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Abstract—Network virtualisation is considerably gaining at-
tention as a solution to ossification of the Internet. However, the
success of network virtualisation will depend in part on how ef-
ficiently the virtual networks utilise substrate network resources.
In this paper, we propose a machine learning-based approach
to virtual network resource management. We propose to model
the substrate network as a decentralised system and introduce
a learning algorithm in each substrate node and substrate link,
providing self-organization capabilities. We propose a multiagent
learning algorithm that carries out the substrate network resource
management in a coordinated and decentralised way. The task
of these agents is to use evaluative feedback to learn an optimal
policy so as to dynamically allocate network resources to virtual
nodes and links. The agents ensure that while the virtual networks
have the resources they need at any given time, only the required
resources are reserved for this purpose. Simulations show that
our dynamic approach significantly improves the virtual network
acceptance ratio and the maximum number of accepted virtual
network requests at any time while ensuring that virtual network
quality of service requirements such as packet drop rate and
virtual link delay are not affected.

Keywords—Network virtualization, Dynamic Resource Alloca-
tion, Virtual Network Embedding, Artificial Intelligence, Machine
Learning, Reinforcement Learning, Multiagent Systems.

I. INTRODUCTION

Network virtualisation [1] has gained attention in the
research community as a means of allowing for flexibility and
innovation in the future Internet. It provides a mechanism for
allowing multiple virtual networks (VNs) to share resources
from one or more substrate networks (SNs). These resources -
for any given VN - are completely isolated from the others, and
appear as though they belong to different physical networks.
VN operators can then lease these resources to other VNs, or
use them to provide services to end users, allowing them to
establish multiple specialised and flexible networks that are
driven by end user requirements.

One key aspect in network virtualisation is the allocation
of physical resources to VNs. This involves embedding VNs
onto SNs, and managing of the allocated resources throughout
the lifecycle of the virtual network. The virtual network
embedding (VNE) problem involves embedding virtual nodes
and links to substrate nodes and links respectively. The effi-
ciency, optimality and flexibility of this resource allocation are
fundamental factors for network virtualisation to be successful.

VNE is a well studied problem [1]. However, most cur-
rent solutions perform static embeddings in that they do not
consider the possibility of remapping or adjusting resource
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allocation to one of more virtual networks. Even approaches
that propose dynamic virtual network embedding solutions still
allocate a fixed amount of resources to the virtual nodes and
links for their entire lifetime. As Internet traffic is not static,
this could lead to an inefficient utilisation of overall network
resources, especially if a substrate network rejects requests to
embed new VNs while reserving the resources for VNs that
are lightly loaded.

In this paper, instead of allocating a fixed amount of re-
sources to a given VN throughout its lifetime, we dynamically
and opportunistically allocate resources to virtual nodes and
links depending on the perceived needs. The opportunistic use
of resources involves carefully taking advantage of unused
virtual node and link resources to ensure that VN requests
are not rejected when resources reserved to already embedded
requests are idle. To this end, we use a demand-driven dynamic
approach that allocates resources to virtual nodes and links
using reinforcement learning (RL) [2].

The contribution of this paper is two-fold: A distributed
learning algorithm that allocates resources to virtual nodes and
links dynamically and an initialisation scheme that biases the
learning policy to improve the rate of convergence.

The rest of the paper is organised as follows: We present
related work in Section II. Section III defines the dynamic
resource allocation problem in the context of network virtu-
alisation. Section IV briefly introduces reinforcement learning
while our proposed RL approach is described in Section V.
Section VI presents the evaluation of the proposed solution and
a discussion of the results. The paper is concluded in Section
VIIL

II. RELATED WORK

Many variants to the VNE problem have been proposed
by different authors. Some of them such as [3] perform the
node and link embedding in two uncoordinated steps, while
[4] proposes a coordination between the two stages. A one-
shot embedding solution based on a multiagent system (MAS)
[5] is proposed in [6], while [7] and [8] propose mathematical
programming based solutions to VNE. All these approaches
propose a static allocation scheme in that once a given virtual
network is mapped, the allocations are not altered for its entire
lifetime.

