these pullbacks can all be chosen in terms of subset
inclusions. It is clear that the simplicial groupoid B/k is equivalent to
the fat nerve of the classifying space of B.

4.2. Multiplicative examples

4.2.1. Divisibility poset and multiplicative monoid. In analogy
with 4.1.1, let D denote the nerve of the divisibility poset (N×, |), and
let M be the nerve of the multiplicative monoid (N×, ·). Imposing
the equivalence relation ‘isomorphism of intervals’ on the incidence
coalgebra of D gives that of M, and Content–Lemay–Leroux observed
that this reduction is induced by a conservative ULF functor r : D→
M sending d|n to n/d. In fact we have:

Lemma. 4.2.2. There is an isomorphism of simplicial sets

Dec⊥(M)
≃
−→ D

given in degree k by

(x0, x1, . . . , xk) 7−→ [x0|x0x1| . . . |x0x1 · · ·xk]

and the conservative ULF functor r is isomorphic to the structure map

d⊥ : Dec⊥(M)→M, (x0, . . . , xk) 7→ (x1, . . . , xk).

This example can be obtained from the example 4.1.1 directly, since
M =

∏
pN and D =

∏
p L, where the (weak) product is over all primes
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p. Now Dec⊥ it is a right adjoint, so preserves products, and Lemma
4.2.2 follows from Lemma 4.1.1.

We can use the general formula 3.1.10: since there are no nontrivial
automorphisms the convolution product is δm ∗ δn = δmn, and the
incidence algebra is isomorphic to the Dirichlet algebra:

Inc(D) −→ D = {
∑

k>0

akk
−s}

δn 7−→ n−s

f 7−→
∑

n>0

f(n)n−s.

4.2.3. Arithmetic species. The Dirichlet coalgebra (4.2.1) also has a
fatter version: consider now instead the monoidal groupoid (B×,×, 1)
of non-empty finite sets under the cartesian product. It gives the clas-
sifying space A with Ak := (B×)k, where this time the inner face maps
takes the cartesian product of two adjacent factors, and the outer face
maps project away an outer factor.

The resulting coalgebra structure is

∆(S) =
∑

A×B≃S

A⊗ B.

Some care is due to interpret this correctly: the homotopy fibre over S is
the groupoid whose objects are triples (A,B, φ) consisting of sets A and
B equipped with a bijection φ : A×B ∼→ S, and whose morphisms are
pairs of isomorphisms α : A ∼→ A′, β : B ∼→ B′ forming a commutative
square with φ and φ′.

The corresponding incidence algebra grpdB×

with the convolution
product is the algebra of arithmetic species [3] under the Dirichlet prod-
uct (called the arithmetic product of species by Maia and Méndez [53]).

The section coefficients are given directly by 3.1.10, and we find

δm ∗ δn =
(mn)!

m!n!
δmn

It follows that we can get an isomorphism with the Dirichlet algebra,
namely

Inc(A) −→ D = {
∑

k>0

akk
−s}

δm 7−→
m−s

m!

f 7→
∑

n>0

f(n)
k−s

n!
;
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these are the ‘exponential’ (or modified) Dirichlet series (cf. Baez–
Dolan [3].) So the incidence algebra zeta function in this setting is

ζ =
∑

k>0

δk 7→
∑

k>0

k−s

k!

(which is not the usual Riemann zeta function).

4.3. Linear examples

The following classical examples lead us to classes of decomposition
spaces which are not Segal spaces, namely Waldhausen’s S-construction
(4.6).

4.3.1. q-binomials: Fq-vector spaces. Let Fq denote a finite field
with q elements. Let W denote the fat nerve of the category vect

of finite-dimensional Fq-vector spaces and Fq-linear injections. Impose
the equivalence relation identifying two injections if their cokernels are
isomorphic. This gives the q-binomial coalgebra (see Dür [17, 1.54]).

The same coalgebra can be obtained without reduction as follows.
Put V0 = ∗, let V1 be the maximal groupoid of vect, and let V2 be
the groupoid of short exact sequences. The span

V1 V2
oo // V1 ×V1

E [E ′→E→E ′′]✤oo ✤ // (E ′, E ′′)

(together with the spanV1 ← V0 → 1) defines a coalgebra on grpd/V1

which (after taking cardinality) is the q-binomial coalgebra, without
further reduction. The groupoids and maps involved are part of a
simplicial groupoid V : ∆op → Grpd, namely the Waldhausen S-
construction of vect, studied in more detail in the next section (4.6),
where we’ll see that this is a decomposition space but not a Segal space.
The lower dec of V is naturally equivalent to the fat nerve W of the
category of injections, and that the comparison map d0 is the reduction
map of Dür.

We calculate the section coefficients of V. From Section 3.1 we have
the following formula for the section coefficients (which is precisely the
standard formula for the Hall numbers, as explained further in 4.6.11):

|SESk,n,n−k|∣∣Aut(Fk
q)
∣∣ ∣∣Aut(Fn−k

q )
∣∣ .

Here SESk,n,n−k is the groupoid of short exact sequence with specified
vector spaces of dimensions k, n, and n − k. This is just a discrete

space, and it has (q − 1)nq(
k
2)q(

n−k
2 )[n]! elements. Indeed, there are

(q − 1)kq(
k
2) [n]!

[n−k]!
choices for the injection Fk

q →֒ Fn
q , and then (q −

1)nq(
n
2)[n]! choices for identifying the cokernel with Fn−k

q . Some q-yoga
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yields altogether the q-binomials as section coefficients:

=

(
n

k

)

q

.

From this description we see that there is an isomorphism of algebras

Inc(V) −→ Q[[z]]

δk 7−→
zk

[k]!
.

Clearly this algebra is commutative. However, an important new
aspect is revealed on the objective level: here the convolution product
is the external product of q-species of Joyal-Street [36]. They show
(working with vector-space valued q-species), that this product has a
natural non-trivial braiding (which of course reduces to commutativity
upon taking cardinality).

4.3.2. Direct sums of Fq-vector spaces and ‘Cauchy’ product of
q-species. A coalgebra which is the q-analogue of B can be obtained
from the classifying space of the monoidal groupoid (vectFq ,⊕, 0) of
finite-dimensional Fq-vector spaces under direct sum. Comultiplication
of a vector space V is the groupoid consisting of triples (A,B, φ) where
φ is a linear isomorphism A ⊕ B ∼→ V . This groupoid projects to
vect × vect: the fibre over (A,B) is discrete of cardinality |Aut(V )|,
giving altogether the following section coefficient∣∣Aut(Fn

q )
∣∣

∣∣Aut(Fk
q )
∣∣ ∣∣Aut(Fn−k

q )
∣∣ = qk(n−k)

(
n

k

)

q

.

At the objective level, this convolution product corresponds to the
‘Cauchy’ product of q-species in the sense of Morrison [57].

The resulting coalgebra is therefore, if we let δn denote the cardinality
of the name of an n-dimensional vector space V :

∆(δn) =
∑

k≤n

qk(n−k)

(
n

k

)

q

· δk ⊗ δn−k.

Hence this one also has a power series representation, this time not
with ϕ(n) = [n]!, but rather with ϕ(n) = #Aut(Fn

q ).

4.4. Faà di Bruno bialgebra and variations

4.4.1. Faà di Bruno bialgebra. Classically (cf. Doubilet [15]) the
Faà di Bruno bialgebra is constructed by imposing a type-equivalence
relation on the incidence coalgebra of the poset P of all partitions of
finite sets. Joyal [30] observed that it can also be realised directly
from the category S of finite sets and surjections. (See also [23] for
further development of this viewpoint.) Let S denote the fat nerve of
the category of finite sets and surjections. That is, Sk is the groupoid
of strings of k consecutive surjections.
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A partition σ of a finite set X is encoded by the surjection X ։ S,
where S is the set of parts. Conversely, any surjection constitutes a
partition of its domain. There is an equivalence of groupoids between
partitions and surjections. Under this correspondence, if partition τ
refines partition σ, then the corresponding surjections X ։ T and
X ։ S fit into a sequence of surjections X ։ T ։ S. Hence we
can write the partition poset nerve as having P0 the groupoid of finite
partitions (i.e. surjections), and Pk the groupoid of k + 1 strings of
surjections. Under this identification, the conservative ULF functor
F : P → S simply deletes the first surjection in the string. Precisely,
the partition-poset nerve is simply the decalage of the surjections nerve:

P = Dec⊥(S).

Finally note that the functor F is precisely reduction modulo type
equivalence: recall that an interval [τ, σ] has type 1λ12λ2 · · · if λk is
the number of blocks of σ that consist of exactly k blocks of τ . Two
intervals have the same type if and only if their images under F : P→ S
are isomorphic.

4.4.2. Faà di Bruno section coefficients. The category of finite
sets and surjections is extensive. Hence the fat nerve S is a monoidal
decomposition space (under +), hence the incidence coalgebra is a bial-
gebra. Note also that automatically the decalage of a monoidal decom-
position space is monoidal, and the counit cULF. Hence the partition
poset nerve is monoidal, and the reduction function a bialgebra homo-
morphism. Since S is monoidal, it is enough to describe the section
coefficients on connected input. (A connected surjection is one with
codomain 1.) Our general formula 3.1.10 gives

∆(n
f
։ 1) =

∑

a:n։k
b:k։1

#Aut(k) ·#Aut(ab)

#Aut(a) ·#Aut(b)
paq⊗ pbq.

The order of the automorphism group of k and of a surjection k ։ 1
is k!, and for a general surjection a : n ։ k of type 1λ12λ2 · · · ,

#Aut(a) =

∞∏

j=1

λj!(j!)
λj

and hence

∆(n
f
։ 1) =

∑

a:n։k
b:k։1

n!∏k
j=1 λj!(j!)λj

paq⊗ pbq.

The section coefficients, called the Faà di Bruno section coefficients,
are the coefficients

(
n
λ;k

)
of the Bell polynomials, cf. [21, (2.5)].

4.4.3. A decomposition space for the Faà di Bruno Hopf alge-
bra. The Faà di Bruno Hopf algebra is obtained by further reduction,
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classically stated as identifying two intervals in the partition poset if
they are isomorphic as posets. This is equivalent to forgetting the
value of λ1. There is also a decomposition space that yields this Hopf
algebra directly, obtained by quotienting the decomposition space S by
the same equivalence relation. This means identifying two surjections
(or sequences of composable surjections) if one is obtained from the
other by taking disjoint union with a bijection. One may think of this
as ‘levelled forests modulo linear trees’. It is straightforward to check
that this reduction respects the simplicial identities so as to define a
simplicial groupoid, that it is a monoidal decomposition space, and
that the quotient map from S is monoidal and cULF.

4.4.4. Ordered surjections. Let OS denote the fat nerve of the cat-
egory of finite ordered set and monotone surjections. It is a monoidal
decomposition space under ordinal sum. Hence to describe the result-
ing comultiplication, it is enough to say what happens to a connected
ordered surjection, say f : n ։ 1, which we denote simply n: since
there are no automorphisms around, we find

∆(n) =

n∑

k=1

∑

a

a⊗ k

where the second sum is over the
(
n−1
k−1

)
possible surjections a : n ։ k.

This comultiplication has appeared in [5] and [25].

4.5. Graphs and trees

Various bialgebras of graphs and trees can be realised as incidence
bialgebras of decomposition spaces which are not Segal. These ex-
amples will be subsumed in general classes of decomposition spaces,
namely coming from restriction species, and the new notion of directed
restriction species introduced in Section 5.

All the examples in this section are naturally bialgebras, with the
monoidal structure given by disjoint union.

4.5.1. Graphs and restriction species. The following coalgebra of
graphs seems to be due to Schmitt [65], §12. For a graph G with vertex
set V (admitting multiple edges and loops), and a subset U ⊂ V , define
G|U to be the graph whose vertex set is U , and whose edges are those
edges of G both of whose incident vertices belong to U . On the vector
space spanned by isoclasses of graphs, define a comultiplication by the
rule

∆(G) =
∑

A+B=V

G|A⊗G|B.

This coalgebra is the cardinality of the coalgebra of a decomposi-
tion space but not directly of a category. Indeed, define a simplicial
groupoid with G1 the groupoid of graphs, and more generally let Gk
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be the groupoid of graphs with an ordered partition of the vertex set
into k (possibly empty) parts. In particular, G0 is the contractible
groupoid consisting only of the empty graph. The outer face maps
delete the first or last part of the graph, and the inner face maps join
adjacent parts. The degeneracy maps insert an empty part. It is clear
that this is not a Segal space: a graph structure on a given set cannot
be reconstructed from knowledge of the graph structure of the parts of
the set, since chopping up the graph and restricting to the parts throws
away all information about edges going from one part to another. One
can easily check that it is a decomposition space. It is clear that the
resulting coalgebra is Schmitt’s coalgebra of graphs. Note that disjoint
union of graphs makes this into a bialgebra too.

The graph example is typical for a big family of decomposition
spaces, which can be treated uniformly, namely decomposition spaces
of restriction species, in the sense of Schmitt [64] (see also [1]). We
develop this theory further in Section 5.

4.5.2. Butcher-Connes-Kreimer Hopf algebra. Dür [17] (Ch.IV,
§3) constructed what was later called the Connes-Kreimer Hopf algebra
of rooted trees, after [11]: he starts with the notion of (combinatorial)
tree (i.e. connected and simply connected graphs with a specified root
vertex); then a forest is a disjoint union of rooted trees. He then consid-
ers the category of root-preserving inclusions of forests. A coalgebra is
induced from this (in our language it is given by the simplicial groupoid
R, where Rk is the groupoid of strings of k root-preserving forest inclu-
sions) but it is not the most interesting one. The Connes–Kreimer coal-
gebra is obtained by the reduction that identifies two root-preserving
forest inclusions if their complement crowns are isomorphic forests.

We can obtain this coalgebra directly from a decomposition space:
let H1 denote the groupoid of forests, and let H2 denote the groupoid
of forests with an admissible cut. More generally, H0 is defined to
be a point, and Hk is the groupoid of forests with k − 1 compatible
admissible cuts. These form a simplicial groupoid in which the inner
face maps forget a cut, and the outer face maps projects away either
the crown or the bottom layer (the part of the forest below the bottom
cut). The notion of admissible cut is standard, see for example [12].
One convenient way to define what it means is to say that it is a
root-preserving inclusion of forests: then the cut is interpreted as the
division between the included forest and its complement. In this way
we see that Hk is the groupoid of k − 1 consecutive root-preserving
inclusions.

There is a natural conservative ULF functor from R to H: on
R1 → H1 it sends a root-preserving forest inclusion to its crown. More
generally, on Rk → Hk it deletes the first inclusion in the string.

It is clear that H is not a Segal space: a tree with a cut cannot be
reconstructed from its crown and its bottom tree, which is to say that
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H2 is not equivalent to H1×H0 H1. It is straightforward to check that
it is a decomposition space.

4.5.3. Operadic trees and P -trees. There is an important varia-
tion on the Connes-Kreimer Hopf algebra (but it is only a bialgebra):
instead of considering combinatorial trees one considers operadic trees
(i.e. trees with open incoming edges), or more generally P -trees for a
finitary polynomial endofunctor P . For details on this setting, see [38],
[40], [39] [23]; it suffices here to note that the notion covers planar trees,
binary trees, effective trees, Feynman diagrams, etc.

There is a functor from operadic trees or P -trees to combinatorial
trees which is taking core [40]: it amounts to shaving off all open-ended
edges (and forgetting the P -decoration). This is a conservative ULF
functor which realises the core bialgebra homomorphism from the bial-
gebra of operadic trees or P -trees to the Hopf algebra of combinatorial
trees.

For operadic trees, when copying over the description of the nerve X
where Xk is the groupoid of forests with k − 1 compatible admissible
cuts, there are two important differences: one is that X0 is not just a
point: it is the groupoid of node-less forests. The second is that un-
like H, this one is a Segal space: briefly this comes from the fact that
the cuts do not throw away the edges cut, and hence there is enough
data to reconstruct a tree with a cut from its bottom tree and crown
by grafting. More precisely, the Segal maps Xk → X1 ×X0 · · · ×X0 X1

simply return the layers seen in between the cuts. It is easy to see
that this is an equivalence: given the layers separately, and a match of
their boundaries, one can glue them together to reconstruct the original
forest, up to isomorphism. In this sense the operadic-forest decompo-
sition space is a ‘category’ with object set the set of edges. In this
perspective, the combinatorial-forest decomposition space is obtained
by throwing away the object information, i.e. the data governing the
possible ways to compose. These two differences are crucial in the work
on Green functions and Faà di Bruno formulae in [23].

4.5.4. Note about symmetries. It may be worth stressing here
that one can not obtain the same bialgebra (either the combinatorial
or the operadic) by taking isomorphism classes of each of the groupoids
Xk: doing this would destroy symmetries that constitute an essential
ingredient in the Connes–Kreimer bialgebra. Indeed, define a simplicial
set Y in which Yk = π0(Xk), the set of iso-classes of forests with k
compatible admissible cuts. Consider the tree T

belonging to X1. The fibre in X2 is the (discrete) groupoid of all
possible cuts in this tree:
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The thing to notice here is that while the second and third cuts are
isomorphic as abstract cuts, and therefore get identified in Y2 = π0(X2),
this isomorphism is not vertical over the underlying tree T , so in the
comultiplication formula at the groupoid level of X both cuts appear,
and there is a total of 5 terms, whereas at the level of Y there will be
only 4 terms. (Put in another way, the functor X → Y given by taking
components is not cULF.)

It seems that there is no way to circumvent this discrepancy directly
at the isoclass level: attempts involving ingenious decorations by nat-
ural numbers and actions by symmetric groups will almost certainly
end up amounting to actually working at the groupoid level, and the
conceptual clarity of the groupoid approach seems much preferable.

4.5.5. Free categories and free multicategories. Let G be a di-
rected graph E ⇒ V . Consider the polynomial endofunctor P given
by V ← E

=
→ E → V . Then the groupoid of P -trees (4.5.3) (nec-

essarily linear trees, since the middle map is an identity) is precisely
(equivalent to) the set of arrows in the free category on G, and the
decomposition space of P -trees described in 4.5.3 coincides with the
nerve of this category.

More generally, for an arbitrary polynomial endofunctor P given
by a diagram of sets I ← E → B → I, the groupoid of P -trees
is the groupoid of operations of the free monad on P . Thinking of
P as specifying a signature, we can equivalently think of P -trees as
operations for the free (coloured) operad on that signature, or as the
multi-arrows of the free multicategory on P regarded as a multigraph.
To a multicategory there is associated a monoidal category [27], whose
object set is the free monoid on the set of objects (colours). The
decomposition space of P -trees is naturally identified with the nerve of
the monoidal category associated to the multicategory of P -trees.

4.5.6. Directed graphs and free PROPs. These constructions
readily generalise from trees to directed graphs (although the attrac-
tive polynomial interpretation does not). By a directed graph we un-
derstand a finite oriented graph with a certain number of open input
edges, a certain number of open output edges, and prohibited to con-
tain an oriented cycle. In particular, a directed graph has an underlying
poset. The directed graphs form a groupoid G1. We allow graphs with-
out vertices, these form a groupoid G0. Let G2 denote the groupoid of
directed graphs with an admissible cut: by this we mean a partition of
the set of vertices into two disjoint parts: a poset filter F (i.e. an upward
closed subset) and a poset ideal I (i.e. a downward closed subset). The
edges connecting the two parts become the output edges of F and input
edges of I; hence F and I become directed graphs again. Similarly, let
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Gk denote the groupoid of directed graphs with k − 1 compatible ad-
missible cuts, just like we did for forests. It is clear that this defines a
simplicial groupoid G, easily verified to be a decomposition space and
in fact a Segal space. The directed graphs form the set of operations of
the free PROP with one generator in each input/output degree (m,n).
The Segal space is the nerve of the associated monoidal category. The
resulting coalgebra (in fact a bialgebra) has been studied in the context
of Quantum Field Theory by Manchon [54]. Certain decorated directed
graphs, and the resulting bialgebra have been studied by Manin [56],
[55] in the theory of computation: his directed graphs are decorated
by operations on partial recursive functions and switches. The deco-
rating data is called a tensor scheme in [35], and the class of decorated
graphs form the set of operations of the free (coloured) PROP on the
tensor scheme. Again, the resulting decomposition space is naturally
identified with the nerve of the associated monoidal category.

4.6. Waldhausen S-construction

4.6.1. Waldhausen S-construction of an abelian category. We
follow Lurie [51, Subsection 1.2.2] for the account of Waldhausen S.
For I a linearly ordered set, let Ar(I) denote the category of arrows in
I: the objects are pairs of elements i ≤ j in I, and the morphisms are
relations (i, j) ≤ (i′, j′) whenever i ≤ i′ and j ≤ j′. A gap complex in
an abelian category A is a functor F : N(Ar(I))→ A such that

(1) For each i ∈ I, the object F (i, i) is zero.
(2) For every i ≤ j ≤ k, the associated diagram

0 = F (j, j) // // F (j, k)

F (i, j)

OOOO

// // F (i, k)

OOOO

is a pushout (or equivalently a pullback).

Remark: since the pullback of a monomorphism is always a monomor-
phism, and the pushout of an epimorphism is always an epimorphism,
it follows that automatically the horizontal maps are monomorphisms
and the vertical maps are epimorphisms, as already indicated with the
arrow typography. Altogether, it is just a fancy but very convenient
way of saying ‘short exact sequence’ or ‘(co)fibration sequence’.

Let Gap(I,A ) denote the full subcategory of Fun(Ar(I),A ) consist-
ing of the gap complexes. This is a 1-category, since A was assumed
to be an abelian 1-category.

The assignment

[n] 7→ Gap([n],A )eq

defines a simplicial space S : ∆op → Grpd, which by definition is
the Waldhausen S-construction on A . Intuitively (or essentially), the
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groupoid Gap([n],A )eq has as objects staircase diagrams like the fol-
lowing (picturing n = 4):

X34

X23
// // X24

OOOO

X12
// // X13

OOOO

// // X14

OOOO

X01
// // X02

OOOO

// // X03

OOOO

// // X04

OOOO

The face map di deletes all objects containing an i index. The de-
generacy map si repeats the ith row and the ith column.

In particular s0(∗) = 0, and

d0(A1 ֌ A2 ֌ · · ·֌ An) = (A2/A1 ֌ · · ·֌ An/A1)

s0(A1 ֌ A2 ֌ · · ·֌ An) = (0 ֌ A1 ֌ A2 ֌ · · ·֌ An)

The simplicial maps di, si for i ≥ 1 are more straightforward: the
simplicial set Dec⊥(SA ) is just the nerve of mono(A ).

A string of composable monomorphisms (A1 ֌ A2 ֌ · · · ֌ An)
determines, up to canonical isomorphism, short exact sequences Aij ֌

Aik ։ Ajk = Aij/Aik with A0i = Ai. Hence the whole diagram can be
reconstructed up to isomorphism from the bottom row. Similarly, since
epimorphisms have uniquely determined kernels, the whole diagram can
also be reconstructed from the last column.

Lemma. 4.6.2. The projection Sn+1A → Map([n],mono(A )) is a
trivial Kan fibration. Similarly the projection Sn+1A → Map([n], epi(A )).

More precisely (with reference to the fat nerve):

Proposition. 4.6.3. These equivalences assemble into levelwise sim-
plicial equivalences

Dec⊥(SA ) ≃ N(mono(A ))

Dec⊤(SA ) ≃ N(epi(A )).

Theorem. 4.6.4. The Waldhausen S-construction of an abelian cat-
egory A is a decomposition space.

Proof. The previous proposition already implies that the two dec’s of S
are Segal spaces. By Theorem 1.5.5, it is therefore enough to establish
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that the squares

S1
s1 //

d0
��

S2

d0
��

S0 s0
// S1

S1
s0 //

d1
��

S2

d2
��

S0 s0
// S1

are pullbacks. Note that we have S0 = ∗ and S1 = A iso, and that
s0 : S0 → S1 picks out the zero object, and since the zero object
has no nontrivial automorphisms, this map is fully faithful. The map
d0 : S2 → S1 sends a monomorphism to its quotient object. We need
to compute the fibre over the zero object, but since s0 is fully faithful,
we are just asking for the full subgroupoid of S2 consisting of those
monomorphisms whose cokernel is zero. Clearly these are precisely the
isos, so the fibre is just A iso = S1. The other pullback square is estab-
lished similarly, but arguing with epimorphisms instead of monomor-
phisms. �

Remark. 4.6.5. Waldhausen’s S-construction was designed for more
general categories than abelian categories, namely what are now called
Waldhausen categories, where the cofibrations play the role of the
monomorphisms, but where there is no stand-in for the epimorphisms.
The theorem does not generalise to Waldhausen categories in general,
since in that case Dec⊤(S) is not necessarily a Segal space of any class
of arrows.

4.6.6. Waldhausen S of a stable ∞-category. The same construc-
tion works in the∞-setting, by considering stable∞-categories instead
of abelian categories. Let A be a stable ∞-category (see Lurie [51]).
Just as in the abelian case, the assignment

[n] 7→ Gap([n],A )eq

defines a simplicial space S : ∆op → Grpd, which by definition is the
Waldhausen S-construction on A . Note that in the case of a stable
∞-category, in contrast to the abelian case, every map can arise as
either horizontal or vertical arrow in a gap complex. Hence the role of
monomorphisms (cofibrations) is played by all maps, and the role of
epimorphisms is also played by all maps.

Lemma. 4.6.7. For each k ∈ N, the two projection functors Sk+1A →
Map(∆[k],A ) are equivalences.

From the description of the face and degeneracy maps, the following
more precise result follows readily, comparing with the fat nerves:

Proposition. 4.6.8. We have natural (levelwise) simplicial equiva-
lences

Dec⊥(SA ) ≃ N(A )

Dec⊤(SA ) ≃ N(A ).
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Theorem. 4.6.9. Waldhausen’s S-construction of a stable∞-category
A is a decomposition space.

Proof. The proof is exactly the same as in the abelian case, relying on
the following three fact:

(1) The dec’s are Segal spaces.
(2) s0 : S0 → S1 is fully faithful.
(3) A map (playing the role of monomorphisms) is an equivalence

if and only if its cofibre is the zero object, and a map (playing
the role of epimorphism) is an equivalence if and only if its fibre
is the zero object.

�

Remark. 4.6.10. This theorem was proved independently (and first)
by Dyckerhoff and Kapranov [19], Theorem 7.3.3. They prove it more
generally for exact ∞-categories, a notion they introduce. Their proof
that Waldhausen’s S-construction of an exact ∞-category is a decom-
position space is somewhat more complicated than ours above. In
particular their proof of unitality (the pullback condition on degener-
acy maps) is technical and involves Quillen model structures on certain
marked simplicial sets à la Lurie [49]. We do not wish to go into exact
∞-categories here, and refer instead the reader to [19], but we wish
to point out that our simple proof above works as well for exact ∞-
categories. This follows since the three points in the proof hold also
for exact ∞-categories, which follows immediately from the definitions
and basic results provided in [19], Sections 7.2 and 7.3.

4.6.11. Hall algebras. The finite-support incidence algebra of a
decomposition space X was mentioned in 3.1.13. In order for it to
admit a cardinality, the required assumption is thatX1 be locally finite,
and that X2 → X1 × X1 be a finite map. In the case of X = S(A )
for an abelian category A , this translates into the condition that Ext0

and Ext1 be finite (which in practice means ‘finite dimension over a
finite field’). The finite-support incidence algebra in this case is the
Hall algebra of A (cf. Ringel [61]; see also [63], although these sources
twist the multiplication by the so-called Euler form).

For a stable ∞-category A , with mapping spaces assumed to be
locally finite (A.2.1), the finite-support incidence algebra of S(A ) is
the derived Hall algebra. These were introduced by Toën [68] in the
setting of dg-categories.

Hall algebras were one of the main motivations for Dyckerhoff and
Kapranov [19] to introduce 2-Segal spaces. We refer to their work for
development of this important topic.

4.7. Möbius functions and cancellation

We compute the Möbius functions in some of our examples. While
the formula µ = Φeven−Φodd seems to be the most general and uniform
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expression of the Möbius function, it often not the most economical.
At the numerical level, it is typically the case that much more practical
expressions for the Möbius functions can be computed with different
techniques. The Φeven−Φodd should not be dismissed on these grounds,
though: it must be remembered that it constitutes a natural ‘bijective’
account, valid at the objective level, in contrast to many of the elegant
cancellation-free expressions in the classical theory which are often the
result of formal algebraic manipulations, typically power-series repre-
sentations.

Comparison with the economical formulae raises the question whether
these too can be realised at the objective level. This can be answered
(in a few cases) by exhibiting an explicit cancellation between Φeven and
Φodd, which in turn may or may not be given by a natural bijection.

Once a more economical expression has been found for some Möbius
decomposition space X , it can be transported back along any cULF
functor f : Y → X to yield also more economical formulae for Y .

4.7.1. Natural numbers. For the decomposition space N (see 4.1.1),
the incidence algebra is grpdN, spanned by the representables hn, and
with convolution product

ha ∗ hb = ha+b.

To compute the Möbius functor, we have

Φeven =
∑

r even

(Nr {0})r,

hence Φeven(n) is the set of ordered compositions of the ordered set n
into an even number of parts, or equivalently

Φeven(n) = {n ։ r | r even },

the set of monotone surjections. In conclusion, with an abusive sign
notation, the Möbius functor is

µ(n) =
∑

r≥0

(−1)r{n ։ r}.

At the numerical level, this formula simplifies to

µ(n) =
∑

r≥0

(−1)r
(
n− 1

r − 1

)
=





1 for n = 0

−1 for n = 1

0 else,

(remembering that
(
−1
−1

)
= 1, and

(
k
−1

)
= 0 for k ≥ 0).

On the other hand, since clearly the incidence algebra is isomorphic
to the power series ring under the identification |hn| = δn ↔ zn ∈
Q[[z]], and since the zeta function corresponds to the geometric se-
ries

∑
n x

n = 1
1−x

, we find that the Möbius function is 1 − x. This

corresponds the functor δ0 − δ1.
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At the objective level, there is indeed a cancellation of ∞-groupoids
taking place. It amounts to an equivalence of the Phi-groupoids re-
stricted to n ≥ 2:

Φeven|r≥2

$$■
■■

■■
■■

■■

∼ // Φodd|r≥2

zz✉✉
✉✉
✉✉
✉✉
✉

N≥2

which cancels out most of the stuff, leaving us with the much more
economical Möbius function

δ0 − δ1

supported on N≤1. Since N is discrete, this equivalence (just a bijection)
can be established fibrewise:

For each n ≥ 2 there is a natural fibrewise bijection

Φeven(n) ≃ Φodd(n).

To see this, encode the elements (x1, x2, . . . , xk) in Φeven(n) as binary
strings of length n and starting with 1 as follows: each coordinate xi is
represented as a string of length xi whose first bit is 1 and whose other
bits are 0, and all these strings are concatenated. In other words, think-
ing of the element (x1, x2, . . . , xk) as a ordered partition of the ordered
set n, in the binary representation the 1-entries mark the beginning
of each part. (The binary strings must start with 1 since the first
part must begin at the beginning.) For example, with n = 8, the ele-
ment (3, 2, 1, 1, 1) ∈ Φodd(8), is encoded as the binary string 10010111.
Now the bijection between Φeven(n) and Φodd(n) can be taken to sim-
ply flip the second bit in the binary representation. In the example,
10010111 is sent to 11010111, meaning that (3, 2, 1, 1, 1) ∈ Φodd(8) is
sent to (1, 2, 2, 1, 1, 1) ∈ Φeven(8). Because of this cancellation which
occurs for n ≥ 2 (we need the second bit in order to flip), the differ-
ence Φeven − Φodd is the same as δ0 − δ1, which is the cancellation-free
formula.

The minimal solution δ0−δ1 can also be checked immediately at the
objective level to satisfy the defining equation for the Möbius function:

ζ ∗ δ0 = ζ ∗ δ1 + δ0

This equation says

N× {0}

add
��
N

= (N× {1}) + {0}

add+incl
��
N

In conclusion, the classical formula lifts to the objective level.
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4.7.2. Finite sets and bijections. Already for the ‘next’ example,
that of the monoidal groupoid (B,+, 0), whose incidence algebra is the
algebra of species under the Cauchy convolution product (cf. 4.1.3),
the situation is much more subtle.

Similarly to the previous example, we have Φr(S) = Surj(S, r), but
this time we are dealing with arbitrary surjections, as S is just an
abstract set. Hence the Möbius functor is given by

µ(S) =
∑

r≥0

(−1)r Surj(S, r).

Numerically, this is much more complicated than what is obtained
from the observation that the incidence algebra, at the Q-level, is just
the power series algebra Q[[z]]: since this time the zeta function is the
exponential exp(z), the Möbius function is exp(−z), corresponding to

µ(n) = (−1)n.

The economical Möbius function suggests the existence of the fol-
lowing equivalence at the groupoid level:

µ(S) =

∫ r

(−1)rhr(S) = Beven(S)− Bodd(S),

where
Beven =

∑

r even

B[r] and Bodd =
∑

r odd

B[r]

are the full subgroupoids of B consisting of the even and odd sets,
respectively. However, it seems that such an equivalence is not possible,
at least not over B: while we are able to exhibit a bijective proof, this
bijection is not natural, and hence does not assemble into a groupoid
equivalence.

Proposition. 4.7.3. For a fixed set S, there are monomorphisms
Beven(S) →֒ Φeven(S) and Bodd(S) →֒ Φodd(S), and a residual bijection

Φeven(S)− Beven(S) = Φodd(S)− Bodd(S).

This is not natural in S, though, and hence does not constitute an
isomorphism of species, only an equipotence of species.

Corollary. 4.7.4. For a fixed S there is a bijection

µ(S) ≃ Beven(S)− Bodd(S)

but it is not natural in S.

Proof of the Proposition. The map Beven → B is a monomorphism, so
for each set S of even cardinality there is a single element to subtract
from Φeven(S). The groupoid Φeven has as objects finite sets S equipped
with a surjection S ։ k for some even k. If S is itself of even cardinality
n, then among such partitions there are n! possible partitions into n
parts. If there were given a total order on S, among these n! n-block
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partitions, there is one for which the order of S agrees with the order
of the n parts. We would like to subtract that one and then establish
the required bijection. This can be done fibrewise: over a given n-
element set S, we can establish the bijection by choosing first a bijection
S ≃ n = {1, 2, . . . , n}, the totally ordered set with n elements.

For each n, there is an explicit bijection

{surjections p : n ։ k | k even, p not the identity map}

↔

{surjections p : n ։ k | k odd, p not the identity map}

Indeed, define first the bijection on the subsets for which p−1(1) 6=
{1}, i.e. the element 1 is not alone in the first block. In this case the
bijection goes as follows. If the elements 1 is alone in a block, join this
block with the previous block. (There exists a previous block as we
have excluded the case where 1 is alone in block 1.) If 1 is not alone
in a block, separate out 1 to a block on its own, coming just after the
original block. Example

(34, 1, 26, 5)↔ (134, 2, 6, 5)

For the remaining case, where 1 is alone in the first block, we just leave
it alone, and treat the remaining elements inductively, considering now
the case where the element 2 is not alone in the second block. In the
end, the only case not treated is the case where for each j, we have
p−1(j) = {j}, that is, each element is alone in the block with the same
number. This is precisely the identity map excluded explicitly in the
bijection. (Note that for each n, this case only appears on one of the
sides of the bijection, as either n is even or n is odd.) �

In fact, already subtracting the groupoid Beven from Φeven is not pos-
sible naturally. We would have first to find a monomorphism Beven →֒
Φeven over B. But the automorphism group of an object n ∈ B is Sn,
whereas the automorphism group of any overlying object in Φeven is a
proper subgroup of Sn. In fact it is the subgroup of those permuta-
tions that are compatible with the surjection n ։ k. So locally the
fibration Φeven → B is a group monomorphism, and hence it cannot
have a section. So in conclusion, we cannot even realise Beven as a full
subgroupoid in Φeven, and hence it doesn’t make sense to subtract it.

One may note that it is not logically necessary to be able to subtract
the redundancies from Φeven and Φodd in order to find the economical
formula. It is enough to establish directly (by a separate proof) that
the economical formula holds, by actually convoluting it with the zeta
functor. At the object level the simplified Möbius function would be
the groupoid

Beven − Bodd.
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We might try to establish directly that

ζ ∗ Beven = ζ ∗ Bodd + ǫ.

This should be a groupoid equivalence over B. But again we can only
establish this fibrewise. This time, however, rather than exploiting a
non-natural total order, we can get away with a non-natural base-point.
On the left-hand side, the fibre over an n-element set S, consists of an
arbitrary set and an even set whose disjoint union is S. In other words,
it suffices to give an even subset of S. Analogously, on the right-hand
side, it amounts to giving an odd subset of S — or in the special case
of S = ∅, we also have the possibility of giving that set, thanks to the
summand ǫ. This is possible, non-naturally:

For a fixed nonempty set S, there is an explicit bijection between even
subsets of S and odd subsets of S.

Indeed, fix an element s ∈ S. The bijection consists of adding s to
the subset U if it does not belong to U , and removing it if it already
belongs to U . Clearly this changes the parity of the set.

Again, since the bijection involves the choice of a basepoint, it seems
impossible to lift it to a natural bijection.

4.7.5. Finite vector spaces. We calculate the Möbius function in
the incidence algebra of the Waldhausen decomposition space of Fq-
vector spaces, cf. 4.3.1. In this case, Φr is the groupoid of strings of
r − 1 nontrivial injections. The fibre over V is the discrete groupoid
of strings of r − 1 nontrivial injections whose last space is V . This
is precisely the set of nontrivial r-flags in V , i.e. flags for which the r
consecutive codimensions are nonzero. In conclusion,

µ(V ) =

n∑

r=0

(−1)r{ nontrivial r-flags in V }.

(That’s in principle a groupoid, but since we have fixed V , it is just a
discrete groupoid: a flag inside a fixed vector space has no automor-
phisms.)

The number of flags with codimension sequence p is the q-multinomial
coefficient (

n

p1, p2, . . . , pr

)

q

.

In conclusion, at the numerical level we find

µ(V ) = µ(n) =
n∑

r=0

(−1)r
∑

p1+···+pr=n
pi>0

(
n

p1, p2, . . . , pr

)

q

.

On the other hand, it is classical that from the power-series repre-
sentation (4.3.1) one gets the numerical Möbius function

µ(n) = (−1)nq(
n
2).
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While the equality of these two expressions can easily be established
at the numerical level (for example via a zeta-polynomial argument,
cf. below), we do not know of a objective interpretation of the expres-

sion µ(n) = (−1)nq(
n
2). Realising the cancellation on the objective level

would require first of all to being able to impose extra structure on V

in such a way that among all nontrivial r-flags, there would be q(
r
2)

special ones!

4.7.6. Faà di Bruno. Recall (from 4.4.1) that the incidence coalgebra
of the category of surjections is the Faà di Bruno coalgebra. Since this is
a monoidal decomposition space, we have at our disposal the notion of
multiplicative function, and these are determined by their values on the
connected surjections. The multiplicative functions form a subalgebra
of the incidence algebra, and clearly this subring contains both ζ and ǫ,
and hence µ. It is therefore sufficient to calculate the Möbius function
on connected surjections.

The general formula gives

µ(n ։ 1) =

n∑

r=0

(−1)nTr(n, r)

where Tr(n, r) is the (discrete) groupoid of n-leaf r-level trees with no
trivial level (in fact, more precisely, strings of r nontrivial surjections
composing to n ։ 1).

On the other hand, classical theory (see Doubilet–Rota–Stanley [16])
gives the following ‘connected Möbius function’:

µ(n) = (−1)n−1(n− 1)!.

In conjunction, the two expressions yield the following combinatorial
identity:

(−1)n−1(n− 1)! =
n∑

r=0

(−1)r#Tr(n, r).

We do not know how to realise the cancellation at the objective level.
This would require developing first the theory of monoidal decompo-
sition spaces and incidence bialgebras a bit further, a task we plan to
take up in the near future.

4.7.7. Zeta polynomials. For a complete decomposition space X ,
we can write

Xr =
∑

w

Xw =
r∑

k=0

(
r

k

)
~Xk.

where w runs over the words of length r in the alphabet {0, a} as in
2.3.6, and the binomial coefficient is an abusive shorthand for that
many copies of ~Xk, embedded disjointly into Xr by specific degeneracy
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maps. Now we fibre over a fixed arrow f ∈ X1, to obtain

(Xr)f =
∞∑

k=0

(
r

k

)
( ~Xk)f ,

where we have now allowed ourselves to sum to ∞.
The ‘zeta polynomial’ of a decomposition space X is the function

ζr(f) : X1 × N −→ Grpd

(f, r) 7−→ (Xr)f

assigning to each arrow f and length r the ∞-groupoid of r-simplices
with long edge f . We don’t actually know whether in general this is
a polynomial in r, but when we know how to compute it, and it is a
polynomial, then we can substitute r = −1 into it to find (assuming of
course that X is a complete):

ζ−1(f) =

∞∑

k=0

(−1)kΦk(f)

Hence ζ−1(f) = µ(f), as the notation suggests.
In some cases there is a polynomial formula for ζr(f). For example,

in the case X = (N,+) we find ζr(n) =
(
n+r−1

n

)
, and therefore µ(n) =(

n−2
n

)
, in agreement with the other calculations (of this trivial example).

In the case X = (B,+), we find ζr(n) = rn, and therefore µ(n) = (−1)n

again.
Sometimes, even when a formula for ζr(n) cannot readily be found,

the (−1)-value can be found by a power-series representation argument.
For example in the case of the Waldhausen S of vect, we have that
ζr(n) is the set of r-flags of Fn

q (allowing trivial steps). We have

ζr(n) =
∑

p1+···+pr=n
pi≥0

[n]!

[p1]! · · · [pr]!
,

and therefore
∞∑

n=0

ζr(n)
zn

[n]!
=

(
∞∑

n=0

zn

[n]!

)r

,

Now ζ−1(n) can be read off as the nth coefficient in the inverted series(∑∞
n=0

zn

[n]!

)−1
. In the case at, hand, these coefficients are (−1)nq(

n
2),

as we already saw.

Once a more economical Möbius function has been found for a de-
composition space X , it can be exploited to yield more economical
formulae for any decomposition space Y with a cULF functor to X .
This is the content of the following obvious lemma:
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Lemma. 4.7.8. Suppose that for the complete decomposition space X
we have found a Möbius inversion formula

ζ ∗Ψ0 = ζ ∗Ψ1 + ǫ.

Then for every decomposition space cULF over X, say f : Y → X, we
have the same formula

ζ ∗ f∗Ψ0 = ζ ∗ f∗Ψ1 + ǫ

for Y .

4.7.9. Length. A length functor on a decomposition space X is a
simplicial map from X to the nerve of (N,+). A length functor yields
a grading on the incidence (co)algebra. In the rather special situation
when this is cULF, the economical Möbius function formula

µ = δ0 − δ1

for (N,+) induces the same formula for the Möbius functor of X . This
is of course a very restrictive condition; in fact, for nerves of categories,
this happens only for free categories on directed graphs (cf. Street [67]).
For such categories, there is for each n ∈ N a linear span δn consisting
of all the arrows of length n. In particular, δ0 is the span X1 ← X0 → 1
(the inclusion of the vertex set into the set of arrows), and δ1 is the
span X1 ← E → 1, the inclusion of the original set of edges into the
set of all arrows. The simplest example is the free monoid on a set S,
i.e. the monoid of words in the alphabet S. The economical Möbius
function is then δ0 − δ1, where δ1 =

∑
s∈S δ

s. In the power series ring,
with a variable zs for each letter s ∈ S, it is the series 1−

∑
s∈S zs.