There is a limited number of decentralised and dynamic
solutions to VNE [1]. The authors in [9] and [10] study
the VN embedding problem when the substrate network is
dynamically changing. The approach in this paper differs
from these works in that our consideration is on the changes
in actual loading of the virtual networks, rather than on a



changing substrate network. In [11], a solution that considers
dynamic requests for embedding/removing virtual networks
is presented. The authors map the constraints of the virtual
network to the substrate network by splitting the requirements
of one virtual link in more than one substrate link. On the other
hand, the proposal in [12] is aimed at network survivability,
performing re-embeddings in case of failures in the substrate
network. Both approaches differ from the work in this paper
in that our approach does not require changing virtual network
embeddings. The authors in [13] propose a solution which
aims at minimising the number of congested substrate links
by carrying out link migrations. But this is a reactive solution
since it is carried out only when an embedding strategy cannot
assign a VN request in the SN. [14] proposes algorithms for
the problem of efficiently re-configuring and embedding VN
requests submitted to a cloud-based data center. The authors
require that the ISPs submit new requests to modify existing
ones, and that only one such request can be handled at a given
time. In a related approach, [15] proposes a migration-aware
dynamic virtual data center (VDC) embedding framework
that also includes VDC scaling as well as dynamic VDC
consolidation, while Butt et. al. [16] propose a topology-aware
embedding that performs re-embeddings aimed at improving
performance of previously embedded VNs. Our work differs
from previous ones in that our resource re-allocations are
proactive (not triggered by failed embeddings), autonomous
(not triggered by either users or network providers) and do
not involve any re-embeddings of already mapped requests.
Most existing works on dynamic resource management
are based on three approaches: control theory, performance
dynamics modeling and workload prediction. [17] and [18]
are control theoretic approaches while [19] and [20] are based
on perfomance dynamics. The authors in [21] and [22] use
workload prediction. There are two major differences between
these works and the work in this paper. The first is the use
of multi-agent reinforcement learning while the other is based
on the application domain. Dynamic resource management in
virtual networks presents additional challenges as we have
to deal with different resource types (such as bandwidth and
queue size) which are not only segmented into many links and
nodes, but also require different quality of service guarantees.
To summarise, the difference between our approach and the
ones mentioned above is that, in our proposal, the resources
reserved for use by the virtual nodes and links is not left un-
changed throughout the entire lifetime of the virtual network.
The virtual nodes and links are monitored, and based on their
actual resource utilisation, resources are re-allocated, in which
case un-used resources are returned to the substrate network
for use by other virtual networks. We also note that unlike all
the dynamic approaches in the state of the art, our approach
does not involve the migration of virtual nodes and/or links.

III. PROBLEM DESCRIPTION

The virtual network resource allocation problem is made
up of two stages; VNE and dynamic resource management.
As shown in Fig. 1, VNE involves embedding of VNs onto a
SN and is initiated by a virtual network provider specifying
resource requirements for both nodes and links to the substrate
network provider. The specification of virtual network resource
requirements can be represented by a weighted undirected
graph denoted by G, = (N,, L,), where N,, and L, represent
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Fig. 1. Virtual Network Resource Allocation

the sets of virtual nodes and hnks respectively. Each virtual
node i € N, has a queue size' @Q; and a location P(CE Y)
as well as a constraint on its location AP;(Az, Ay) which
specifies the maximum allowed deviation for each of its  and
y coordinates, while each virtual link /;; € L, connecting the
virtual nodes ¢ and j has a maximum delay D; ; and bandwidth
(data rate) Euv, In the same way, a substrate network can be
modeled as an undirected graph denoted by G5 = (N, L),
where N and L represent the sets of substrate nodes and
links, respectively. Each substrate link l,, € Ls connecting
the substrate nodes w and v has a delay D, and a bandwidth
B, while each substrate node u € Ny has queue size @,
and a location P, (z,vy).

The VNE problem involves the mapping of each virtual
node ¢ € N, to one of the possible substrate nodes with in
the set O(i). ©(7) is defined as a set of all substrate nodes
u € Nj that have enough available queue size and are located
within the maximum allowed deviation AP;(Az, Ay) of the
virtual node 7. For a successful mapping, each virtual node
must be mapped and any given substrate node can map at
most one virtual node from the same request. Similarly, all
the virtual links have to be mapped to one or more substrate
links connecting the nodes to which the virtual nodes at its
ends have been mapped. Each of the substrate links must have
a sufficient data rate to support the virtual link. In addition,
the total delay of all the substrate links used to map a given
virtual link must not exceed the maximum delay specified by
the virtual link. VNE is out of the scope of this work. Any of
the static approaches [3] - [8] can be used for this stagez.