4.7.10. Decomposition spaces over B (4.1.3). Similarly, if a de-
composition space X admits a cULF functor ℓ : X → B (which may
be thought of as a ‘length function with symmetries’) then at the nu-
merical level and at the objective level, locally for each object S ∈ X1,
we can pull back the compact Möbius ‘functor’ µ(S) =

∑
n(−1)

nhn(S)
from B to X , yielding the numerical Möbius function on X

µ(f) = (−1)ℓ(f).

An example of this is the coalgebra of graphs 4.5.1 of Schmitt [64]: the
functor from the decomposition space of graphs to B which to a graph
associates its vertex set is cULF. Hence the Möbius function for this
decomposition space is

µ(G) = (−1)#V (G).

In fact this argument works for any restriction species.
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5. Restriction species and directed restriction species

We show that restriction species and their associated coalgebras in
the sense of Schmitt [64] are examples of decomposition spaces. Then
we introduce the notion of directed restriction species, which covers var-
ious classical combinatorial coalgebras (such as for example the Connes-
Kreimer bialgebra) and show that they also come from decomposition
spaces. We unify the proofs of these results by giving a general con-
struction of decomposition spaces from what we call sesquicartesian
fibrations over the ordinal category ∆, involving covariant functorial-
ity in all maps, and contravariant functoriality in convex inclusions.

The general construction can be viewed as follows. Since a monoid
can be considered a one-object category, it yields in particular a de-
composition space. Instead of regarding a monoid as a Segal space
X : ∆op → Grpd with the property that X0 = 1, monoids can be
encoded as monoidal functors

(∆,+, 0)→ (Grpd,×, 1),

and hence in particular are certain kinds of left fibrations X → ∆. In
this setting, a weaker structure than monoid is sufficient to obtain a
decomposition space.

5.1. Restriction species (in the sense of Schmitt)

5.1.1. Restriction species. The notion of restriction species was
introduced by Schmitt [64]: it is simply a presheaf on the category I
of finite sets and injections. Compared to a classical species [30], a
restriction species R is thus functorial not only on bijections but also
on injections, meaning that a given structure on a set S induces also
such a structure on every subset A ⊂ S (denoted with a restriction
bar):

R[S] −→ R[A]

X 7−→ X|A.

The Schmitt construction associates to a restriction species R : Iop →
Set a coalgebra structure on the vector space spanned by the isoclasses
of R-structures: the comultiplication is

∆(X) =
∑

A+B=S

X|A⊗X|B, X ∈ R[S],

and counit sending only the empty structures to 1.
A morphism of restriction species is just a natural transformation

R ⇒ R′ of functors Iop → Set, i.e. for each finite set S a map
R[S] → R′[S], natural in S. Since the summation in the comulti-
plication formula only involves the underlying sets, it is clear that a
morphism of restriction species induces a coalgebra homomorphism.
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A great many combinatorial coalgebras can be realised by the Schmitt
construction (see [64] and also [1]). For example, graphs (4.5.1), ma-
troids, posets, lattices, categories, etc., form restriction species and
hence coalgebras.

5.1.2. Restriction species as decomposition spaces. Let R :
Iop → Set be a restriction species. It corresponds by the Grothendieck
construction to a (discrete) right fibration

R→ I,

where the total space R is the category of all R-structures and their
structure-preserving injections. Precisely, a structure-preserving injec-
tion from X ∈ R[S] to X ′ ∈ R[S ′] consists of an injection of underlying
sets S ⊂ S ′ such that X ′|S = X .

We construct a simplicial groupoid R where Rk is the groupoid of
R-structures with an ordered partition of the underlying set into k (pos-
sibly empty) parts. Precisely, with reference to the strict version 4.1.8
of the finite-sets-and-bijections-nerve B, we define Rk as the pullback

Rk = B/k ×B Riso.

The pullback construction delivers all the generic maps in R, and so
far the construction works for any species. To define also the free
maps (i.e. outer face maps) we need the restriction structure on R: for
example, the outer face map d⊥ : B/k → B/k−1 is defined by sending
S → k to the pullback

S ′

��

❴
✤

⊂ // S

��
k−1 // k.

Since S ′ →֒ S is an injection, we can use functoriality of R (the fact
that R is a restriction species) to get also the face map for Rk. We
shall formalise these constructions in 5.4.3. Note that by construc-
tion, as cULF over a decomposition space (the decomposition space B
(cf. 4.1.3)), R is again a decomposition space.

Note that the subtlety in getting the free maps involves projecting
away some parts of the underlying set. This means that maps lying
over free maps are not vertical with respect to the projection down to
I. We shall develop theory to deal with this kind of problem.

A morphism of restriction species R→ R′ corresponds to a morphism
of right fibrations R → R′, and it is clear that the construction is
functorial so as to induce a cULF functor of decomposition spaces.

Theorem. 5.1.3. Given a restriction species R, the corresponding
simplicial groupoid R is a decomposition space, and the (cardinality of
the) associated coalgebra is the Schmitt coalgebra of R. A morphism
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of restriction species induces a cULF functor, whose cardinality is the
coalgebra homomorphism resulting from the Schmitt construction.

We have already exploited (4.1.3) that lower dec of B is I, the nerve
of the category of injections I. Similarly, it is straightforward to check
that:

Lemma. 5.1.4. The lower dec of the decomposition space of a restric-
tion species R is the fat nerve of R.

5.1.5. Convex poset inclusions. Recall that a subposet V ⊂ P is
convex if a, b ∈ V and a ≤ x ≤ b imply x ∈ V . Let C denote the
category of finite posets and convex poset inclusions.

An ordered monotone partition of a poset X is by definition a mono-
tone map X → k for k ∈ ∆. Note that the fibres of such a map are
convex subposets of X .

5.1.6. Directed restriction species. We introduce a new notion
of directed restriction species, which is a generalisation of well-known
constructions with lattices — see for example Schmitt [65] and also
Figueroa and Gracia-Bond́ıa [21].

A directed restriction species is by definition a functor

R : Cop → Grpd,

or equivalently, by the Grothendieck construction, a right fibration
R→ C. The idea is that the value on a poset S is the groupoid of all
possible R-structures that have S as underlying poset. A morphism of
directed restriction species is just a natural transformation.

Example. 5.1.7. The category of posets and convex inclusions is
the terminal directed restriction species. Similarly there is a directed
restriction species of lattices with convex inclusions, or categories with
fully faithful cULF functors. (Note that a category has an underlying
poset, namely by (−1)-truncation of all hom sets.) Rooted forests
and convex maps form a directed restriction species. Similarly for
directed graphs. In all these cases, there is a notion of underlying
poset, which inherits the given structure from the ambient one. Note
that in each case there is also a plain restriction species: in fact any
subset of elements, convex or not, inherits the given structure.

5.1.8. Coalgebras from directed restriction species. Let R be
any directed restriction species. An admissible cut of an object X ∈
R[S] is by definition a monotone map from the underlying poset S to 2.
That is, an admissible cut is an ordered monotone partition A+B = S.
This agrees with the notion of admissible cut in Connes–Kreimer, and
in related examples. Let R2 be the groupoid of R-structures with an
admissible cut.
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A coalgebra is defined by the rule

(17) ∆(X) =
∑

A+B=S

X|A⊗X|B, X ∈ R[S].

Here the sum is over π0R2, that is, all isomorphism classes of admissible
cuts.

A special case of this construction is the Connes–Kreimer coalge-
bra of (combinatorial) trees (4.5.2). And also the Manchon–Manin
coalgebra of directed graphs (4.5.6). Various examples of cobordism
categories can also be envisioned.

5.1.9. Decomposition spaces from directed restriction species.
If R → C is a directed restriction species, let Rk be the groupoid of
R-structures on posets S with ordered monotone partitions into k pos-
sibly empty parts. In other words, R2 is the groupoid of R-structures
with an admissible cut, and Rk is the groupoid of R-structures with
k − 1 compatible admissible cuts. The Rk form a simplicial groupoid.
The functoriality in generic maps is clear, as these do not alter the un-
derlying poset S. Functoriality in free maps comes from the structural
restrictions, noting that free maps correspond to convex inclusions.

Theorem. 5.1.10. The construction just outlined defines a decom-
position space, whose incidence coalgebra coincides with Formula (17).
Morphisms of directed restriction species induce cULF functors and
hence coalgebra homomorphisms.

The theorem can be proved by a direct verification. The only sub-
tlety is to establish functoriality in free maps of ∆. Rather than ren-
dering this verification we prefer to take a rather abstract approach in
the following subsections, establishing a general method for providing
functoriality in free maps.

5.1.11. Decalage. Taking upper or lower dec of the decomposition
space of a directed restriction species yields Segal spaces. The lower
dec gives the (fat nerve of the) subcategory of R consisting of the maps
that are order ideal inclusions (i.e. convex inclusions which are also
downward closed). For example, in the case of the directed restriction
species of forests, we get the category of forests and root-preserving
inclusions of Dür [17]. Similarly, the upper dec yields the (fat nerve
of the) subcategory of R consisting of the maps that are order filter
inclusions (i.e. convex inclusions which are also upward closed).

5.2. Further simplicial preliminaries

5.2.1. Finite ordinals. Recall that ∆ is the category whose objects
are the finite (possibly empty) ordinals k := {1, 2, . . . , k}, and whose
arrows are the monotone maps. The distance-preserving maps in ∆
(which in the subcategory ∆ ⊂ ∆ we call ‘free maps’) are called convex:
they are those i : k′ → k such that i(x+1) = i(x)+1, for all 1 ≤ x < k′.
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We denote the convex maps by arrows ֌. Observe that the convex
maps are just the canonical inclusions

f : n→ a + n+ b,

Lemma. 5.2.2. Convex maps in ∆ admit basechange along any map.
In other words, given the solid cospan consisting of f and i, with i
convex,

·
❴
✤

//❴❴❴

��
i′

��✤
✤
✤

·
��
i
��

·
f

// ·

the pullback exists and i′ is again convex.

5.2.3. Convex correspondences. Denote by ∇ the category of con-
vex correspondences in ∆: the objects are those of ∆, and a morphism
is a span

k′ koo
ioo f // n

where i is convex. Composition of such spans is given by pullback, as
allowed by the lemma. By construction, ∇ has a factorisation system
in which the left-hand class (called backward convex maps) consists of

spans of the form · ·oooo = // · , and the right class (called ordinalic)

consists of spans of the form · ·
=oo // · ; the right hand class forms

of course a subcategory isomorphic to ∆. Note that∇ has a zero object,
namely 0. The zero maps are n ֋ 0→ k.

A map in ∇ can be understood as a monotone map, but defined
possibly only on a certain middle convex part of an ordinal. The com-
plement of the domain of definition consists of a bottom part and a
top part. We can make such partial maps total by introducing new
artificial bottom and top elements, and understand that the undefined
parts are mapped there. Hence we are led to consider finite ordinals
with a bottom and a top element:

5.2.4. Finite strict intervals. Let Ξ denote the category of finite
strict intervals (cf. Joyal [34]): its objects are finite ordinals with a
bottom and a top element required to be distinct, and the arrows are
the monotone maps that also preserve bottom and top. We denote an
object by the number of inner points, so as to write for example

k := {⊥, 1, 2, . . . , k,⊤}.

(This naming convention is different from that we will use in Section 6,
where our viewpoint on the same category is a bit different.)

There is a canonical embedding

∆ →֒ Ξ
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which to an ordinal adjoins a new bottom and a new top element. In
particular the indexing convention is designed to reflect this embed-
ding. Ξ has a factorisation system in which the left-hand class consists
of maps for which the inverse image of every inner point is singleton
(called coconvex), and whose right-hand class are the maps for which
the inverse image of each of the outer points is singleton, in other words,
they are the maps coming from ∆ (called ordinalic).

From the descriptions we see that the categories ∇ and Ξ are almost
the same; the only difference is for maps factoring through 0: in ∇
each hom set Hom∇(n, k) contains exactly one such map, namely the
zero map n ֋ 0 → 0, whereas in HomΞ(n, k) there are n + 1 maps
through 0, depending on which elements map to top and bottom in the
first step n→ 0.

Lemma. 5.2.5. There is a canonical functor Ξ→∇, which is bijective
on objects, and restricts to an isomorphism on the common subcategory
∆, and also restricts to an isomorphism Ξ≥1

coconv.
∼→ ∇

≥1
back.conv.:

∆

{{✇✇
✇✇
✇✇
✇✇
✇✇

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

Ξ // ∇

Ξ≥1
coconv.

OO

≃ // ∇≥1
back.conv.

OO

All maps n→ 0 in Ξ are sent to the zero map n ֋ 0→ 0 in ∇.

The following is standard [34]:

Lemma. 5.2.6. There is a canonical isomorphism of categories

∆op ≃ Ξ

restricting to an isomorphism

∆op
gen ≃ ∆.

The generic maps in ∆ correspond to the ordinalic maps in Ξ, and the
free maps in ∆ correspond to the coconvex in Ξ.

Combining these maps we get

Corollary. 5.2.7. There is a canonical functor ∆op → ∇, which is
bijective on objects, and restricts to an isomorphism on the common
subcategories ∆op

gen, takes the free maps to the backward-convex maps in

∇, restricting to an isomorphism (∆op
free)

≥1 ∼→ ∇
≥1
back.conv., as indicated
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here:

∆op
gen

yyttt
tt
tt
tt

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

∆op // ∇

(∆op
free)

≥1

OO

≃ // ∇≥1
back.conv.

OO

All maps [0]→ [n] in ∆ are sent to the zero map n ֋ 0→ 0 in ∇.

Corollary. 5.2.8. A simplicial space X : ∆op → Grpd with X0 = 1
can be realised from a ∇-diagram.

Indeed, since X0 is terminal, all the maps Xn → X0 coincide, so X
factors through ∇.

5.2.9. Identity-extension squares. A square in ∆

n
j //

f

��

n′

g

��

k //
i

// k′

in which the bottom map i is a convex map is called an identity-
extension square if is it of the form

n // j //

f
��

a + n+ b

ida +f+idb
��

k //
i

// a+ k + b.

Lemma. 5.2.10. An identity-extension square is both a pullback and
a pushout.

Lemma. 5.2.11. (1) An identity-extension square is uniquely de-
termined by i and f .

(2) An identity-extension square is uniquely determined by j and
f , provided n > 0.

Note a special case:

0 // //

��

k′

id
��

0 //
i

// k′

is an identity-extension square, but there is more than one way to
choose the a and b parts.
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Recall from Lemma 1.1.5 that in ∆ the pushout of a generic map
along a free map is an iesq, and every iesq in which g is generic is such
a pushout.

Proposition. 5.2.12. Under the correspondence of Corollary 5.2.7,
there is a bijection between the set of identity-extensions squares in
∆ and the set of identity-extension squares in ∆ in which the vertical
maps are generic





n′

��

noooo

��
k′ koooo

in ∆





=





[n′] [n]oooo

[k′]

❴OO

[k]oooo

❴OO

in ∆





except in the case k = 0.

In the case k = 0, we necessarily have n = 0 and n′ = k′, but there
is not even a bijection on the bottom arrows.

Proof. The bijection is the composite of the three bijections




n′

��

noooo

��
k′ koooo





=





n′

��

k′ koooo





=





[n′]

[k′]

❴OO

[k]oooo





=





[n′] [n]oooo

[k′]

❴OO

[k]oooo

❴OO





where the first bijection is by Lemma 5.2.11 (1), the second is by Corol-
lary 5.2.7 (here we use that k 6= 0), and the third is by Lemma 5.2.11
(2) restricted to the subcategory ∆. �

Proposition. 5.2.13. If a covariant functor M : ∇ → Grpd sends
identity-extension squares to pullbacks then the composite

∆op →∇→ Grpd

is a decomposition space.

Similarly:

Proposition. 5.2.14. Let u : M ′ ⇒ M : ∇ → Grpd be a natural
transformation between functors that send identity-extension squares
to pullbacks. If u is cartesian on arrows in ∆ ⊂ ∇, then it induces a
cULF functor between decomposition spaces.

5.2.15. Example: monoids. A monoid viewed as a monoidal functor
(∆,+, 0) → (Grpd,×, 1) defines a ∇-space which satisfies iesq. The
contravariant functoriality on the convex maps is given as follows. The
value on a convex map n ֌ a + n+ b is simply the projection

Xa+n+b ≃ Xa ×Xn ×Xb −→ Xn,
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where the first equivalence expresses that X is monoidal. The BC con-
dition is implied by the iesq condition, which in turn is about projection
too: for any identity-extension square

a + n+ b

ida +f+idb=g

��

noo
joo

f

��
a + k + b koo

i
oo

the diagram

Xa+n+b
❴
✤

j∗ //

g!
��

Xn

f!
��

Xa+k+b i∗
// Xk

is a pullback, since the upperstar functors are just projections.

5.2.16. Functors out of ∇. In view of the previous propositions,
we are interested in defining functors out of ∇. By its construction as
a category of spans, this amounts to defining a covariant functor on
∆ and a contravariant functor on ∆convex which agree on objects, and
such that for every pullback along a convex map the Beck–Chevalley
condition holds. Better still, we can describe these as certain fibra-
tions over ∆, called sesquicartesian fibrations, introduced in the next
subsection. The fact that ∇ is not the whole bicategory of spans, and
that the fibrations are similarly restricted, are just a minor distracting
point. The essential points of the equivalence are well-understood and
documented in the literature, as we proceed to explain.

The following technical result seems to be due to Hermida [27], with
more detailed statement and proof given by Dawson-Paré-Pronk [14].
Our dependence on this result (which we don’t quite know how to
prove in the ∞-setting) means that the rest of this section should be
interpreted only in 1-groupoids and 1-categories.

Proposition. 5.2.17. Let D be a 1-category with pullbacks, and let
B be a bicategory. The natural functor D → Span(D) induces an
equivalence of categories

Hom(Span(D),B) ≃ SinBC(D,B).

Here on the left we have pseudo-functors and pseudo-natural trans-
formations, and on the right we have the category whose objects are
sinister pseudofunctors satisfying the Beck-Chevalley condition (BC),
and whose morphisms are the sinister pseudo-natural transformations.
A pseudofunctor is sinister [14] if it sends all arrows to left adjoints, and
it is BC if the image of any comma square has invertible mate. A sin-
ister pseudo-natural transformation (between sinister pseudo-functors)
is one whose naturality squares have invertible mate.
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On the other hand, when B = Cat we have:

Proposition. 5.2.18. There is a natural equivalence of categories

SinBC(D,Cat) ≃ BicartBC(D).

Here on the right we have the category whose objects are bicartesian
fibrations over D satisfying the Beck-Chevalley condition, and whose
morphisms are functors over D preserving both cartesian and cocarte-
sian arrows.

The proof of this result can be found (in the ∞-case) in Lurie [51],
Proposition 6.2.3.17. Note however that Lurie does not consider the
Beck-Chevalley condition (although he uses this name for something
similar). More precisely he proves that bicartesian fibrations corre-
spond to sinister functors and sinister transformations (called by him
right-adjointable squares). It is clear though that the Beck-Chevalley
condition goes on top of his result.

In the case at hand, the base category is ∆, but we only allow pull-
backs along convex maps.

5.3. Sesquicartesian fibrations

A functor X → S is called a bicartesian fibration ([51], 6.2.3.1) when
it is simultaneously a cartesian and a cocartesian fibration. We are
interested in bicartesian fibrations over ∆, except that we only require
the cartesianness over ∆convex. We call these sesquicartesian fibrations.

A sesquicartesian fibration X → ∆ is said to have the iesq property
if for every identity-extension square

a + n+ b

ida +f+idb=g
��

noo
joo

f
��

a + k + b koo
i

oo

the diagram

Xa+n+b
❴
✤

j∗ //

g!
��

Xn

f!
��

Xa+k+b
i∗

// Xk

not only commutes (that’s BC) but is furthermore a pullback.

Proposition. 5.3.1. There is an equivalence of categories

Hom(∇,Cat) ≃ SesqBC(∆),

under which the iesq conditions correspond to each other.
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This is just a variation of the previous result.

So in order to construct nabla spaces satisfying the iesq property, we
can construct sesquicartesian fibrations satisfying iesq, and then take
maximal sub-groupoid.

5.3.2. Two-sided fibrations. Classically (the notion is due to Street),
a two-sided fibration is a span of functors

X

p
��

q // T

S

such that
— p is a cocartesian fibration whose p-cocartesian arrows are pre-

cisely the q-vertical arrows,
— q is a cartesian fibration whose q-cartesian arrows are precisely

the p-vertical arrows
— for x ∈ X , an arrow f in S and g in T , the canonical map

f!g∗x→ g∗f! is an isomorphism.
In the setting of ∞-categories, Lurie [51], Section 2.4.7 (using the

terminology ‘bifibration’) characterise two-sided fibrations as functors
X → S × T subject to a certain horn-filling condition, which among
other technical advantages makes it clear that the notion is stable under
base change S ′ × T ′ → S × T . The classical axioms are derived from
the horn-filling condition.

5.3.3. The category of arrows

Ar(C )
(codom,dom)
−→ C × C

is a two-sided fibration. Assuming that C has pullbacks, the codomain
cocartesian fibration

Ar(C )
codom
→ C

is a bicartesian fibration, and it satisfies BC.

5.3.4. Comma categories. Given functors

B

G
��

A
F

// I

the comma category A↓B is the category whose objects are triples
(a, b, φ), where a ∈ A, b ∈ B, and φ : Fa → Gb. More formally it
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is defined as the pullback two-sided fibration

A↓B
❴
✤

//

��

Ar(I)

(codom,dom)

��
B ×A

G×F
// I × I.

Note that the factors come in the opposite order: A↓B → B is the
cocartesian fibration, and A↓B → A the cartesian fibration.

Lemma. 5.3.5. Given a two-sided fibration X → S × T , and let
R→ T be any map. Then the left-hand composite

X ×T R
❴
✤

//

��

R

��
X

p
��

q // T

S

is a cocartesian fibration.

Proof. It is the pullback two-sided fibration of X → S × T along S ×
R→ S × T . �

Corollary. 5.3.6. In the situation of the previous lemma, if X → S
is furthermore a bicartesian fibration and if R → T is a cartesian
fibration, then the left-hand composite is a bicartesian fibration. If
X → S satisfies BC, then so does the left-hand composite.

We don’t actually need this result, but rather the following more
special case.

Lemma. 5.3.7. If X → ∆ × T is a two-sided fibration such that
X → ∆ is a sesquicartesian fibration, then for any cartesian fibration
R→ T , the left-hand composite in the diagram

X ×T R
❴
✤

//

��

R

��
X

��

// T

∆

is a sesquicartesian fibration. Furthermore, if X → ∆ is iesq, then so
is the left-hand composite.
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Proof. The only non-trivial statement is about the iesq condition: given
the pullback square

Xa+n+b
❴
✤

j∗ //

g!
��

Xn

f!
��

Xa+k+b i∗
// Xk

expressing that X → S has the iesq property, the corresponding square
for X ×T R → S is simply obtained applying − ×T R to it, hence is
again a pullback. �

5.4. Decomposition spaces from sesquicartesian fibrations

5.4.1. Restriction species and directed restriction species. Re-
call that a restriction species is a right fibration R→ I, where I is the
category of finite sets and injections, and that a directed restriction
species is a right fibration R → C, where C denotes the category of
posets and convex poset inclusions.

Proposition. 5.4.2. The projection I↓∆→ ∆ is an iesq sesquicarte-
sian fibration.

Proof. The comma category is taken over Set. The objects of I↓∆ are
maps S → k, and the arrows are squares in Set

T //

��

S

��
n // k

with T → S injective and n→ k monotone. Just from being a comma
category projection, I↓∆→ ∆ is a cocartesian fibration. The cocarte-
sian arrows are squares in Set of the form

S
= //

��

S

��
n // k.

Over ∆convex it is also a cartesian fibration, as follows readily from
the fact that the pullback lying over a convex map is injective: the
cartesian arrows over a convex map are squares in Set of the form

S ′

❴
✤

//

��

S

��
k′ // // k
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Beck-Chevalley is a consequence of the iesq property. For the latter we
need to check that given

a + n+ b

ida +f+idb=g
��

noo
joo

f
��

a + k + b koo
i

oo

the resulting square

I/a+n+b
❴
✤

j∗ //

g!

��

I/n

f!
��

I/a+k+b i∗
// I/k

is a pullback. But this is clear since I is an extensive category. �

Corollary. 5.4.3. For any restriction species R→ I the comma cate-
gory projection R↓∆→ ∆ is an iesq sesquicartesian fibration.

Proof. This follows from Lemma 5.3.7. �

Proposition. 5.4.4. The projection C↓∆→ ∆ is an iesq sesquicarte-
sian fibration.

Proof. The comma category is taken over Poset. The objects of C↓∆
are poset maps S → k, and the arrows are squares in Poset

T //

��

S

��
n // k

with T → S a convex poset inclusion and n→ k a monotone map. Just
from being a comma category projection, C↓∆ → ∆ is a cocartesian
fibration. The cocartesian arrows are squares in Poset of the form

S
= //

��

S

��
n // k

Over ∆convex it is also a cartesian fibration, as follows readily from
the fact that the pullback lying over a convex map is a convex poset
inclusion: the cartesian arrows over a convex map are squares in Poset

of the form

S ′

❴
✤

// //

��

S

��
k′ // // k



DECOMPOSITION SPACES 95

Beck-Chevalley is obvious from the fact that the cartesian arrows are
pullback squares. Finally for the iesq property, here the argument is
trickier than in the case of finite sets and injections. We need to check
that given

a + n+ b

ida +f+idb=g
��

noo
joo

f
��

a + k + b koo
i

oo

the resulting square

C/a+n+b
❴
✤

j∗ //

g!

��

C/n

f!
��

C/a+k+b i∗
// C/k

is a pullback. This time it is not the case that C is extensive. Never-
theless, the iesq property is a direct check: an element in the pullback
C/n ×C/k

C/k′ amounts of a diagram

S //

��

❴
✤

T

��

n

��
k // // k′

Here the part S → n is the element in C/n, and T → a + k + b is the
element in C/k′, and saying that they have the same image in C/k is to
say that we have the pullback diagram. The claim is that given this
diagram, there is a unique way to complete it to

S //

��

❴
✤

T

��

��❄
❄

❄
❄

n // //

��

n′

��✁✁
✁✁
✁✁
✁

k // // k′

Namely, on the element level T has three parts, namely the inverse
images Ta, Tk and Tb. (We don’t need to worry about the poset struc-
ture, since we already know all of T . The crucial thing is therefore that
the covariant functoriality does not change the total space!). We now
define T → n′ = a + n + b as follows: we use Ta → a and Tb → b on
the outer parts. On the middle part we know that Tk = S, so here we
just use the map S → n. �
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Corollary. 5.4.5. For any directed restriction species R → C the
comma category projection R↓∆ → ∆ is an iesq sesquicartesian fibra-
tion.

Proof. This follows from Lemma 5.3.7. �

Now, by Propositions 5.2.13 and 5.3.1, iesq sesquicartesian fibra-
tions over ∆ define decomposition spaces. The previous two corollaries
therefore imply:

Corollary. 5.4.6. Restriction species and directed restriction species
define decomposition spaces.

5.4.7. Towards decomposition categories. An iesq sesquicartesian
fibration defines actually a decomposition category, not just a decom-
position space. In fact we started this section observing that we are
generalising the notion of monoid, which in our terminology includes
monoidal groupoids. But many of our examples were actually monoidal
categories, not just monoidal groupoids. It is therefore natural that
the constructions meant to generalise these give actually simplicial di-
agrams in categories, not just in spaces or sets. We leave for another
occasion the study of decomposition categories.

6. The decomposition space of Möbius intervals

Lawvere (in 1988, unpublished until Lawvere-Menni [43]) observed
that there is a coalgebra (in fact a Hopf algebra) of isoclasses of Möbius
intervals, which receives a canonical coalgebra homomorphism from
any incidence coalgebra of a Möbius category. Furthermore, this Hopf
algebra has Möbius inversion, and therefore Möbius inversion in all
other incidence algebras (of Möbius categories) are induced from this
master inversion formula.

Here is the idea: a Möbius interval is a Möbius category (in the
sense of Leroux) having an initial and a terminal object (not neces-
sarily distinct). (It follows that it is actually a finite category.) An
arrow a : x → y in a Möbius category C determines ([42]) a Möbius
interval I(a) (mimicking the identification of arrows and intervals in
a poset), namely the category of factorisations of a: this category has
an initial object 0 given by the factorisation id-followed-by-a, and a
terminal object 1 given by the factorisation a-followed-by-id. There is
a canonical conservative ULF functor from I(a) → C, sending 0 to x,
sending 1 to y, and sending 0 → 1 to a. The longest arrow 0 → 1 in
I(a) has the same decomposition structure as a in C, and hence the
comultiplication of a can be computed inside I(a).

Any collection of Möbius intervals closed under subintervals defines
a coalgebra. It is an interesting integrability condition for such a col-
lection to come from a single Möbius category. The Lawvere coalgebra
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is simply the collection of all Möbius intervals (i.e. one from each iso-
class).

Now, the coalgebra of Möbius intervals cannot be the coalgebra of a
single Möbius Segal category, because such a Segal category X would
have to haveX1 the space of all Möbius intervals, andX2 the space of all
subdivided Möbius intervals. But a Möbius interval with a subdivision
(i.e. a midpoint) contains more information than the two parts of the
subdivision: one from 0 to the midpoint, and one from the midpoint
to 1. This shows that the Segal condition is not verified.

We shall prove that the space of all intervals is a decomposition
space, as suggested by this figure:

While the idea is intuitively easy to grasp, a considerable amount
of machinery is needed to construct the universal decomposition space
and to get sufficient hold of its structural properties to prove the de-
sired results about it. The main technicalities concern factorisation
systems. We start with a subsection on general theory about factori-
sation systems, some results of which are already available in Lurie’s
book [49].

We then develop the theory of intervals, and construct the decompo-
sition space of all intervals. We do it first without finiteness conditions,
which we impose at the end.

6.1. Factorisation systems and cartesian fibrations

For background to this subsection, see Lurie [49], § 5.2.8.

6.1.1. Factorisation systems. A factorisation system on an ∞-
category D consists of two classes E and F of maps, that we shall
depict as ։ and ֌, such that

(1) The classes E and F are closed under equivalences.
(2) The classes E and F are orthogonal, E⊥F . That is, given e ∈ E

and f ∈ F , for every solid square

· //

e
����

·
��
f

��
·

@@✁
✁

✁
✁

// ·

the space of fillers is contractible.
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(3) Every map h admits a factorisation

·
h //

e && &&◆◆
◆◆

◆◆
◆◆

◆ ·

·
88 f

88♣♣♣♣♣♣♣♣

with e ∈ E and f ∈ F .

(Note that in [49, Definition 5.2.8.8], the first condition is given as
‘stability under formation of retracts’. In fact this stability follows from
the three conditions above. Indeed, suppose h⊥F ; factor h = f ◦ e as
above. Since h⊥f , there is a diagonal filler in

·
e // //

h
��

·
��
f

��
·

d
@@✁

✁
✁

✁

id
// ·

Now d belongs to ⊥F since e and h do, and d belongs to E⊥ since f and
id do. Hence d is an equivalence, and therefore h ∈ E, by equivalence
stability of E. Hence E = ⊥F , and is therefore closed under retracts.
Similarly for F . It also follows that the two classes are closed under
composition.)

6.1.2. Set-up. In this subsection, fix an∞-category D with a factori-
sation system (E, F ) as above. Let Ar(D) = Fun(∆[1],D), whose 0-
simplices we depict vertically, then the domain projection Ar(D)→ D

(induced by the inclusion {0} →֒ ∆[1]) is a cartesian fibration; the
cartesian arrows are the squares of the form

· //

��

·

��
·

∼ // ·

Let ArE(D) ⊂ Ar(D) denote the full subcategory spanned by the
arrows in the left-hand class E.

Lemma. 6.1.3. The domain projection ArE(D) → D is a cartesian
fibration. The cartesian arrows in ArE(D) are given by squares of the
form

· //

����

·

����
· // // ·
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Proof. The essence of the argument is to provide uniquely the dashed
arrow in

A

''PP
PP

PP
PP

PP
PP

PP
PP

  ❅
❅❅

❅❅
❅❅

❅❅

����
S

PP
PP

PP
P

''PP
PP

PP
P

  ❅
❅

❅
❅ · //

����

·

����
X // // Y

which amounts to filling

A //

����

X
��

��
S

??⑧
⑧

⑧
⑧

// Y,

in turn uniquely fillable by orthogonality E⊥F . �

Lemma. 6.1.4. The inclusion ArE(D) → Ar(D) admits a right ad-
joint w. This right adjoint w : Ar(D) → ArE(D) sends an arrow a to
its E-factor. In other words, if a factors as a = f ◦ e then w(a) = e.

Proof. This is dual to [49, 5.2.8.19]. �

Lemma. 6.1.5. The right adjoint w sends cartesian arrows in Ar(D)
to cartesian arrows in ArE(D).

Proof. This can be seen from the factorisation:

· //

��

·

��
·

∼ // ·

7→

·

����

// ·

����
· //
��

��

·
��

��
·

∼ // ·

The middle horizontal arrow is forced into F by the closure properties
of right classes. �

Let Fun′(Λ1
2,D) = ArE(D)×D ArF (D) denote the∞-category whose

objects are pairs of composable arrows where the first arrow is in E
and the second in F . Let Fun′(∆[2],D) denote the ∞-category of
2-simplices in D for which the two ‘short’ edges are in E and F respec-
tively. The projection map Fun′(∆[2],D) → Fun′(Λ1

2,D) is always a
trivial Kan fibration, just because D is an ∞-category.

Proposition. 6.1.6. ([49, 5.2.8.17].) The projection Fun′(∆[2],D)→
Fun(∆[1],D) induced by the long edge d1 : [1] → [2] is a trivial Kan
fibration.
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Corollary. 6.1.7. There is an equivalence of ∞-categories

Ar(D) ∼→ ArE(D)×D ArF (D)

given by (E, F )-factoring an arrow.

Proof. Pick a section to the map in 6.1.6 and compose with the pro-
jection discussed just prior. �

Let x be an object in D , and denote by DE
x/ the ∞-category of E-

arrows out of x. More formally it is given by the pullback

DE
x/
❴
✤

//

��

ArE(D)

dom
��

∗
pxq

// D

Corollary. 6.1.8. We have a pullback

Dx/
❴
✤

//

��

ArF (D)

dom

��
DE

x/
// D

Proof. In the diagram

Dx/
❴
✤

//

��

Ar(D)
❴
✤

//

w

��

ArF (D)

dom

��
DE

x/
❴
✤

//

��

ArE(D)
codom

//

dom
��

D

∗
pxq

// D

the right-hand square is a pullback by 6.1.7; the bottom square and
the left-hand rectangle are clearly pullbacks, hence the top-left square
is a pullback, and hence the top rectangle is too. �

Lemma. 6.1.9. Let e : x → x′ be an arrow in the class E. Then we
have a pullback square

Dx′/
❴
✤

w

��

e! // Dx/

w

��

DE
x′/ e!

// DE
x/

Here e! means ‘precompose with e’.
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Proof. In the diagram

Dx′/

w

��

e! // Dx/
❴
✤

w

��

// ArF (D)

dom

��
DE

x′/ e!
// DE

x/ codom
// D

the functor Dx/ → ArF (D) is ‘taking F -factor’. Note that the horizon-
tal composites are again ‘taking F -factor’ and codomain, respectively,
since precomposing with an E-map does not change the F -factor. Since
both the right-hand square and the rectangle are pullbacks by 6.1.8,
the left-hand square is a pullback too. �

6.1.10. Restriction. We shall need a slight variation of these results.
We continue the assumption that D is a ∞-category with a factorisa-
tion system (E, F ). Given a full subcategory A ⊂ D , we denote by
A↓D the ‘comma category of arrows in D with domain in A’. More
precisely it is defined as the pullback

A↓D
❴
✤

dom
��

f.f // Ar(D)

dom
��

A
f.f

// D

(This is dual to Artin gluing (cf. [24]).) The map A↓D → A is a
cartesian fibration. Similarly, let ArE(D)|A denote the comma category
of E-arrows with domain in A, defined as the pullback

ArE(D)|A
❴
✤

dom
��

f.f // ArE(D)

dom
��

A
f.f

// D

Again ArE(D)|A → A is a cartesian fibration (where the cartesian ar-
rows are squares whose top part is in A and whose bottom horizontal
arrow belongs to the class E). These two fibrations are just the restric-
tion to A of the fibrations Ar(D) → D and ArE(D) → D . Since the
coreflection Ar(D) → ArE(D) is vertical for the domain fibrations, it
restricts to a coreflection w : A↓D → ArE(D)|A.

Just as in the unrestricted situation (Corollary 6.1.7), we have a
pullback square

A↓D
❴
✤

//

w
��

ArF (D)

��
ArE(D)|A // D
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saying that an arrow in D factors like before, also if it starts in an
object in A. Corollary 6.1.8 is the same in the restricted situation —
just assume that x is an object in A. Lemma 6.1.9 is also the same,
just assume that e : x′ → x is an E-arrow between A-objects.

The following easy lemma expresses the general idea of extending a
factorisation system.

Lemma. 6.1.11. Given an adjunction L : D
//
C : Roo and given

a factorisation system (E, F ) on D with the properties
— RL preserves the class F ;
— Rǫ belongs to F ;

consider the full subcategory D̃ ⊂ C spanned by the image of L. (This
can be viewed as the Kleisli category of the monad RL.) Then there

is an induced factorisation system (Ẽ, F̃ ) on D̃ ⊂ C with Ẽ := L(E)

(saturated by equivalences), and F̃ := R−1F ∩ D̃ .

Proof. It is clear that the classes Ẽ and F̃ are closed under equivalences.

The two classes are orthogonal: given Le ∈ Ẽ and f̃ ∈ F̃ we have Le⊥f̃
in the full subcategory D̃ ⊂ C if and only if e⊥Rf̃ in D , and the latter

is true since Rf̃ ∈ F by definition of F̃ . Finally, every map g : LA→ X

in D̃ admits an (Ẽ, F̃ )-factorisation: indeed, it is transpose to a map
A→ RX , which we simply (E, F )-factor in D ,

A //

e &&▼▼
▼▼

▼▼
▼▼

▼ RX,

D
f

77♦♦♦♦♦♦♦♦

and transpose back the factorisation (i.e. apply L and postcompose
with the counit): g is now the composite

LA
Le // LD

Lf // LRX
ǫ // X,

where clearly Le ∈ Ẽ, and we also have ǫ ◦ Lf ∈ F̃ because of the two
conditions imposed. �

6.1.12. Remarks. By general theory (6.1.4), having the factorisation

system (Ẽ, F̃ ) implies the existence of a right adjoint to the inclusion

ArẼ(D̃) −→ Ar(D̃).

This right adjoint returns the Ẽ-factor of an arrow.
Inspection of the proof of 6.1.11 shows that we have the same fac-

torisation property for other maps in C than those between objects in
ImL, namely giving up the requirement that the codomain should be-
long to ImL: it is enough that the domain belongs to ImL: every map

in C whose domain belongs to ImL factors as a map in Ẽ followed by a
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map in F̃ := R−1F , and we still have Ẽ⊥F̃ , without restriction on the
codomain in the right-hand class. This result amounts to a coreflection:

Theorem. 6.1.13. In the situation of Lemma 6.1.11, let D̃↓C ⊂
Ar(C ) denote the full subcategory spanned by the maps with domain in
ImL. The inclusion functor

ArẼ(D̃) →֒ D̃↓C

has a right adjoint, given by factoring any map with domain in ImL

and returning the Ẽ-factor. Furthermore, the right adjoint preserves
cartesian arrows (for the domain projections).

Proof. Given that the factorisations exist as explained above, the proof
now follows the proof of Lemma 5.2.8.18 in Lurie [49], using the dual
of his Proposition 5.2.7.8. �

The following restricted version of these results will be useful.

Lemma. 6.1.14. In the situation of Lemma 6.1.11, assume there is a
full subcategory J : A →֒ D such that

— All arrows in A belong to E.
— If an arrow in D has its domain in A, then its E-factor also

belongs to A.
Consider the full subcategory Ã ⊂ C spanned by the image of LJ . (This
can be viewed as some kind of restricted Kleisli category.) Then there

is induced a factorisation system (Ẽ, F̃ ) on Ã ⊂ C with Ẽ := LJ(E)

(saturated by equivalences), and F̃ := R−1F ∩ Ã.

Proof. The proof is the same as before. �

6.1.15. A basic factorisation system. Suppose C is any∞-category,
and D is an ∞-category with a terminal object 1. Then evaluation on
1 defines a cartesian fibration

ev1 : Fun(D ,C )→ C

for which the cartesian arrows are precisely the cartesian natural trans-
formations. The vertical arrows are the natural transformations whose
component at 1 is an equivalence. Hence the functor ∞-category has
a factorisation system in which the left-hand class is the class of ver-
tical natural transformations, and the right-hand class is the class of
cartesian natural transformations:

X //

eq.on1 ''❖❖
❖❖

❖❖
❖❖

Y

Y ′ cartesian

77♣♣♣♣♣♣♣♣♣
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Finally we shall need the following general result (not related to
factorisation systems):

Lemma. 6.1.16. Let D be any ∞-category. Then the functor

F : D
op −→ Grpd

D 7−→ (DD/)
eq,

corresponding to the right fibration Ar(D)cart → D, preserves pullbacks.

Proof. Observe first that F = colimX∈Deq Map(−, X), a homotopy sum
of representables. Given now a pushout in D ,

D
❴
✤

Boo

A

OO

Coo

OO

we compute, using the distributive law:

F (A
∐

C

B) = colim
X∈Deq

Map(A
∐

C

B,X)

= colim
X∈Deq

(
Map(A,X)×Map(C,X) Map(B,X)

)

= colim
X∈Deq

Map(A,X)×colimMap(C,X) colim
X∈Deq

Map(B,X)

= F (A)×F (C) F (B).

�

6.2. Flanked decomposition spaces

6.2.1. Idea. The idea is that ‘interval’ should mean complete decom-
position space (equipped) with both an initial and a terminal object.
An object x ∈ X0 is initial if the projection mapXx/ → X is a levelwise
equivalence. Here the coslice Xx/ is defined as the pullback of the lower

dec Dec⊥X along 1
pxq
→ X0. Terminal objects are defined similarly with

slices, i.e. pullbacks of the upper dec. It is not difficult to see (compare
Proposition 6.2.17 below) that the existence of an initial or a terminal
object forces X to be a Segal space.

While the intuition may be helpful, it is not obvious that the above
definition of initial and terminal object should be meaningful for Se-
gal spaces that are not Rezk complete. In any case, it turns out to
be practical to approach the notion of interval from a more abstract
viewpoint, which will allow us to get hold of various adjunctions and
factorisation systems that are useful to prove things about intervals.
We come to intervals in the next subsection. First we have to deal with
flanked decomposition spaces.

6.2.2. The category Ξ of finite strict intervals. We denote by
Ξ the category of finite strict intervals (cf. [34], see also 5 where we
took a slightly different viewpoint), that is, a skeleton of the category
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whose objects are nonempty finite linear orders with a bottom and a
top element, required to be distinct, and whose arrows are the maps
that preserve both the order and the bottom and top elements. We
depict the objects as columns of dots, with the bottom and top dot
white, then the maps are the order-preserving maps that send white
dots to white dots, but are allowed to send black dots to white dots.

There is a forgetful functor u : Ξ → ∆ which forgets that there is
anything special about the white dots, and just makes them black. This
functor has a left adjoint i : ∆→ Ξ which to a linear order (column of
black dots) adjoins a bottom and a top element (white dots).