The second stage — which is the focus of the work in this
paper — follows a successful embedding of each VN, in which
case the resources allocated/reserved for the embedded VN
should be managed to ensure optimal utilisation of overall SN
resources. For this work, we simulate the use of VN resources
by transmitting user traffic in the form of packets over the
virtual network. The characteristics of the user traffic used for
this purpose are discussed in Section VI (A). By monitoring

I'The queue size is a measure of the maximum number of packets (or Bytes)
a given node can have in its buffer before dropping packets.

2In this paper, a mathematical programming formulation that performs both
node and link embedding in one step, and solved using ILOG CPLEX 12.5
[24] is used to represent a static solution for the evaluations.



the actual use, the resources allocated to the VN are then
dynamically managed. This is however performed carefully to
ensure that quality of service parameters such as packet drop
rate and delay for the VNs are not affected. We present our
proposal for this purpose in Section V.

IV. REINFORCEMENT LEARNING

RL is a technique from artificial intelligence [5] in which
an agent placed in an environment performs actions from
which it gets numerical rewards. For each learning episode
[2], the agent perceives the current state of the environment
and takes an action. The action leads to a change in the
state of the environment, and the desirability of this change
is communicated to the agent through a scalar reward. The
agent’s task is to maximise the overall reward it achieves
throughout the learning period [2]. It can learn to do this over
time by systematic trial and error, guided by a wide variety of
learning algorithms [23]. One such learning algorithm is Q-
learning. This is a temporal difference [2] learning algorithm
that gradually builds information about the best actions to take
in each possible state. This is achieved by finding a policy that
maximises some long-term measure of reinforcement. A policy
defines the learning agent’s way of behaving at a given time. It
is a mapping from perceived environment states to actions to be
taken when in those states [2]. The action to be taken in a given
state depends on the Q-values Q)(s, a) that are representative of
the desirability of each action, a in that state, s. The learning
process therefore involves continuously updating these values
until they guide the agent to taking the best action while in
any of the possible states [2]. Therefore, after every learning
episode, an agent updates its Q-values using the Q-learning
rule in (1).

Q(sp,ap) + (1 —a)Q(sp,ap) + {rp + )‘glea}Q(S”’ a)}
(D

where Q(sp,a,) is the new value of state s, corresponding
to action a,, 7, is the reward obtained from taking the action
ap while in state s, and s, is the next state resulting from
taking the action a, while in state s,, implying that Q(s,,a)
is the value associated with the action a of the state s,,. The
parameters 0 < o < 1 and 0 < A < 1 are referred to as
learning rate and discount factor respectively. The value of
« determines how fast learning occurs, while A models the
importance that is attached to future rewards in comparison to
immediate rewards.

In general, there are many possible ways to select actions
in RL. Two common action selection methods are e-greedy
and softmax. In e-greedy, a greedy action is selected most of
the time, and — using a small probability — a random action is
chosen once in a while. This ensures that after many learning
episodes, all the possible actions will be tried a high number
of times, leading to an optimal policy. Softmax differs from
e-greedy in the way the random action is selected. A weight is
assigned to each of the actions depending on their estimated
values. A random action is selected based on the weight
associated with it, ensuring that worst actions are unlikely to be
chosen. When using softmax, an agent takes a random action
a while in state s with a probability P(a|s) as defined in
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equation (2).
exp{Q(s,a)/T}

Plals) = 5 b0, 0)/7] @)

where 7 is a positive parameter called the temperature. High
temperatures cause the actions to be almost equiprobable.
When more than one agent interact with each other, the
resulting system is called a multiagent system (MAS) [5]. A
detailed description of the modeling of the different aspects
of reinforcement learning in the context of dynamic resource
management in virtual networks is the subject of Section V.

V. RL MODEL FOR DYNAMIC RESOURCE ALLOCATION

Virtual network embedding allocates resources to virtual
nodes and links based on the specification in the VN requests.
Stopping at the embedding stage would result in a static alloca-
tion in which a fixed amount of substrate network resources is
reserved for each virtual link and node irrespective of actual
utilisation. This would lead to under utilisation in situations
where the substrate network rejects new VN requests while
the already embedded ones are lightly loaded. The approach
proposed in this paper is to dynamically adjust the resource
allocation using RL. To this end, we start by modeling the
overall system showing the interaction of the different elements
as shown in Fig. 2. The modeling mainly involves the learning
environment, the learning algorithm, and a reward function to
evaluate the effectiveness of the agents’ learning.