Our indexing convention for Ξ follows the free functor i: the object
in Ξ with k black dots (and two outer white dots) is denoted [k − 1].
Hence the objects in Ξ are [−1], [0], [1], etc. Note that [−1] is an initial
object in Ξ. The two functors can therefore be described on objects
as u([k]) = [k + 2] and i([k]) = [k], and the adjunction is given by the
following isomorphism:

(18) Ξ([n], [k]) = ∆([n], [k+2]) n ≥ 0, k ≥ −1.

6.2.3. New outer degeneracy maps. Compared to ∆ via the inclu-
sion i : ∆→ Ξ, the category Ξ has one extra coface map in Ξ, namely
[−1] → [0]. It also has, in each degree, two extra outer codegeneracy
maps: s⊥−1 : [n] → [n − 1] sends the bottom black dot to the bottom
white dot, and s⊤+1 : [n]→ [n− 1] sends the top black dot to the top
white dot. (Both maps are otherwise bijective.)

6.2.4. Basic adjunction. The adjunction i ⊣ u induces an adjunction
i∗ ⊣ u∗

Fun(Ξop,Grpd)
i∗ //

Fun(∆op,Grpd)
u∗

oo

which will play a central role in all the constructions in this section.
The functor i∗ takes underlying simplicial space: concretely, applied

to a Ξop-space A, the functor i∗ deletes A−1 and removes all the extra
outer degeneracy maps.

On the other hand, the functor u∗, applied to a simplicial space X ,
deletes X0 and removes all outer face maps (and then reindexes).

The comonad

i∗u∗ : Fun(∆op,Grpd)→ Fun(∆op,Grpd)

is precisely the double-dec construction Dec⊥Dec⊤, and the counit of
the adjunction is precisely the comparison map

εX = d⊤d⊥ : i∗u∗X = Dec⊥Dec⊤ X −→ X.

On the other hand, the monad

u∗i∗ : Fun(Ξop,Grpd)→ Fun(Ξop,Grpd)
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is also a kind of double-dec, removing first the extra outer degeneracy
maps, and then the outer face maps. The unit

ηA = s⊥−1s⊤+1 : A→ u∗i∗A

will also play an important role.

Lemma. 6.2.5. If f : Y → X is a cULF map of simplicial spaces,
then u∗f : u∗Y → u∗X is cartesian.

Proof. The cULF condition on f says it is cartesian on ‘everything’
except outer face maps, which are thrown away when taking u∗f . �

Note that the converse is not always true: if u∗f is cartesian then f
is ULF, but there is no information about s0 : Y0 → Y1, so we cannot
conclude that f is conservative.

Dually:

Lemma. 6.2.6. If a map of Ξop-spaces g : B → A is cartesian (or just
cartesian on inner face and degeneracy maps), then i∗g : i∗B → i∗A
is cartesian.

6.2.7. Representables. The representables on Ξ we denote by Ξ[−1],
Ξ[0], etc. By convention we will also denote the terminal presheaf on
Ξ by Ξ[−2], although it is not representable since we have chosen not
to include [−2] (a single white dot) in our definition of Ξ. Note that
(18) says that i∗ preserves representables:

(19) i∗(Ξ[k]) = ∆[k+2], k ≥ −1.

6.2.8. Wide/cartesian factorisation system. Call an arrow in
Fun(Ξop,Grpd) wide if its [−1]-component is an equivalence. Call
an arrow cartesian if it is a cartesian natural transformation of Ξop-
diagrams. By general theory (6.1.15) we have a factorisation system on
Fun(Ξop,Grpd) where the left-hand class is formed by the wide maps
and the right-hand class consists of the cartesian maps. In concrete
terms, given any map B → A, since [−1] is terminal in Ξop, one can pull
back the whole diagram A along the map B−1 → A−1. The resulting
Ξop-diagramA′ is cartesian over A by construction, and by the universal
property of the pullback it receives a map from B which is manifestly
the identity in degree −1, hence wide.

B //

wide ''◆◆
◆◆

◆◆
◆◆

◆ A

A′ cartesian

77♣♣♣♣♣♣♣♣♣

6.2.9. Flanked Ξop-spaces. A Ξop-space A is called flanked if the
extra outer degeneracy maps form cartesian squares with opposite outer
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face maps. Precisely, for n ≥ 0

An−1

s⊥−1

��

An
d⊤oo

✤
❴

s⊥−1

��
An An+1

d⊤

oo

An−1

s⊤+1

��

An
d⊥oo

✤
❴

s⊤+1

��
An An+1

d⊥

oo

Here we have included the special extra face map A−1 ← A0 both as a
top face map and a bottom face map.

Lemma. 6.2.10. (‘Bonus pullbacks’ for flanked spaces.) In a flanked
Ξop-space A, all the following squares are pullbacks:

An−1

s⊥−1

��

An
dioo
✤
❴

s⊥−1

��
An An+1

di+1

oo

An−1
❴
✤

sj //

s⊥−1

��

An

s⊥−1

��
An sj+1

// An+1

An−1

s⊤+1

��

An
dioo
✤
❴

s⊤+1

��
An An+1

di

oo

An−1
❴
✤

sj //

s⊤+1

��

An

s⊤+1

��
An sj

// An+1

This is for all n ≥ 0, and the running indices are 0 ≤ i ≤ n and
−1 ≤ j ≤ n.

Proof. Easy argument with pullbacks, as in 1.3.8. �

Note that in the upper rows, all face or degeneracy maps are present,
whereas in the lower rows, there is one map missing in each case. In
particular, all the ‘new’ outer degeneracy maps appear as pullbacks of
‘old’ degeneracy maps.

6.2.11. Flanked decomposition spaces. By definition, a flanked
decomposition space is a Ξop-space A : Ξop → Grpd that is flanked
and whose underlying ∆op-space i∗A is a decomposition space. Let
FD denote the full subcategory of Fun(Ξop,Grpd) spanned by the
flanked decomposition spaces.

Lemma. 6.2.12. If X is a decomposition space, then u∗X is a flanked
decomposition space.

Proof. The underlying simplicial space is clearly a decomposition space
(in fact a Segal space), since all we have done is to throw away some
outer face maps and reindex. The flanking condition comes from the
‘bonus pullbacks’ of X , cf. 1.3.9. �

It follows that the basic adjunction i∗ ⊣ u∗ restricts to an adjunction

i∗ : FD //
Dcmp : u∗oo

between flanked decomposition spaces (certain Ξop-diagrams) and de-
composition spaces.
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Lemma. 6.2.13. The counit

ǫX : i∗u∗X → X

is cULF, when X is a decomposition space.

Proof. This was proved in Theorem 1.5.5. �

Lemma. 6.2.14. The unit

ηA : A→ u∗i∗A

is cartesian, when A is flanked.

Proof. The map ηA is given by s⊥−1 followed by s⊤+1. The asserted
pullbacks are precisely the ‘bonus pullbacks’ of Lemma 6.2.10. �

From Lemma 6.2.14 and Lemma 6.2.13 we get:

Corollary. 6.2.15. The monad u∗i∗ : FD→ FD preserves cartesian
maps.

Lemma. 6.2.16. i∗A → X is cULF in Dcmp if and only if the
transpose A→ u∗X is cartesian in FD.

Proof. This follows since the unit is cartesian (6.2.14), the counit is
cULF (6.2.13), and u∗ and i∗ send those two classes to each other
(6.2.5 and 6.2.6). �

Proposition. 6.2.17. If A is a flanked decomposition space, then i∗A
is a Segal space.

Proof. Put X = i∗A. We have the maps

i∗A
i∗ηA // i∗u∗i∗A = u∗i∗X

ǫX // X = i∗A

NowX is a decomposition space by assumption, so i∗u∗X = Dec⊥ Dec⊤ X
is a Segal space and the counit is cULF (both statements by Theo-
rem 1.5.5). On the other hand, since A is flanked, the unit η is cartesian
by Lemma 6.2.14, hence i∗η is cartesian by Lemma 6.2.6. Since i∗A is
thus cartesian over a Segal space, it is itself a Segal space (1.2.3). �

Lemma. 6.2.18. If B → A is a cartesian map of Ξop-spaces and A is
a flanked decomposition space then so is B.

Corollary. 6.2.19. The wide/cartesian factorisation system restricts
to a factorisation system on FD.

Lemma. 6.2.20. The representable functors Ξ[k] are flanked.

Proof. Since the pullback squares required for a presheaf to be flanked
are images of pushouts in Ξ, this follows since representable functors
send colimits to limits. �
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6.3. Intervals and the factorisation-interval construction

6.3.1. Complete Ξop-spaces. A Ξop-space is called complete if all
degeneracy maps are monomorphisms. We are mostly interested in
this notion for flanked decomposition spaces. In this case, if just
s0 : A0 → A1 is a monomorphism, then all the degeneracy maps are
monomorphisms. This follows because on the underlying decomposi-
tion space, we know from 2.3.5 that s0 : A0 → A1 being a monomor-
phism implies that all the simplicial degeneracy maps are monomor-
phisms, and by flanking we then deduce that also the new outer de-
generacy maps are monomorphisms. Denote by cFD ⊂ FD the full
subcategory spanned by the complete flanked decomposition spaces.

It is clear that if X is a complete decomposition space, then u∗X
is a complete flanked decomposition space, and if A is a complete
flanked decomposition space then i∗A is a complete decomposition

space. Hence the fundamental adjunction i∗ : FD //
Dcmp : u∗oo

between flanked decomposition spaces and decomposition spaces re-
stricts to an adjunction

i∗ : cFD //
cDcmp : u∗oo

between complete flanked decomposition spaces and complete decom-
position spaces.

Note that anything cartesian over a complete Ξop-space is again com-
plete.

6.3.2. Reduced Ξop-spaces. A Ξop-space A : Ξop → Grpd is called
reduced when A[−1] ≃ ∗.

Lemma. 6.3.3. If A → B is a wide map of Ξop-spaces and A is
reduced then B is reduced.

6.3.4. Algebraic intervals. An algebraic interval is by definition a
reduced complete flanked decomposition space. We denote by aInt the
full subcategory of Fun(Ξop,Grpd) spanned by the algebraic intervals.
In other words, a morphism of algebraic intervals is just a natural
transformation of functors Ξop → Grpd. Note that the underlying
decomposition space of an interval is always a Segal space.

Lemma. 6.3.5. All representables Ξ[k] are algebraic intervals (for
k ≥ −1), and also the terminal presheaf Ξ[−2] is an algebraic interval.

Proof. It is clear that all these presheaves are contractible in degree −1,
and they are flanked by Lemma 6.2.20. It is also clear from (19) that
their underlying simplicial spaces are complete decomposition spaces
(they are even Rezk complete Segal spaces). �

Lemma. 6.3.6. Ξ[−1] is an initial object in aInt.

Lemma. 6.3.7. Every morphism in aInt is wide.
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Corollary. 6.3.8. If a morphism of algebraic intervals is cartesian,
then it is an equivalence.

6.3.9. The factorisation-interval construction. We now come to
the important notion of factorisation interval I(a) of a given arrow a
in a decomposition space X . Intuitively, if X is just a category, the
objects of I(a) should be the two-step factorisations of a, with initial
object id-followed-by-a and terminal object a-followed-by-id. The 1-
cells should be arrows between such factorisations, or equivalently 3-
step factorisations, and so on.

For a general (complete) decomposition space X , the idea can be
formalised as follows. By Yoneda, to give an arrow a ∈ X1 is to give
∆[1]→ X in Fun(∆op,Grpd), or in the full subcategory cDcmp. By
adjunction, this is equivalent to giving Ξ[−1] → u∗X in cFD. Now
factor this map as a wide map followed by a cartesian map:

Ξ[−1] //

wide ""❊
❊❊

❊❊
❊❊

❊
u∗X.

A

cart

==③③③③③③③③③

The object appearing in the middle is an algebraic interval since it is
wide under Ξ[−1] (6.3.3). By definition, the factorisation interval of
a is I(a) := i∗A, equipped with a cULF map to X , as seen in the
diagram

∆[1] //

""❊
❊❊

❊❊
❊❊

❊
i∗u∗X

ǫ

cULF
// X.

I(a)

cULF

;;✈✈✈✈✈✈✈✈✈✈

The map ∆[1] → I(a) equips I(a) with two endpoints, and a longest
arrow between them. The cULF map I(a) → X sends the longest
arrow of I(a) to a.

More generally, by the same adjunction argument, given an k-simplex
σ : ∆[k] → X with long edge a, we get a k-subdivision of I(a), i.e. a
wide map ∆[k]→ I(a).

6.3.10. Remark. The factorisation-interval construction is due to
Lawvere [42] in the case of a 1-category. In the case of a decomposition
space, the construction shows, remarkably, that as far as comultiplica-
tion is concerned, any decomposition space is locally a Segal space, in
the sense that the comultiplication of an arrow a may as well be per-
formed inside I(a), which is a Segal space by 6.2.17. So while there may
be no global way to compose arrows even if their source and targets
match, the decompositions that exist do compose again.

We proceed to formalise the factorisation-interval construction.
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6.3.11. Coreflections. Inside the ∞-category of arrows Ar(cFD),
denote by Arw(cFD) the full subcategory spanned by the wide maps.
The wide/cartesian factorisation system amounts to a coreflection

w : Ar(cFD) −→ Arw(cFD);

it sends an arrow A→ B to its wide factor A→ B′, and in particular
can be chosen to have A as domain again (6.1.4). In particular, for
each algebraic interval A ∈ aInt ⊂ cFD, the adjunction restricts to
an adjunction between coslice categories, with coreflection

wA : cFDA/ −→ cFDw
A/.

The first ∞-category is that of flanked decomposition spaces under A,
and the second∞-category is that of flanked decomposition spaces with
a wide map from A. Now, if a flanked decomposition space receives a
wide map from an algebraic interval then it is itself an algebraic interval
(6.3.3), and all maps of algebraic intervals are wide (6.3.7). So in the
end the cosliced adjunction takes the form of the natural full inclusion
functor

vA : aIntA/ → cFDA/

and a right adjoint

wA : cFDA/ → aIntA/.

6.3.12. Remark. These observations amount to saying that the func-
tor v : aInt→ cFD is a colocal left adjoint. This notion is dual to the
important concept of local right adjoint [70].

We record the following obvious lemmas:

Lemma. 6.3.13. The coreflection w sends cartesian maps to equiva-
lences.

Lemma. 6.3.14. The counit is cartesian.

6.3.15. Factorisation-interval as a comonad. We also have the
basic adjunction i∗ ⊣ u∗ between complete decomposition spaces and
complete flanked decomposition spaces. Applied to coslices over an
algebraic interval A, and its underlying decomposition space A = i∗A
we get the adjunction

L : cFDA/
//
cDcmpA/ : R.oo

Here L is simply the functor i∗, while the right adjoint R is given by
applying u∗ and precomposing with the unit ηA. Note that the unit of
this adjunction L ⊣ R at an object f : A→ X is given by

A
f

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ u∗i∗f◦ηA

##●
●●

●●
●●

●●

X ηX
// u∗i∗X
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We now combine the two adjunctions:

aIntA/

v //
cFDA/

w
oo

L //
cDcmpA/ .

R
oo

The factorisation-interval functor is the A = ∆[k] instantiation:

I := L ◦ v ◦ w ◦R

Indeed, this is precisely what we said in the construction, just phrased
more functorially. It follows that the factorisation-interval construction
is a comonad on cDcmpA/.

Lemma. 6.3.16. The composed counit is cULF.

Proof. Follows readily from 6.2.13. �

Proposition. 6.3.17. The composed unit η : Id⇒ w ◦R ◦ L ◦ v is an
equivalence.

Proof. The result of applying the four functors to an algebraic interval
map f : A→ B is the wide factor in

A //

wide     ❅
❅❅

❅❅
❅❅

❅ u∗i∗B

D
;; cart

;;✇✇✇✇✇✇✇✇✇

The unit on f sits in this diagram

A
f

{{{{✈✈
✈✈
✈✈
✈✈
✈✈

## ##❍
❍❍

❍❍
❍❍

❍❍
❍

B ηf
//❴❴❴❴❴❴❴❴❴❴

##

ηB ##●
●●

●●
●●

●
D

{{

{{✇✇
✇✇
✇✇
✇✇

u∗i∗B,

where ηB is cartesian by 6.2.14. It follows now from orthogonality of
the wide/cartesian factorisation system that ηf is an equivalence. �

Corollary. 6.3.18. The functor i∗ ◦ v : aInt → cDcmp∆[1]/ is fully
faithful.

Proposition. 6.3.19. I sends cULF maps to equivalences. In detail,
for a cULF functor F : Y → X and any arrow a ∈ Y1 we have a
natural equivalence of intervals (and hence of underlying Segal spaces)

I(a) ∼→ I(Fa).

Proof. R sends cULF maps to cartesian maps, and w send cartesian
maps to equivalences. �

Corollary. 6.3.20. If X is an interval, with longest arrow a ∈ X1,
then X ≃ I(a).
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Proposition. 6.3.21. The composed functor

aInt→ cDcmp∆[1]/ → cDcmp

is faithful (i.e. induces a monomorphism on mapping spaces).

Proof. Given two algebraic intervals A and B, denote by f : ∆[1] →
i∗A and g : ∆[1]→ i∗B the images in cDcmp∆[1]/. The claim is that
the map

MapaInt(A,B) −→ MapcDcmp∆[1]/
(f, g) −→ MapcDcmp(i

∗A, i∗B)

is a monomorphism. We already know that the first part is an equiva-
lence (by Corollary 6.3.18). The second map will be a monomorphism
because of the special nature of f and g. We have a pullback diagram
(mapping space fibre sequence for coslices):

MapcDcmp∆[1]/
(f, g)

❴
✤

//

��

MapcDcmp(i∗A, i∗B)

precomp.f

��
1

pgq
// MapcDcmp(∆[1], i∗B).

Since g : ∆[1] → i∗B is the image of the canonical map Ξ[−1] → B,
the map

1
pgq // MapcDcmp(∆[1], i∗B)

can be identified with

B−1

s⊥−1s⊤+1 // B1,

which is a monomorphism since B is complete. It follows that the top
map in the above pullback square is a monomorphism, as asserted.
(Note the importance of completeness.) �

6.4. The decomposition space of intervals

6.4.1. Interval category as a full subcategory in cDcmp. We
now invoke the general results about Kleisli categories (6.1.14). Let

Int := ãInt

denote the restricted Kleisli category for the adjunction

i∗ : cFD //
cDcmp : u∗oo ,

as in 6.1.14. Hence Int ⊂ cDcmp is the full subcategory of decompo-
sition spaces underlying algebraic intervals. Say a map in Int is wide
if it is the i∗ image of a map in aInt (i.e. a wide map in cFD).

Proposition. 6.4.2. The wide maps as left-hand class and the cULF
maps as right-hand class form a factorisation system on Int.
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Proof. The wide/cartesian factorisation system on cFD is compatible
with the adjunction i∗ ⊣ u∗ and the subcategory Int precisely as
required to apply the general Lemma 6.1.14. Namely, we have:

— u∗i∗ preserves cartesian maps by Corollary 6.2.15.
— u∗ǫ is cartesian by 6.2.5, since ǫ is cULF by 6.2.13.
— If A→ B is wide, A an algebraic interval, then so is B, by 6.3.3.
The general Lemma 6.1.14 now tells us that there is a factorisation

system on Int where the left-hand class are the maps of the form i∗ of
a wide map. The right-hand class of Int, described by Lemma 6.1.14
as those maps f for which u∗f is cartesian, is seen by Lemma 6.2.16
to be precisely the cULF maps. �

We can also restrict the Kleisli category and the factorisation system
to the category Ξ+ consisting of the representables together with the
terminal object Ξ[−2].

Lemma. 6.4.3. The restriction of the Kleisli category to Ξ+ gives
∆, and the wide/cULF factorisation systems on Int restricts to the
generic/free factorisation system on ∆.

∆
f.f. // Int

f.f. // cDcmp

u∗
��

Ξ+

OO

// aInt

OO

// cFD

i∗
OO

Proof. By construction the objects are [−2], [−1], [0], [1], . . .. By con-
struction the hom spaces are

MapInt(Ξ[k],Ξ[n]) = MapDcmp(i
∗Ξ[k], i∗Ξ[n])

= Map∆̂(∆[k + 2],∆[n+ 2])

= ∆([k + 2], [n+ 2]).

It is clear by the explicit description of i∗ that it takes the maps in Ξ+
to the generic maps in ∆. On the other hand, it is clear that the cULF
maps in ∆ are the free maps. �

6.4.4. Arrow category and restriction to ∆. Let Arw(Int) ⊂
Ar(Int) denote the full subcategory of the arrow category spanned
by the wide maps. Recall (from 6.1.3) that Arw(Int) is a cartesian
fibration over Int via the domain projection. We now restrict this
cartesian fibration to ∆ ⊂ Int as in 6.1.10:

Arw(Int)|∆
❴
✤

f.f. //

dom
��

Arw(Int)

dom
��

∆
f.f.

// Int
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We put

U := Arw(Int)|∆.

U → ∆ is the Cartesian fibration of subdivided intervals: the objects
of U are the wide interval maps ∆[k] ։ A, which we think of as
subdivided intervals. The arrows are commutative squares

∆[k] //

����

∆[n]

����
A // B

where the downwards maps are wide, and the rightwards maps are in ∆
and in cDcmp, respectively. (These cannot be realised in the world of
Ξop-spaces, and the necessity of having them was the whole motivation
for constructing Int.) By 6.1.3, the cartesian maps are squares

∆[k] //

����

∆[n]

����
A // // B.

Hence, cartesian lift are performed by precomposing and then core-
flecting (i.e. wide/cULF factorising and keeping only the wide part).
For a fixed domain ∆[k], we have (in virtue of Proposition 6.3.21)

Intw∆[k]/ ≃ aIntΞ[k−2]/.

6.4.5. The decomposition space of intervals. The cartesian fibra-
tion U = Arw(Int)|∆ → ∆ determines a right fibration, U := U cart =
Arw(Int)cart|∆ → ∆, and hence by straightening ([49], Ch.2) a simplicial
∞-groupoid

U : ∆op → Grpd.

We shall not actually need the straightening, as it is more convenient
to work directly with the right fibration U → ∆. Its fibre over [k] ∈ ∆
is the ∞-groupoid Uk of k-subdivided intervals. That is, an interval A
equipped with a wide map ∆[k] ։ A. Note that U1 is equivalent to
the ∞-groupoid Inteq. Similarly, U2 is equivalent to the ∞-groupoid
of subdivided intervals, more precisely intervals with a wide map from
∆[2]. Somewhat more exotic is U0, the ∞-groupoid of intervals with
a wide map from ∆[0]. This means that the endpoints must coincide.
This does not imply that the interval is trivial. For example, any
category with a zero object provides an example of an object in U0.

Among the generic maps in U , in each degree the unique map g :
Ur → U1 consists in forgetting the subdivision. The space U also has
the codomain projection U → Int. In particular we can describe the
g-fibre over a given interval A:
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Lemma. 6.4.6. We have a pullback square

(Ar)a //

��

Ur

g

��
∗

pAq

// U1

where a ∈ A1 denotes the longest edge.

Proof. Indeed, the fibre over a coslice is the mapping space, so the
pullback is at first

Mapwide(∆[r], A)

But that’s the full subgroupoid inside Map(∆[r], A) ≃ Ar consisting
of the wide maps, but that means those whose restriction to the long
edge is a. �

Theorem. 6.4.7. The simplicial space U : ∆op → Grpd is a complete
decomposition space.

Proof. We first show it is a decomposition space. We need to show
that for a generic-free pullback square in ∆op, the image under U is a
pullback:

Uk
❴
✤

f ′

//

g′

��

Um

g

��
Un

f
// Us

This square is the outer rectangle in

Intw∆[k]/

j //

g′

��

Int∆[k]/
f ′

//

g′

��

Int∆[m]/

g

��

w // Intw∆[m]/

g

��
Intw∆[n]/ j

// Int∆[n]/
f

// Int∆[s]/ w
// Intw∆[s]/

(Here we have omitted taking maximal ∞-groupoids, but it doesn’t
affect the argument.) The first two squares consist in precomposing
with the free maps f , f ′. The result will no longer be a wide map,
so in the middle columns we allow arbitrary maps. But the final step
just applies the coreflection to take the wide part. Indeed this is how
cartesian lifting goes in Arw(Int). The first square is a pullback since
j is fully faithful. The last square is a pullback since it is a special
case of Lemma 6.1.9. The main point is the second square which is a
pullback by Lemma 6.1.16 — this is where we use that the generic-free
square in ∆op is a pullback.

To establish that U is complete, we need to check that the map
U0 → U1 is a monomorphism. This map is just the forgetful functor

(Intw∗/)
eq → Inteq.
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The claim is that its fibres are empty or contractible. The fibre over
an interval A = i∗A is

Mapwide(∗, A) = MapaInt(Ξ[−2], A) = MapΞ̂(Ξ[−2], A).

Note that in spite of the notation, Ξ[−2] is not a representable: it is the
terminal object, and it is hence the colimit of all the representables. It
follows that MapΞ̂(Ξ[−2], A) = limA. This is the limit of a cosimplicial
diagram

limA
e
−→ ∗⇒ A0 · · ·

In general the limiting map of a cosimplicial diagram does not have to
be a monomorphism, but in this case it is, as all the coface maps (these
are the degeneracy maps of A) are monomorphisms by completeness of
A, and since A−1 is contractible. Since finally e is a monomorphism into
the contractible space A−1, the limit must be empty or contractible.
Hence U0 → U1 is a monomorphism, and therefore U is complete. �

6.5. Universal property of U

The refinements discussed in 6.1.12 now pay off to give us the follow-
ing main result. Let Int↓cDcmp denote the comma category (as in
6.1.13). It is the full subcategory in Ar(cDcmp) spanned by the maps
whose domain is in Int. Let Arw(Int) denote the full subcategory
of Ar(Int) spanned by the wide maps. Recall (from 6.1.3) that both
Int↓cDcmp and Arw(Int) are cartesian fibrations over Int via the
domain projections, and that the inclusion Arw(Int) → Int↓cDcmp

commutes with the projections (but does not preserve cartesian ar-
rows).

Theorem. 6.5.1. The inclusion functor Arw(Int) →֒ Int↓cDcmp

has a right adjoint

I : Int↓cDcmp→ Arw(Int),

which takes cartesian arrows to cartesian arrows.

Proof. We have already checked, in the proof of 6.4.2, that the condi-
tions of the general Theorem 6.1.13 are satisfied by the adjunction i∗ ⊣
u∗ and the wide/cartesian factorisation system on cFD. It remains to
restrict this adjunction to the full subcategory aInt ⊂ cFD. �

Note that over an interval A, the adjunction restricts to the adjunc-
tion of 6.3.15 as follows:

IntwA/
//

≃

��

cDcmpA/
I

oo

R

��
aIntA/

v //
cFDA/

w
oo

L

OO
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We now restrict these cartesian fibrations further to ∆ ⊂ Int. We
call the coreflection I, as it is the factorisation-interval construction:

U = Arw(Int)|∆

dom
''◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

//
∆↓cDcmp

I
oo

dom
yyttt

tt
tt
tt
tt

∆

The coreflection

I : ∆↓cDcmp → U

is a morphism of cartesian fibrations over ∆ (i.e. preserves cartesian
arrows). Hence it induces a morphism of right fibrations

I : (∆↓cDcmp)cart → U.

Theorem. 6.5.2. The morphism of right fibrations

I : (∆↓cDcmp)cart → U

is cULF.

Proof. We need to establish that for the unique generic map g : ∆[1]→
∆[k], the following square is a pullback:

cDcmp∆[k]/

pre.g //

Ik
��

cDcmp∆[1]/

I1
��

Intw∆[k]/ pre.g
// Intw∆[1]/.

Here the functors I1 and Ik are the coreflections of Theorem 6.5.1. We
compute the fibres of the horizontal maps over a point a : ∆[1] → X .
For the first row, the fibre is

MapcDcmp∆[1]/
(g, a).

For the second row, the fibre is

MapIntw
∆[1]/

(g, I1(a)).

But these two spaces are equivalent by the adjunction of Theorem 6.5.1.
�

Inside ∆↓cDcmp, we have the fibre over X , for the codomain fi-
bration (which is a cocartesian fibration). This fibre is just ∆/X the
Grothendieck construction of the presheaf X . This fibre clearly in-
cludes into the cartesian part of ∆↓cDcmp.

Lemma. 6.5.3. The associated morphism of right fibrations

∆/X → (∆↓cDcmp)cart

is cULF.
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Proof. For g : ∆[k]→ ∆[1] the unique generic map in degree k, consider
the diagram

Map(∆[k], X)
❴
✤

pre.g //

��

Map(∆[1], X)
❴
✤

��

// 1

pXq

��
cDcmp∆[k]/ pre.g

// cDcmp∆[1]/ codom
// cDcmp.

The right-hand square and the outer rectangle are obviously pullbacks,
as the fibres of coslices are the mapping spaces. Hence the left-hand
square is a pullback, which is precisely to say that the vertical map is
cULF. �

So altogether we have cULF map

∆/X → (∆↓cDcmp)cart → U,

or, by straightening, a cULF map of complete decomposition spaces

I : X → U,

the classifying map. It takes a k-simplex in X to a k-subdivided inter-
val, as already detailed in 6.3.

6.5.4. Conjecture. U is a terminal object in the∞-category cDcmpcULF

of complete decomposition spaces and cULF maps.

At the moment we are only able to prove the following weaker state-
ment.

Theorem. 6.5.5. For each complete decomposition space X, the space
MapcDcmpcULF(X,U) is connected.

Proof. Suppose J : X → U and J ′ : X → U are two cULF functors. As
in the proof of Theorem 6.5.2, cULFness is equivalent to saying that
we have a pullback

MapcDcmp(∆[k], X)
❴
✤

pre.g //

Jk
��

MapcDcmp(∆[1], X)

J1
��

Intw∆[k]/ pre.g
// Intw∆[1]/.

We therefore have equivalences between the fibres over a point a :
∆[1]→ X :

MapcDcmp∆[1]/
(g, a) ≃ MapIntw∆[1]/

(g, J1(a)).

But the second space is equivalent to MapIntw(∆[k], J1(a)). Since these
equivalences hold also for J ′, we get

MapIntw(∆[k], J1(a)) ≃ MapIntw(∆[k], J ′
1(a)),

naturally in k. This is to say that J1(a) and J ′
1(a) are levelwise

equivalent simplicial spaces. But a cULF map is determined by its
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1-component, so J and J ′ are equivalent in the functor category. In
particular, every object in MapcULF(X,U) is equivalent to the canonical
I constructed in the previous theorems. �

6.6. Möbius intervals and the universal Möbius function

We finally impose the Möbius condition.

6.6.1. Nondegeneracy. Recall from 2.3.8 that for a complete decom-
position space X we have

~Xr ⊂ Xr

the full subgroupoid of r-simplices none of whose principal edges are
degenerate. These can also be described as the full subgroupoid

~Xr ≃ Mapnondegen(∆[r], X) ⊂ Map(∆[r], X) ≃ Xr

consisting of the nondegenerate maps, i.e. maps for which the restric-
tion to any principal edge ∆[1]→ ∆[r] is non-degenerate.

Now assume that A is an interval. Inside

Mapnondegen(∆[r], A) ≃ ~Ar

we can further require the maps to be wide. It is clear that this cor-
responds to considering only non-degenerate simplices whose longest
edge is the longest edge a ∈ A1:

Lemma. 6.6.2.

Mapwide+nondegen(∆[r], A) ≃ ( ~Ar)a.

6.6.3. Nondegeneracy in U . In the case of U : ∆op → Grpd, it is
easy to describe the spaces ~Ur. They consist of wide maps ∆[r] → A
for which none of the restrictions to principal edges ∆[1] → A′ are
degenerate. In particular we can describe the fibre over a given interval
A (in analogy with 6.4.6):

Lemma. 6.6.4. We have a pullback square

( ~Ar)a //

��

~Ur

��
∗

pAq

// U1.

6.6.5. Möbius intervals. Recall (from 3.2.1) that a complete decom-
position space X is called Möbius when the map

∑
~Xr → X1

is finite. A Möbius interval is an interval which is Möbius as a decom-
position space.

Proposition. 6.6.6. Any Möbius interval is a Rezk complete Segal
space.
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Proof. Just by being an interval it is a Segal space (by 6.2.17). Now the
Möbius condition implies the Rezk condition by Proposition 3.2.2. �

Lemma. 6.6.7. If X is a Möbius decomposition space, then for each
a ∈ X1, the interval I(a) is a Möbius interval.

Proof. We have a cULF map I(a) → X . Hence by Proposition 3.2.4,
I(a) is again Möbius. �

Proposition. 6.6.8. If A is a Möbius interval then for every r, the
space Ar is finite.

Proof. The squares

A0
❴
✤

s⊤+1 //

��

A1
❴
✤

s⊥−1 //

d0
��

A2

d1
��

1

paq

66
s⊤+1 // A0

s⊥−1 // A1

are pullbacks by the flanking condition 6.2.9 (the second is a bonus
pullback, cf. 6.2.10). The bottom composite arrow picks out the long
edge a ∈ A1. (That the outer square is a pullback can be interpreted
as saying that the 2-step factorisations of a are parametrised by their
midpoint, which can be any point in A0.) Since the generic maps of
A are finite by Lemma 3.2.3, the map d1 : A2 → A1 is finite, hence
the fibre A0 is finite. The same argument works for arbitrary r, by
replacing the top row by Ar → Ar+1 → Ar+2, and letting the columns
be dr0, d

r
0 and dr1. �

(This can be seen as a homotopy version of [43] Lemma 2.3.)

Corollary. 6.6.9. For a Möbius interval, the total space of all nonde-
generate simplices

∑
r
~Ar is finite.

Proof. This follows from the previous lemma and the definition of
Möbius. �

6.6.10. The decomposition space of Möbius intervals. There is
a decomposition space MI ⊂ U consisting of all Möbius intervals. In
each degree, MIk is the full subgroupoid of Uk consisting of the wide
maps ∆[k]→ A for which A is Möbius.

Theorem. 6.6.11. The decomposition space MI is Möbius.

Proof. We need to prove that the map
∑

r
~MIr →MI1 is a finite map.

So check out the fibre: fix a Möbius interval A ∈MI1, and let a ∈ A1

be the longest edge. From Lemma 6.6.4 we see that the fibre over A
is (
∑

r
~Ar)a =

∑
r(
~Ar)a. But this is the fibre over a ∈ A1 of the map∑

r
~Ar → A1, which is finite by the assumption that A is Möbius. �
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Proposition. 6.6.12. A decomposition space X is Möbius if and only
if its classifying map factors through MI ⊂ U .

Proof. If the classifying map factors throughX →MI, then X is cULF
over a Möbius space, hence is itself Möbius. Conversely, if X is Möbius,
then all its intervals are Möbius (6.6.7), hence clearly the image of the
classifying map is contained in MI. �

6.6.13. The universal Möbius function. The decomposition space
of all intervals is complete, hence it has Möbius inversion in the abstract
sense of 2.3.14. The Möbius function is the formal difference Φeven −
Φodd. Since every complete decomposition space X has a canonical
cULF map to U , it follows that the Möbius function of X is induced
from that of U . The latter can therefore be called the universal Möbius
function.

The same reasoning works in the Möbius situation, and implies the
existence of a universal Möbius function numerically. Namely, since
MI is Möbius, its Möbius function ζ admits a cardinality |ζ |:

Theorem. 6.6.14. In the incidence algebra Qπ0MI, the Möbius func-
tion |ζ | : π0MI→ Q is invertible under convolution, and its inverse is
the universal Möbius function

|µ| := |Φeven| − |Φodd| .

The Möbius function in the (numerical) incidence algebra of any Möbius
decomposition space is induced from this universal Möbius function via
the classifying map.

Appendix A. Homotopy linear algebra and homotopy
cardinality

A.0.0. Objective algebraic combinatorics. One may say that al-
gebraic combinatorics is the study of combinatorial structures via alge-
braic objects associated to them. In the classical theory of Möbius in-
version of Rota et al., the combinatorial objects are locally finite posets,
and the associated algebraic structures are their incidence coalgebras
and algebras, whose underlying vector spaces are freely generated by
intervals in the poset. In our theory, decomposition spaces are viewed
as a generalisation of the notion of poset. Instead of vector spaces to
support the associated algebraic structures, we work with certain linear
structures generated directly by the combinatorial objects (with coeffi-
cients in ∞-groupoids). This is the so-called ‘objective method’, advo-
cated in particular by Lawvere and Schanuel (see Lawvere–Menni [43]
for an explicit objective treatment of the Leroux theory of Möbius cat-
egories); the next level of objectivity is often called ‘groupoidification’,
developed in particular by Baez, Hoffnung and Walker [4], where the
scalars are (suitably finite) 1-groupoids. In the present work we take
coefficients in ∞-groupoids, and hence incorporate homotopy theory.
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At the same time, the abstract viewpoints forced upon us by this set-
ting lead to some conceptual simplifications even at the 1-groupoid
level.

A.0.1. Groupoid slices as vector spaces. To deal with algebraic
structures at the objective level requires at least to be able to form sums
(linear combinations). In analogy with taking the free vector space on
a set, we can take the homotopy-sum completion of an ∞-groupoid
S: this is (cf. A.1.6) the homotopy slice ∞-category Grpd/S, whose
objects are groupoid maps X → S. It stands in for the free vector
space on a set π0S: just as a vector is a (finite) π0S-indexed family
of scalars (namely its coordinates with respect to the basis), an object
X → S in Grpd/S is interpreted as S-indexed family of ∞-groupoids
Xs, hence the fibre Xs plays the role of the sth coordinate.

The groupoid slices form an∞-category in which the morphisms are
the homotopy-sum preserving functors, the objective analogue of linear
maps. They are given by spans of ∞-groupoids, i.e. doubly indexed
families of ∞-groupoids, just as ordinary linear maps are given by
matrices of numbers (once a basis has been chosen).

To really mimic vector spaces, where linear combinations are finite
sums, we should require the total space X to be finite in a suitable
sense (while the base is allowed to be infinite). Then one can take ho-
motopy cardinality, and recover linear algebra over Q. The finiteness
conditions are needed to be able to take homotopy cardinality. How-
ever, as long as we are working at the objective level, it is not necessary
to impose the finiteness conditions, and in fact, the theory can be de-
veloped more comfortably without them. Furthermore, the notion of
homotopy cardinality is not the only notion of size: Euler characteristic
and various multiplicative cohomology theories are other alternatives,
and it is reasonable to expect that the future will reveal more compre-
hensive and unified notions of size and measures. For these reasons,
we begin (A.1) with ‘linear algebra’ without finiteness conditions, and
then proceed to incorporate finiteness conditions expressed in terms of
homotopy groups.

A.0.2. Overview.
In Subsection A.1 we define the ∞-category LIN of groupoid slices

and linear functors, without imposing any finiteness conditions.
For the finiteness conditions, the goals are:
(1) Define ‘finite ∞-groupoid’ and define homotopy cardinality of a

finite ∞-groupoid.
(2) Define homotopy cardinality of ‘finite’ families (for example el-

ements in the incidence coalgebras): if x : X → S is a family with
X finite, its cardinality should be an element in the vector space Qπ0S

freely generated by the set π0S.
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(3) Define homotopy cardinality of finite presheaves (this is needed
for the incidence algebras): these will take values in profinite-dimensional
vector spaces.

To set this up uniformly, we follow Baez-Hoffnung-Walker [4] and
define a cardinality functor from a certain ∞-category of finite slices
and linear functors to vector spaces. From this ‘meta cardinality’,
all the individual notions of cardinality of families and presheaves are
induced, by observing that vectors are the same thing as linear maps
from the ground field.

The ‘linear’∞-categories of groupoid slices are introduced as follows.
There is an∞-category lin whose objects are∞-categories of the form
grpd/α where α is a finite ∞-groupoid. The morphisms are finite
spans α← µ→ β. This ∞-category corresponds to the category vect

of finite-dimensional vector spaces. We need infinite indexing, so the
following two extensions are introduced.

There is an ∞-category lin−→ whose objects are ∞-categories of the

form grpd/S with S an ‘arbitrary’∞-groupoid, and whose morphisms
are spans of finite type (i.e. the left leg has finite fibres). This ∞-
category corresponds to the category vect−−→ of general vector spaces

(allowing infinite-dimensional ones).
Finally we have the ∞-category lin←− whose objects are ∞-categories

of the form grpdS with S an ‘arbitrary’ ∞-groupoid, and whose mor-
phisms are spans of profinite type (i.e. the right leg has finite fibres).
This∞-category corresponds to the category vect←−− of pro-finite-dimensional
vector spaces.

Remark. To set up all this in order to define meta cardinality, it is ac-
tually only necessary to have 1-categories. This means that it is enough
to consider equivalence classes of spans. However, although cardinality
is a main motivation, we are equally interested in understanding how
all this works at the objective level. This turns out to throw light on
the deeper meaning of ind and pro, and actually to understand vector
spaces better.

To actually introduce lin, lin−→ and lin←− as ∞-categories, we first ‘ex-

tend scalars’ from grpd to Grpd, where there is more elbow room to
perform the constructions. We work in the ambient ∞-category LIN .
So we define, as subcategories of LIN : the ∞-category Lin consisting
of Grpd/α and finite spans, the∞-category Lin−−→ consisting of Grpd/S

and spans of finite type, and the∞-category Lin←−− consisting of GrpdS

and spans of profinite type. In the latter case, we can characterise the
mapping spaces in terms of an attractive continuity condition.

The three ∞-categories constructed with Grpd coefficients are in
fact equivalent to the three ∞-categories with grpd coefficients intro-
duced heuristically.
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There is a perfect pairing grpd/S × grpdS → grpd, which upon

taking cardinality yields the pairing Qπ0S ×Qπ0S → Q.

A.1. Homotopy linear algebra without finiteness conditions

A.1.1. Fundamental equivalence. Fundamental to many construc-
tions and arguments is the canonical equivalence

Grpd/S ≃ GrpdS

which is the homotopy version of the equivalence Set/S ≃ SetS (for S a
set), expressing the two ways of encoding a family of sets {Xs | s ∈ S}:
either regarding the members of the family as the fibres of a map
X → S, or as a parametrisation of sets S → Set. So the equiva-
lence associates to an object X → S the functor Sop → Grpd that
sends s to the∞-groupoid Xs. The other direction is the Grothendieck
construction, which works as follows: any presheaf F : S → Grpd sits
over the terminal presheaf ∗. The associated map is colim(F ) sitting
over colim(∗). It remains to observe that colim(∗) is equivalent to S
itself. More formally, the Grothendieck construction equivalence is a
consequence of a finer result, namely Lurie’s straightening theorem.
Lurie constructs ([49], Thm.2.1.2.2) a Quillen equivalence between the
category of right fibrations over S and the category of (strict) sim-
plicial presheaves on C[S]. Combining this result with the fact that
simplicial presheaves on C[S] is a model for the functor ∞-category
Fun(Sop,Grpd) (see [49], Proposition 5.1.1.1), the Grothendieck con-
struction equivalence follows. Note that when S is just an∞-groupoid
(i.e. a Kan complex), X → S is a right fibration if and only if X itself
is an ∞-groupoid. Hence altogether Grpd/S ≃ Fun(Sop,Grpd), and
since Sop is canonically equivalent to S (since it is just an∞-groupoid),
this establishes the fundamental equivalence from this fancier view-
point.

A.1.2. Scalar multiplication and homotopy sums. The ‘lower-
shriek’ operation

f! : Grpd/I → Grpd/J

along a map f : I → J has two special cases, which play the role
of scalar multiplication (tensoring with an ∞-groupoid) and vector
addition (homotopy sums):

The ∞-category Grpd/I is tensored over Grpd. Given S ∈ Grpd

and g : X → I in Grpd/I we have

S ⊗ g := g!(S ×X → X) : S ×X → I in Grpd/I .

It also has homotopy sums, by which we mean colimits indexed by an
∞-groupoid. The colimit of a functor F : B → Grpd/I is a special case
of the lowershriek. Namely, the functor F corresponds by adjunction
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to an object g : X → B × I in Grpd/B×I , and we have

colim(F ) = p!(g)

where p : B × I → I is the projection. We interpret this as the
homotopy sum of the family g : X → B × I with members

gb : Xb −→ {b} × I = I,

and we denote the homotopy sum by an integral sign:

(20)

∫ b∈B

gb := p!g in Grpd/I .

Example. A.1.3. With I = 1, this gives the important formula
∫ b∈B

Xb = X,

expressing the total space of X → B as the homotopy sum of its fibres.

Using the above, we can define the B-indexed linear combination of
a family of vectors g : X → B × I and scalars f : S → B,

∫ b∈B

Sb ⊗ gb = p!(g!(t)) : S ×B X → I in Grpd/I ,

as illustrated in the first row of the following diagram

(21)
S ×B X

❴
✤

f ′

//

��

X

##❍
❍❍

❍❍
❍❍

❍❍

g // B × I

q
��

p // I

S
f // B.

Note that the members of the family g!(f
′) are just (g!(f

′))b = Sb⊗ gb.

A.1.4. Basis. In Grpd/S, the names psq : 1 → S play the role
of a basis. Every object X → S can be written uniquely as a linear
combination of basis elements, or by allowing repetition of the basis
elements instead of scalar multiplication, as a homotopy sum of basis
elements:

Lemma. A.1.5. Given f : S → B in Grpd/B , we have

f =

∫ s∈S

pf(s)q =

∫ b∈B

Sb ⊗ pbq.

Proof. For the first expression, take as family S
(id,f)
−→ S ×B. Then the

members of the family are the names pf(s)q, and the formula follows

from (20). For the second expression, take as family g : B
(id,id)
−→ B×B,

and as scalars f : S → B itself. Then the members of g are the names
pbq, and the scalars are Sb, and in (21) we have p!(g!(f

′)) = f since pg
and qg are the identity. �
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The name pbq : 1 → B corresponds under the Grothendieck con-
struction to the representable functor

B −→ Grpd

x 7−→ Map(b, x)

Thus, interpreted in presheaf category GrpdB, the Lemma is the stan-
dard result expressing any presheaf as a colimit of representables.

Proposition. A.1.6. Grpd/S is the homotopy-sum completion of S.
Precisely, for C an ∞-category admitting homotopy sums, precomposi-
tion with the Yoneda embedding S → Grpd/S induces an equivalence
of ∞-categories

Fun
∫
(Grpd/S,C ) ∼→ Fun(S,C ),

where the functor category on the left consists of homotopy-sum pre-
serving functors.

Proof. Since every object inGrpd/S can be written as a homotopy sum
of names, to preserve homotopy sums is equivalent to preserving all col-
imits, so the natural inclusion Funcolim(Grpd/S ,C )→ Fun

∫
(Grpd/S,C )

is an equivalence. It is therefore enough to establish the equivalence

Funcolim(Grpd/S,C ) ∼→ Fun(S,C ).

In the case where C is cocomplete, this is true sinceGrpd/S ≃ Fun(Sop,Grpd)
is the colimit completion of S. The proof of this statement (Lurie [49],
Theorem 5.1.5.6) goes as follows: it is enough to prove that left Kan
extension of any functor S → C along Yoneda exists and preserves col-
imits. Existence follows from [49, Lemma 4.3.2.13] since C is assumed
cocomplete, and the fact that left Kan extensions preserve colimits [49,
Lemma 5.1.5.5 (1)] is independent of the cocompleteness of C . In our
case C is not assumed to be cocomplete but only to admit homotopy
sums. But since S is just an ∞-groupoid in our case, this is enough
to apply Lemma 4.3.2.13 of [49] to guarantee the existence of the left
Kan extension. �

A.1.7. Linear functors. A span

I
p
← M

q
→ J

defines a linear functor

(22) Grpd/I

p∗
−→ Grpd/M

q!−→ Grpd/J .

Lemma. A.1.8. Linear functors preserve linear combinations.

Proof. Suppose
∫ b∈B

Sb ⊗ gb is the B-indexed linear combination of
f : S → B and g : X → B× I in Grpd/I . This is shown in the middle
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row of the following diagram, and in the top row is shown the result of
applying a linear functor L given by (22)

L(
∫ b∈B

Sb ⊗ gb) : E
❴
✤

f ′′

//

��

X ′

��

❴
✤

g′ // B ×M
❴
✤

B×p

��

// M

p

��

q // J

∫ b∈B
Sb ⊗ gb : S ×B X

��

❴
✤

f ′

// X
g //

##●
●●

●●
●●

●●
● B × I

��

// I

S
f // B

Now observe that f ′′ is the pullback of f along X ′ g′

→ B×M → B, and

that the family L(g) is given by X ′ g′

→ B ×M
B×q
−→ B × J . The result

is now clear, since the first row of the diagram coincides with

∫ b∈B
Sb ⊗ L(g)b : E

f ′′

// X ′ g′ // B ×M
B×q // B × J // J

as required. �

A.1.9. Coordinates. Coming back to the span

I
p
←−M

q
−→ J

and the linear functor

q!p∗ : Grpd/I −→ Grpd/J ,

consider an element piq : 1→ I. Then we have, by Lemma A.1.5,

q!p∗piq = (Mi → J) =

∫ j∈J

Mi,j ⊗ pjq

Mi

!!❇
❇❇

❇❇
❇❇

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

1

piq   ❆
❆❆

❆❆
❆❆

❆ M

p
}}④④
④④
④④
④④
④

q
  ❆

❆❆
❆❆

❆❆
❆

I J

For a more general element f : X → I we have f =
∫ i

Xi⊗ piq and so
by homotopy linearity A.1.8

q!p∗f =

∫ i,j

Xi ⊗Mi,j ⊗ pjq.

A.1.10. The ∞-category LIN . The linear functors can be charac-
terised intrinsically as the left adjoint functors between slice categories,
or equivalently (since slice categories are presentable), colimit preserv-
ing functors. This provides a slicker way of setting up the ∞-category
we work in.
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There is an ∞-category PrL, defined and studied in [49, Section
5.5.3], whose objects are the presentable∞-categories, and whose mor-
phisms are the left adjoint functors, or equivalently colimit-preserving
functors. We define LIN to be the full subcategory of PrL whose ob-
jects are the∞-categories (equivalent to)Grpd/S. We call the functors
linear. The mapping spaces in LIN are

LIN(Grpd/I ,Grpd/J ) = FunL(Grpd/I ,Grpd/J )
eq

≃ FunL(GrpdI ,GrpdJ)eq

≃ Fun(I,GrpdJ)eq

≃ (GrpdI×J)eq

≃ (Grpd/I×J)
eq.

This shows in particular that the linear functors are given by spans.
Concretely, tracing through the chain of equivalences, a span defines a
left adjoint functor as described above in A.1.7. Composition in LIN is
given by composing spans, i.e. taking a pullback. Showing this amounts
to the Beck-Chevalley condition.

A.1.11. ‘Internal hom’. The ∞-category PrL has an internal hom:
for two presentable ∞-categories D and C , the functor ∞-category
FunL(D ,C ) is again presentable. Also LIN has an internal hom:

LIN(Grpd/I ,Grpd/J) := FunL(Grpd/I ,Grpd/J)

≃ Fun(I,GrpdJ)

≃ Fun(I × J,Grpd)

≃ Grpd/I×J .

The ∞-category LIN is monoidal closed, as a consequence of the
fact that Grpd is cartesian closed: the tensor product is given by

Grpd/I ⊗Grpd/J = Grpd/I×J

with neutral object Grpd, and clearly

LIN(Grpd/I⊗Grpd/J ,Grpd/K) ≃ LIN(Grpd/I ,LIN(Grpd/J ,Grpd/K))

as both spaces are naturally equivalent to (Grpd/I×J×K)
eq. The tensor

product can be characterised as universal recipient of linear functors,
but we shall not need this fact.

A.1.12. The linear dual. ‘Homming’ into the neutral object defines
a contravariant autoequivalence of LIN :

LIN −→ LIN op

Grpd/S 7−→ LIN(Grpd/S,Grpd) ≃ Grpd/S ≃ GrpdS.

Here there right-hand side should be considered the dual of Grpd/S.
(Since our vector spaces are fully coordinatised, the difference between
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a vector space and its dual is easily blurred. We will see a clearer
difference when we come to the finiteness conditions, in which the dual
of a ‘vector space’ grpd/S is grpdS which should rather be thought
of as a pro-finite-dimensional vector space.)

A.1.13. Remark. It is clear that there is actually an ∞-2-category
in play here, with the LIN(Grpd/S,Grpd/T ) as hom ∞-categories.
This can be described as a Rezk-category object in the ‘distributor’
Cat, following the work of Barwick and Lurie [50]. Explicitly, let Λk

denote the full subcategory of ∆k×∆k consisting of the pairs (i, j) with
i + j ≤ k. These are the shapes of diagrams of k composable spans.
They form a cosimplicial category. Define Spk to be the full subcategory
of Fun(Λk,Grpd) consisting of those diagrams S : Λk → Grpd for
which for all i′ < i and j′ < j (with i+ j ≤ k) the square

Si′,j′

❴
✤

//

��

Si,j′

��
Si′,j

// Si,j

is a pullback. Then we claim that

∆op −→ Cat

[k] 7−→ Spk

defines a Rezk-category object inCat corresponding to LIN . We leave
the claim unproved, as the result is not necessary for our purposes.

A.2. Cardinality of finite ∞-groupoids

A.2.1. Finite ∞-groupoids. An∞-groupoid B is called locally finite
if at each base point b the homotopy groups πi(B, b) are finite for i ≥ 1
and are trivial for i sufficiently large. An ∞-groupoid is called finite
if it is locally finite and has finitely many components. Note that B
is locally finite iff it is a filtered colimit of finite ∞-groupoids. An
example of a non locally finite ∞-groupoid is BZ.

A.2.2. Cardinality. [2] The (homotopy) cardinality of a finite ∞-
groupoid B is the nonnegative rational number given by the formula

|B| :=
∑

b∈π0B

∏

i>0

|πi(B, b)|(−1)i .

Here the norm signs on the right refer to order of homotopy groups.

If G is a 1-groupoid, that is, an∞-groupoid having trivial homotopy
groups πi(G) = 0 for i > 1, its cardinality is

|G| =
∑

x∈π0G

1

|AutG(x)|
.
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The notion and basic properties of homotopy cardinality have been
around for a long time. See Baez–Dolan [2]. The first printed reference
we know of is Quinn [59].

A.2.3. Remark. It is clear from the definition that a finite sum of
finite ∞-groupoids is again finite, and that cardinality is compatible
with finite sums: ∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ =
n∑

i=1

|Xi| .

Lemma. A.2.4. Suppose B is connected. Given a fibre sequence

F //

��

❴
✤

E

��
1 // B,

if two of the three spaces are finite then so is the third, and in that case

|E| = |F | |B| .

Proof. This follows from the homotopy long exact sequence of a fibre
sequence. �

For b ∈ B, we denote by B[b] the connected component of B con-
taining b. Thus an ∞-groupoid B is locally finite if and only if each
connected component B[b] is finite.

Lemma. A.2.5. Suppose B locally finite. Given a map E → B, then
E is finite if and only if all fibres Eb are finite, and are nonempty for
only finitely many b ∈ π0B. In this situation,

|E| =
∑

b∈π0(B)

|Eb|
∣∣B[b]

∣∣ .

Proof. Write E as the sum of the full fibres E[b], and apply Lemma A.2.4
to the fibrations Eb → E[b] → B[b] for each b ∈ π0(B). Finally sum
(A.2.3) over those b ∈ π0B with non-empty Eb. �

Corollary. A.2.6. Cardinality preserves (finite) products.

Proof. Apply the previous lemma to a projection. �

A.2.7. Notation. Given any∞-groupoid B and a function q : π0B →
Q, we write ∫ b∈B

qb :=
∑

b∈π0B

qb
∣∣B[b]

∣∣

if the sum is finite. Then the previous lemma says

|E| =

∫ b∈B

|Eb|

for any finite∞-groupoid E and a map E → B. Two important special
cases are given by fibre products and loop spaces:



132 IMMA GÁLVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

Lemma. A.2.8. In the situation of a pullback

X ×B Y //

❴
✤

��

X × Y

��
B

diag
// B × B,

if X and Y are finite, and B is locally finite, then X×B Y is finite and

|X ×B Y | =

∫ b∈B

|Xb| |Yb| .

Lemma. A.2.9. In the situation of a loop space

Ω(B, b) //

❴
✤

��

1

pbq
��

1
pbq

// B[b] .

we have that B is locally finite if and only if each Ω(B, b) is finite, and
in that case

|Ω(B, b)| ·
∣∣B[b]

∣∣ = 1.

A.2.10. Finite maps. We say that a map p : E → B is finite if any
pullback to a finite base X has finite total space X ′, as in the diagram

X ′ //

❴
✤

��

E

p

��
X c

// B.

(23)

Lemma. A.2.11. (1) Pullbacks of finite maps are finite.
(2) A map E → B is finite if and only if each fibre Eb is finite.

Proof. Statement (1), and one direction of (2), are clear. In the other
direction, the map X ′ → X in the pullback diagram (23) has finite
fibres X ′

x = Ec(x), so X finite implies X ′ finite by Lemma A.2.4. �

Lemma. A.2.12. Suppose p : E → B has locally finite base.

(1) If p is finite then E is locally finite.
(2) If E is finite then p is finite.

Proof. A full fibre E[b] of p is finite if and only if Eb is, by Lemma A.2.4.
If each full fibre E[b] is finite, then each component E[e] is, and if E is
finite then each full fibre is. �

Lemma. A.2.13. B is locally finite iff each name 1 → B is a finite
map.
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A.3. Finiteness conditions on groupoid slices

In this subsection, after some motivation and background from lin-
ear algebra, we first explain the finiteness conditions imposed on slice
categories in order to model vector spaces and pro-finite-dimensional
vector spaces. Then afterwards we assemble all this into ∞-categories
using more formal constructions.

A.3.1. Linear algebra rappels. There is a fundamental duality

Vect ≃ vect←−−
op

between vector spaces and pro-finite-dimensional vector spaces: given
any vector space V , the linear dual V ∗ is a pro-finite-dimensional vector
space, and conversely, given a pro-finite-dimensional vector space, its
continuous dual is a vector space. This equivalence is a formal conse-
quence of the observation that the category vect of finite-dimensional
vector spaces is self-dual: vect ≃ vectop, and the fact that Vect =
vect−−→, the ind completion of vect.

In the fully coordinatised situation typical to algebraic combina-
torics, the vector space arises from a set S (typically an infinite set
of isoclasses of combinatorial objects): the vector space is then

V = QS =

{∑

s∈S

cs δs : cs ∈ Q almost all zero

}
,

the vector space with basis the symbols δs for each s ∈ S. The linear
dual is then the function space V ∗ = QS , having a canonical pro-basis
consisting of the functions δs, taking the value 1 on s and 0 elsewhere.

Vectors in QS are finite linear combinations of the δs, and we rep-
resent a vector as an infinite column vector ~v with only finitely many
non-zero entries. A linear map f : QS → QT is given by matrix multi-
plication

~v 7→ A · ~v.

for A an infinite 2-dimensional matrix with T -many rows and S-many
columns, and with the crucial property that it is column finite: in each
column there are only finitely many non-zero entries. More generally,
the matrix multiplication of two column-finite matrices makes sense
and is again a column-finite matrix. The identity matrix is clearly
column finite. A basis element δs is identified with the column vector
all of whose entries are zero, except the one of index s.

On the other hand, elements in the function space QS are represented
as infinite row vectors. A continuous linear map QT → QS, dual to the
linear map f , is represented by the same matrix A, but viewed now as
sending a row vector ~w (indexed by T ) to the matrix product ~w · A.
Again the fact that A is column finite ensures that this matrix product
is well defined.
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There is a canonical perfect pairing

QS ×QS −→ Q

(~v, f) 7−→ f(~v)

given by evaluation. In matrix terms, it is just a matter of multiplying
f · ~v.

A.3.2. Remark. In the theory of Möbius inversion, the incidence
coalgebra is on the vector-space side of the duality: the coalgebra is
the free vector space on some objects, and the formula for comultipli-
cation is a finite sum, reflecting the fact that an object decomposes in
finitely many ways. The incidence algebra is the linear dual, the pro-
finite-dimensional vector space of functions on the objects. In many
interesting cases the incidence algebra (a monoid object in a function
space) restricts to a monoid in the space of functions with finite sup-
port, which can be regarded as a kind of Hall algebra. This happens
under different finiteness conditions on the combinatorial structures.
Note that the zeta function is not finitely supported (except in degen-
erate cases), and that Möbius inversion does not make sense in this
context.

This duality has a very neat description in homotopy linear algebra.
While the vector space Qπ0S is modelled by the ∞-category grpd/S,

the function space Qπ0S is modelled by the ∞-category grpdS. The
classical duality results from taking cardinality of a duality on the
categorical level that we proceed to explain. For the most elegant
definition of cardinality we first need to introduce the objective versions
of Vect and vect←−−.

Let grpd ⊂ Grpd be the full subcategory spanned by the finite
∞-groupoids. For S any ∞-groupoid, let grpd/S be the ‘comma ∞-
category’ defined by the following pullback diagram of ∞-categories:

grpd/S
//

��

❴
✤

Grpd/S

��
grpd // Grpd

Let S be a locally finite ∞-groupoid, and consider the following ∞-
categories.

• denote by grpdS full subcategory of GrpdS spanned by the
presheaves S → Grpd whose image lies in grpd, and
• denote by Grpdrel.fin.

/S the full subcategory of Grpd/S spanned
by the finite maps p : X → S.
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Lemma. A.3.3. The fundamental equivalence GrpdS ≃ Grpd/S

restricts to an equivalence

grpdS ≃ Grpd
rel.fin.

/S

Proof. The inclusions grpd/S ⊂ Grpd/S and grpdS ⊂ GrpdS are
both full, and the objects characterising them correspond to each other
under the fundamental equivalence because of Lemma A.2.11 (2). �

From the definition of finite map we have the following result.

Lemma. A.3.4. For a span S
p
← M

q
→ T defining a linear map

F : Grpd/S → Grpd/T , the following are equivalent:

(1) p is finite,
(2) F restricts to

grpd/S

p∗
−→ grpd/M

q!−→ grpd/T

(3) F restricts to

Grpd
rel.fin.

/T

q∗
−→ Grpd

rel.fin.

/M

p!−→ Grpd
rel.fin.

/S

The ∞-category grpd/S has finite homotopy sums: for I finite and
F : I → grpd/S we have colimF = p!(X → I×S), where p : I×S → S
is the projection. A family X → I × S comes from some F : I →
grpd/S and admits a homotopy sum in grpd/S when for each i ∈ I,
the partial fibre Xi is finite. Since already I was assumed finite, this is
equivalent to having X finite.

The following is the finite version of Proposition A.1.6

Lemma. A.3.5. The ∞-category grpd/S is the finite homotopy sum-
completion of S.

A.4. Categories of linear maps with infinite-groupoid coeffi-
cients

Our main interest is in the linear ∞-categories with finite-groupoid
coefficients, but it is technically simpler to introduce first the infinite-
coefficients version of these ∞-categories, since they can be defined as
subcategories in LIN , and can be handled with the ease of presentable
∞-categories.

Recall that a span (S
p
←−M

q
−→ T ) defines a linear functor

L : Grpd/S

p∗
−→ Grpd/M

q!−→ Grpd/T .
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by pullback and postcomposition, as shown in the following diagram

L(x) : X ′ p∗x //

��

❴
✤

M
q //

p

��

T

x : X // S.

Let Lin ⊂ LIN be the ∞-category whose objects are the slices
Grpd/σ, with σ finite. Its morphisms are those linear functors between
them which preserve finite objects. Clearly these are given by the spans
of the form σ ← µ → τ where σ, τ and µ are finite. Note that there
are equivalences of ∞-categories Grpd/σ ≃ Grpdσ for each σ.

Let Lin−−→ be the∞-category whose objects are the slices Grpd/S with

S locally finite, and whose morphisms are the linear functors between
them that preserve finite objects. These correspond to the spans of the

form S
p
←M → T with p finite.

Let Lin←−− be the∞-category whose objects are the presheaf categories

GrpdS with S locally finite, and whose morphisms are the continuous
linear functors:

A linear functor F : GrpdT → GrpdS is called continuous when
for all ǫ ⊂ S there exists δ ⊂ T and a factorisation

GrpdT //

F
��

Grpdδ

Fδ

��
GrpdS // Grpdǫ

where the horizontal maps are the projections of the canonical pro-
structures.

Proposition. A.4.1. For a linear functor F : GrpdT → GrpdS in
LIN, represented by a span

S
p
← M

q
→ T,

the following are equivalent.

(1) The span is of finite type (i.e. p is a finite map).
(2) F is continuous.

Proof. It is easy to see that if the span is of finite type then F is
continuous: for any given finite ǫ ⊂ S with inclusion j, the pullback
µ is finite, and we can take δ to be the essential full image of the
composite q ◦m:

(24) ǫ

j
��

µ
✤
❴

p̄oo

m
��

q̄ // δ

i
��

S Mp
oo

q
// T.
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Now by Beck-Chevalley,

j∗p!q∗ = p̄!m∗q∗ = p̄!q̄∗i∗

which is precisely the continuity condition.
Conversely, if the factorisation in the continuity diagram exists, let

ǫ← µ→ δ be the span (of finite ∞-groupoids) representing fδǫ . Then
we have the outer rectangle of the diagram (24) and an isomorphism

j∗p!q∗ = p̄!q̄∗i∗

Now a standard argument implies the existence of m completing the
diagram: namely take the pullback of j and p, with the effect of inter-
changing the order of upperstar and lowershriek. Now both linear maps
are of the form upperstars-followed-by-lowershriek, and by uniqueness
of this representation, the said pullback must agree with µ and in par-
ticular is finite. Since this is true for every ǫ, this is precisely to say
that p is a finite map. �

The continuity condition is precisely continuity for the pro-finite slice
topology, as we proceed to explain. Every locally finite ∞-groupoid S
is canonically the filtered colimit of its finite (full) subgroupoids:

S = colim
α⊂S

α.

We use Greek letters here to denote finite ∞-groupoids. Similarly,
GrpdS is a cofiltered limit of ∞-categories Grpdα ≃ Grpd/α:

GrpdS = lim
α⊂S

Grpdα.

This leads to the following ‘categorical’ description of the mapping
spaces:

Lin←−−(GrpdT ,GrpdS) := lim
ǫ⊂S

colim
δ⊂T

Lin(Grpdδ,Grpdǫ).

A.5. Categories of linear maps with finite-groupoid coefficients

A.5.1. The ∞-category lin. We define lin to be the subcategory of

Ĉat∞ whose objects are those ∞-categories equivalent to grpd/σ for
some finite ∞-groupoid σ, and whose mapping spaces are the full sub-

groupoids of those of Ĉat∞ given by the functors which are restrictions
of functors in Lin(Grpd/σ,Grpd/τ ). Note that the latter mapping
space was exactly defined as those linear functors in LIN that pre-
served finite objects. Hence, by construction there is an equivalence of
mapping spaces

lin(grpd/σ,grpd/τ ) ≃ Lin(Grpd/σ,Grpd/τ ),

and in particular, the mapping spaces are given by spans of finite ∞-
groupoids. The maps can also be described as those functors that
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preserve finite homotopy sums. By construction we have an equivalence
of ∞-categories

lin ≃ Lin.

A.5.2. The ∞-category lin−→. Analogously, we define lin−→ to be the

subcategory of Ĉat∞, whose objects are the ∞-categories equivalent
to grpd/S for some locally finite ∞-groupoid S, and whose mapping

spaces are the full subgroupoids of the mapping spaces of Ĉat∞ given
by the functors that are restrictions of functors in Lin(Grpd/S,Grpd/T );
in other words (by A.3.4), they are the ∞-groupoids of spans of finite
type. Again by construction we have

lin−→ ≃ Lin−−→.

A.5.3. Categories of prolinear maps. We denote by lin←− the ∞-

category whose objects are the∞-categories grpdS, where S is locally
finite, and whose morphisms are restrictions of continuous linear func-
tors. We have seen that the mapping spaces are given by spans of finite
type:

lin←−(grpd
T ,grpdS) =

{
(T

q
←−M

p
−→ S) : p finite

}
.

As in the ind case we have

lin←− ≃ Lin←−−,

and by combining the previous results we also find

lin←−(grpd
T ,grpdS) := lim

ǫ⊂S
colim
δ⊂T

lin(grpdδ,grpdǫ).

A.5.4. Mapping categories. Just as Ĉat∞ has internal mapping cat-
egories (of which the mapping spaces are the maximal subgroupoids),
we also have internal mapping categories in lin, denoted lin:

lin(grpd/σ,grpd/τ ) ≃ grpd/σ×τ .

Also lin−→ and lin←− have mapping categories, but due to the finiteness

conditions, they are not internal. Just as the mapping spaces are given
(in each case) as ∞-groupoids of spans of finite type, the mapping
categories are given as ∞-categories of spans of finite type. Denoting
the mapping categories with underline, we content ourselves to record
the important case of ‘linear dual’:

Proposition. A.5.5.

lin−→(grpd/S,grpd) = grpdS

lin←−(grpd
T ,grpd) = grpd/T .
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A.5.6. Remark. It is clear that the correct viewpoint here would be
that there is altogether a 2-equivalence between the ∞-2-categories

lin−→
op ∼= lin←−

given on objects by grpd/S 7→ grpdS, and by the identity on homs.
It all comes formally from the ind-pro duality starting with the anti-
equivalence

lin ≃ linop.

Taking S = 1 we see that grpd is an object of both∞-categories, and
mapping into it gives the duality isomorphisms of Proposition A.5.5.

A.5.7. Monoidal structures. The∞-category lin−→ has two monoidal

structures: ⊕ and⊗, where grpd/I⊕grpd/J = grpd/I+J and grpd/I⊗
grpd/J = grpd/I×J . The neutral object for the first is clearly grpd/0 =
1 and the neutral object for the second is grpd/1 = grpd. The tensor
product distributes over the direct sum. The direct sum is both the
categorical sum and the categorical product (i.e. is a biproduct). There
is also the operation of infinite direct sum: it is the infinite categorical
sum but not the infinite categorical product. (Just as it happens for
vector spaces.)

Similarly, also the ∞-category lin←− has two monoidal structures, ⊕

and ⊗, given as grpdI ⊕ grpdJ = grpdI+J and grpdI ⊗ grpdJ =
grpdI×J . The ⊗ should be considered the analogue of a completed
tensor product. Again⊕ is both the categorical sum and the categorical
product, and ⊗ distributes over ⊕. Again the structures allow infinite
versions, but this times the infinite direct sum is a categorical infinite
product but is not an infinite categorical sum.

(To see the difference between the role of infinite ⊕α in lin−→ and in lin←−:

in lin←− there is a diagonal map grpdI → ⊕αgrpd
I = grpd

∑
α I given

by sending X → I to
∑

αX →
∑

α I. This makes sense for a finite
map X → I, since the infinite sum of copies of that map is still finite,
but it does not make sense in lin−→ since that

∑
α X is not finite. On the

other hand, lin−→ sports a codiagonal⊕αgrpd/I = grpd/
∑

αI → grpd/I

given by sending A →
∑

α I to the composite A →
∑

α I → I (where
the second map is the codiagonal for the infinite sum of∞-groupoids).
Since X is finite it remains finite so there is no problem. In contrast
this construction does not work in lin: even if A →

∑
α I is finite,

A→
∑

α I → I will generally not be so.)

A.5.8. Summability. In algebraic combinatorics, the profinite stuff is
often expressed in terms of notions of summability. We briefly digress
to see the constructions from this angle.

For B a locally finite∞-groupoid, a B-indexed family g : E → B×I
(as in A.1.2) is called summable if the composite E → B × I → I is
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a finite map. The condition implies that in fact the members of the
family were already finite maps. Indeed, with reference to the diagram

Eb,i
❴
✤

//

��

Ei
❴
✤

//

��

E

��
{b} × {i} // B × {i} //

��

❴
✤

B × I

��
{i} // I

summability implies (by Lemma A.2.11.2) that each Ei is finite, and
therefore (by Lemma A.2.13 since B is locally finite) we also conclude
that each Eb,i is finite, which is precisely to say that the members
gb : Eb → I are finite maps (cf. A.2.11.2 again). It thus makes sense to

interpret the family as a family of objects in Grpd
rel.fin.
/I . And finally

we can say that a summable family is a family g : E → B × I of finite
maps gb : Eb → I, whose homotopy sum p!(g) is again a finite map.
If I is finite, then the only summable families are the finite families
(i.e. E → B × I with E finite). A family g : E → B × I, given
equivalently as a functor

F : B → grpdI ,

is summable if and only if it is a cofiltered limit of diagrams Fα : B →
grpdα (with α finite).

It is easy to check that a map q : M → T (between locally finite
∞-groupoids) is finite if and only if for every finite map f : X → M
we have that also q!f is finite. Hence we find

Lemma. A.5.9. A span I
p
← M

q
→ J preserves summable families if

and only if q is finite.

A.6. Duality

We have a perfect pairing

grpd/S × grpdS −→ grpd

(p, f) 7−→ f(p)

given by evaluation. In terms of spans, write the map-with-finite-total-

space p : X → S as a finite span 1 ← X
p
→ S, and write the presheaf

f : S → grpd as the finite span S
f
← F → 1, where F is the total space

of the Grothendieck construction of f . (In other words, the functor F
on S corresponds to a linear functor on grpd/S; write the representing
span.) Then the evaluation is given by composing these two spans, and
hence amounts just to taking the pullback of p and f .
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The statements mean: for fixed K → S in grpd/S, the map

grpdS −→ grpd

f 7−→ f(K)

is prolinear. The resulting functor

grpd/S −→ Lin←−−(grpd
S,grpd)

K 7−→ [f 7→ f(K)]

is an equivalence of ∞-categories (cf. Proposition A.5.5).
Conversely, for fixed X : S → grpd in grpdS, the map

grpd/S −→ grpd

K 7−→ X(K)

is linear. The resulting functor

grpdS −→ Lin−−→(grpd/S,grpd)

X 7−→ X(K)

is an equivalence of ∞-categories (cf. Proposition A.5.5).

A.6.1. Bases. Both grpd/S and grpdS feature a canonical basis,
actually an essentially unique basis. The basis elements in grpd/S are
the names psq : 1 → S: every map p : X → S can be written as a
finite homotopy linear combination

p =

∫ s∈S

|Xs| psq.

Similarly, in grpdS, the representables ht := Map(t,−) form a ba-
sis: every presheaf on S is a colimit and in fact a homotopy sum of
such representables. These bases are dual to each other, except for a
normalisation: if p = psq and f = ht = Map(t,−), then they pair to

Map(t, s) ≃

{
Ω(S, s) if t ≃ s

0 else

The fact that we obtain the loop space Ω(S, s) instead of 1 is actually
a feature: we shall see below that upon taking cardinality we obtain
the canonical pairing

QS ×QS −→ Q

(δi, δ
j) 7−→

{
1 if i = j

0 else.
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A.7. Cardinality as a functor

A.7.1. Definition of cardinality. We define meta cardinality by the
assignment

‖ ‖ : lin−→ → Vect

defined on objects by

‖grpd/T ‖ := Qπ0T ,

and on morphisms by taking a finite-type span S
p
← M

q
→ T to the

linear map

Qπ0S −→ Qπ0T

δs 7−→

∫ t

|Ms,t| δt =
∑

t

∣∣T[t]

∣∣ |Ms,t| δt.

That is, to the span M we assign the matrix At,s :=
∣∣T[t]

∣∣ |Ms,t|, which
is column finite since M is of finite type.

The idea of meta cardinality is that it is a global assignment which
specialises to every slice ∞-category to define a relative cardinality, a
cardinality of families, by the observation that families are special cases
of spans, just as vectors can be identified with linear maps from the
ground field. The idea of meta cardinality is due to Baez, Hoffnung
and Walker [4] (although they are not to blame for our terminology).

Dually we define a meta cardinality

‖ ‖ : lin←−→ vect←−−

defined on objects by

‖grpdS‖ := Qπ0S,

and on morphisms by the same assignment of a matrix to a finite span
as before.

Proposition. A.7.2. The meta cardinality assignments just defined

‖ ‖ : lin−→ → Vect, ‖ ‖ : lin←−→ vect←−−

are functorial.

Proof. First observe that the functor is well defined on morphisms.

Given a finite-type span S
p
← M

q
→ T defining linear functors L :

grpd/S → grpd/T (as well as L∨ : grpdT → grpdS), the linear maps

‖L‖ : Qπ0S −→ Qπ0T , ‖L∨‖ : Qπ0T −→ Qπ0S

are defined with respect to the given (pro-)bases by the matrix ‖L‖t,s =
|Ms,t|

∣∣T[t]

∣∣. That is:

‖L‖

(∑

s∈π0S

cs δs

)
=
∑

s,t

cs |Ms,t|
∣∣T[t]

∣∣ δt =
∑

s∈π0S

cs

∫ t∈T

|Ms,t| δt ,
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and

‖L∨‖

(∑

t∈π0T

ct δ
t

)
=
∑

s,t

ct |Ms,t|
∣∣T[t]

∣∣ δs

In particular, we note

‖L∨‖ (δt) =
∑

s

|Ms,t|
∣∣T[t]

∣∣ δs .

The matrix |Ms,t|
∣∣T[t]

∣∣ has finite entries and is column-finite: for each
s ∈ π0S the fibre Ms is finite so the map Ms → T is finite by Lemma
A.2.12, and the fibres Ms,t are non-empty for only finitely many t ∈
π0T . It is clear that equivalent spans define the same matrix, and the
identity span L = (S ← S → S) gives the identity matrix: ‖L‖s1,s2 = 0
if s1, s2 are in different components, and ‖L‖s,s = |Ω(S, s)|

∣∣S[s]

∣∣ =
1 by Lemma A.2.9. It remains to show that composition of spans
corresponds to matrix product: for L = (S ← M → T ), L′ = (T ←
N → U) we have

|(M ×T N)s,u| =

∫ t∈T

|Ms,t ×Nt,u| =
∑

t∈π0T

|Ms,t|
∣∣T[t]

∣∣ |Nt,u|

and so ‖L′L‖u,s =
∑

t∈π0T

|Ms,t|
∣∣T[t]

∣∣ |Nt,u|
∣∣U[u]

∣∣ =
∑

t∈π0T

‖L′‖u,t‖L‖t,s. �

A.7.3. Remark. The idea of defining cardinality as a functor is due
to Baez, Hoffnung and Walker [4], in the setting of certain tame 1-
groupoids. They work with a kind of ‘square-integrability’ instead of
distinguishing between finite slices and pro-finite slices. This amounts
roughly to studying Hilbert spaces on both sides of the duality instead
of pairing vector spaces with profinite-dimensional vector spaces as we
prefer to to. Finally, they bundle the symmetry factors into the fibres
and use discrete sums, instead of using homotopy fibres and homotopy
sums, as favoured in the present work.

A.7.4. Cardinality of families. As a consequence of this proposition
we obtain for each locally finite ∞-groupoid T a notion of cardinality
of T -indexed families. Let T be a locally finite ∞-groupoid and define
the functor

| | : grpd/T −→
∣∣∣∣grpd/T

∣∣∣∣ = Qπ0T , |x| := ‖Lx‖ (δ1) .

Here x : X → T is an object of grpd/T and ‖Lx‖ : Qπ01 → Qπ0T is

induced by the linear functor Lx defined by the finite span 1← X
x
−→ T .

By the definition of ‖L‖ in Proposition A.7.2, we can write

|x| =
∑

t∈π0T

|Xt| |T[t]| δt =

∫ t∈T

|Xt| δt

Lemma. A.7.5. Let T be a locally finite ∞-groupoid.
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(1) If T is connected, with t ∈ T , and x : X → T in grpd/T , then

|x| = |X| δt ∈ Qπ0T .

(2) The cardinality of ptq : 1→ T in grpd/T is the basis vector δt.

Proof. (1) By definition, |x| = |Xt| |T | δt, and by Lemma A.2.4, this
is |X| δt
(2) The fibre of ptq over t′ is empty except when t, t′ are in the same
component, so we reduce to the case of connected T and apply (1). �

A.7.6. Cardinality of presheaves. We also obtain a notion of car-
dinality of presheaves: for each S, define

| | : grpdS −→
∣∣∣∣grpdS

∣∣∣∣ = Qπ0S, |f | := ‖Lf‖.

Here f : S → grpd is a presheaf, and Lf is its ‘linearisation’ Lf :
grpd/S → grpd, which in turn is given by the span S ← F → 1, where
F → S is the Grothendieck construction of f . The meta cardinality of
this span is then a linear map Qπ0S → Q1, or equivalently a pro-linear
map Q1 → Qπ0S — in either way interpreted as an element in Qπ0S.
In the first viewpoint, the linear map is

Qπ0S −→ Q1

δs 7−→

∫ 1

|Fs| δ1 = |Fs| δ1

which is precisely the function

π0S −→ Q

s 7−→ |f(s)| .

In the second viewpoint, it is the prolinear map

Q1 −→ Qπ0S

δ1 7−→
∑

s

|Fs| δ
s

which of course also is the function s 7→ |f(s)|.
In conclusion:

Proposition. A.7.7. The cardinality of a presheaf f : S → grpd is
computed pointwise: |f | is the function

π0S −→ Q

s 7−→ |f(s)| .

In other words, it is obtained by postcomposing with the basic homotopy
cardinality.

Example. A.7.8. The cardinality of the terminal presheaf is the
constant function 1. In incidence algebras, this says that the cardinality
of the zeta functor 2.3.2 is the zeta function.
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Example. A.7.9. The cardinality of the representable functor ht :
S → grpd is

π0S −→ Q

s 7−→ |Map(t, s)| =

{
|Ω(S, s)| if t ≃ s

0 else.

A.7.10. Remark. Note that under the Grothendieck-construction du-
ality, grpdS ≃ Grpd

relfin
/S , the representable presheaf hs corresponds

to psq, the name of s, which happens to belong also the subcategory
grpd/S ⊂ Grpd

relfin
/S , but that the cardinality of hs ∈ grpdS is not

the same as the cardinality of psq ∈ grpd/S . This may seem confusing
at first, but it is forced upon us by the choice of normalisation of the
functor

|| || : lin−→→ Vect

which in turn looks very natural since the extra factor
∣∣T[t]

∣∣ comes
from an integral. A further feature of this apparent discrepancy is the
following.

Proposition. A.7.11. Cardinality of the canonical perfect pairing at
the ∞-groupoid level yields precisely the perfect pairing on the vector-
space level.

Proof. We take cardinality of the perfect pairing

grpd/S × grpdS −→ grpd

(p, f) 7−→ f(p)

(psq, ht) 7−→

{
Ω(S, s) if t ≃ s

0 else

Since the cardinality of psq is δs, while the cardinality of h
t is |Ω(S, t)| δt,

the cardinality of the pairing becomes

(δs, |Ω(S, t)| δ
t) 7−→

{
|Ω(S, t)| if t ≃ s

0 else ,

or equivalently:

(δs, δ
t) 7−→

{
1 if t ≃ s

0 else ,

as required. �

A.7.12. Remarks. The definition of meta cardinality involves a con-
vention, namely to include the factor

∣∣T[t]

∣∣. In fact, as observed by
Baez–Hoffnung–Walker [4], other conventions are possible: for any ex-
ponents α1 and α2 with α1 + α2 = 1, it is possible to use the factor

∣∣S[s]

∣∣α1
∣∣T[t]

∣∣α2 .
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They use 0+1 in some cases and 1+0 in other cases, according to what
seems more practical. We think that these choices can be explained by
which side of duality the constructions take place.

Our convention with the
∣∣T[t]

∣∣ normalisation yields the ‘correct’ num-
bers in all the classical cases, like for example the standard Hall num-
bers when the decomposition space is the Waldhausen S-construction
of a (suitably finite) abelian category, cf. 4.6.11, not to mention that

the cardinality of the zeta functor (given by the span S
=
← S → 1, or

equivalently, by the terminal presheaf) is the zeta function (the con-
stant function 1). The zeta function is the ‘sum of everything’, with no
symmetry factors. A ‘sum of everything’, but with symmetry factors,
appeared in our work [23] on the Faà di Bruno and Connes–Kreimer
bialgebras, namely in the form of Green functions. That’s on the other
side of duality though (on the coalgebra side), and for this reason the
important symmetry factors appear correctly.

References

[1] Marcelo Aguiar and Swapneel Mahajan. Monoidal functors, species and
Hopf algebras, vol. 29 of CRM Monograph Series. American Mathematical
Society, Providence, RI, 2010. With forewords by Kenneth Brown and Stephen
Chase and André Joyal.
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[34] André Joyal. Disks, duality and Θ-categories, September 1997.
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[44] Tom Leinster. Notions of Möbius inversion. Bull. Belg. Math. Soc. 19 (2012),
911–935. ArXiv:1201.0413.

[45] Pierre Leroux. Les catégories de Möbius. Cahiers Topologie Géom.
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categories. Illinois J. Math. 26 (1982), 52–61.

[47] M. Lothaire. Combinatorics on words, vol. 17 of Encyclopedia of Mathe-
matics and its Applications. Addison-Wesley Publishing Co., Reading, Mass.,
1983. A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut,
Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe
Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon,
With a foreword by Roger Lyndon, Edited and with a preface by Perrin.

[48] Wolfgang Lück. Transformation groups and algebraic K-theory, vol. 1408
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989. Mathematica
Gottingensis.

[49] Jacob Lurie. Higher topos theory, vol. 170 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2009. ArXiv:math/0608040.

http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
http://www.tac.mta.ca/tac/reprints/


DECOMPOSITION SPACES 149

[50] Jacob Lurie. (∞, 2)-categories and the Goodwillie calculus I.
[51] Jacob Lurie. Higher Algebra. Available from

http://www.math.harvard.edu/~lurie/, 2013.
[52] Saunders Mac Lane. Categories for the working mathematician, second edi-

tion. No. 5 in Graduate Texts in Mathematics. Springer-Verlag, New York,
1998.

[53] Manuel Maia and Miguel Méndez. On the arithmetic product of combina-
torial species. Discrete Math. 308 (2008), 5407–5427. ArXiv:math/0503436.

[54] Dominique Manchon. On bialgebras and Hopf algebras of oriented graphs.
Confluentes Math. 4 (2012), 1240003, 10.

[55] Yuri I. Manin. Renormalization and computation I: motivation and back-
ground. Preprint, arXiv:0904.4921.

[56] Yuri I. Manin. A course in mathematical logic for mathematicians, vol. 53
of Graduate Texts in Mathematics. Springer, New York, second edition, 2010.
Chapters I–VIII translated from the Russian by Neal Koblitz, With new chap-
ters by Boris Zilber and the author.

[57] Kent E. Morrison. An introduction to q-species. Electron. J. Combin. 12
(2005), Research Paper 62, 15 pp. (electronic). ArXiv:math/0512052.

[58] The Univalent Foundations Program. Homotopy type theory: Univalent
foundations of mathematics. Technical report, Institute for Advanced Study,
2013.

[59] Frank Quinn. Lectures on axiomatic topological quantum field theory. In Ge-
ometry and quantum field theory (Park City, UT, 1991), pp. 323–453. Amer.
Math. Soc., Providence, RI, 1995.

[60] Charles Rezk. A model for the homotopy theory of homotopy theory. Trans.
Amer. Math. Soc. 353 (2001), 973–1007 (electronic).

[61] Claus Michael Ringel. Hall algebras and quantum groups. Invent. Math.
101 (1990), 583–591.

[62] Gian-Carlo Rota. On the foundations of combinatorial theory. I. Theory of
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