A. Learning Environment

The learning environment consists of all the agents that rep-
resent the substrate network (the multiagent system). Specif-
ically, each substrate node and link is represented by a node



TABLE 1. ACTION DEFINITIONS AND VARIABLE STATES

(a) (b)

Code [ [ Percentage Value l l Action [ [ Description

000 0 < Variable < 12.5 Ag Decrease allocated resources by 50.0 percent

001 12.5 < Variable < 25 A Decrease allocated resources by 37.5 percent

010 25 < Variable < 37.5 Ag Decrease allocated resources by 25.0 percent

011 37.5 < Variable < 50 As Decrease allocated resources by 12.5 percent

100 50 < Variable < 67.5 Ay Maintain Currently allocated resources

101 67.5 < Variable < 75 Ag Increase allocated resources by 12.5 percent

110 75 < Variable < 87.5 Ag Increase allocated resources by 25.0 percent

111 87.5 < Variable < 100 Ar Increase allocated resources by 37.5 percent
Ag Increase allocated resources by 50.0 percent

agent n, € N, and a link agent [, € L, where N, and L, are
the sets of node agents and link agents respectively. The node
agents manage node queue sizes while the link agents manage
link bandwidths. The agents dynamically adjust the resources
allocated to virtual nodes and links, ensuring that resources are
not left underutilised, and that enough resources are available
to serve user requests. We consider that each n, € N, has
information about the substrate node resource availability as
well as the resource allocation and utilisation of all virtual
nodes mapped onto the substrate node. In the same way, we
expect that each [, € £, has information about substrate link
bandwidth as well as the allocation and utilisation of these
resources by all virtual links mapped to it. In case a given
virtual link is mapped onto more than one substrate link, then
each of the [, € L, agents coordinate to ensure that their
allocations do not conflict.

B. Learning Algorithm

1) Policy: The policy is implemented by means of a lookup
table which, for each state, maintains an updated evaluation of
all the possible actions. Since we have 9 possible actions and
512 possible states (as explained in the next two subsections),
the size of our policy is 9 x 512 = 4608 state-action values.

States: The state of any agent is a vector S with each term
s € S representing the state of one of the virtual links/nodes
mapped onto it. The states in this work are discrete. We
consider that the total resource demand of each virtual node
or link can be divided into at least 8 resource chunks, each
representing 12.5% of its total resource demand. For example,
a virtual node could be allocated 12.5%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5% and 100% of its total demand. It is
important to remark that these re-allocations are performed
after a successful embedding. Therefore, all embeddings are
performed based on the total demand of any given virtual node
or link.

The state s € S of any given virtual resource is represented
by a 3-tuple, s = (Ra, RY, Ri), where R, is the percentage
resource allocation, R, is the percentage unused virtual re-
sources, and R? is the percentage unused substrate resources.
Each of the 3 variables is allowed to take up 8 different states,
each made up of 3 bits, e.g., [010]. These values are based
of the relationship between a current value and a benchmark,
for example, if a virtual node is allocated between 37.5% and
50.0% of its total demand, then R, = 011. The complete set
of these variables is shown in Table I(a), which is valid for
R,, R? and RZ. Therefore, each term of the state vector has 9
bits e.g. (001,100, 111), implying that we have n = 2% = 512

possible states.

Actions: The output of each agent is a vector A indicating
an action a € A for each of the virtual nodes/links mapped
onto it. An agent can choose to increase or decrease the
resources (queue size or bandwidth) allocated to any virtual
node or link respectively. Specifically, as shown in Table I(b),
at any point, each agent can choose 1 of the 9 possible actions,
a € A= (Ay,A1,...,As) each of which leads to a discrete
change in resource allocation.’

2) States Model: The states model mimics the behaviour
of the environment. When provided with a given status of
the substrate and virtual networks resource allocation and
utilisation levels i.e. the values R,, R}, and R;, a states model
returns a state s € S. In the same way, when provided with a

given state s, = (R%, R’;p, R;p and an action ay, the states

model provides the next state s,, = (Ran, Ry, R;n) It is in
general a model of the substrate and virtual network resources

and how the different possible actions affect the allocation of
substrate resources to virtual networks.

3) Q-Learning: In this paper, we propose a decentralised
Q-learning based algorithm to iteratively approximate the state-
action value, and then use these values to select actions for the
allocation of substrate resources to the virtual nodes and links.
As shown in algorithm 1 the learning algorithm is made up
of three major steps; policy initialisation, policy update and
action selection. We briefly describe each of these steps in the
following subsections.

C. Reward Function

When an agent takes an action, the networks are monitored,
recording the link delays, packet drops and virtual and sub-
strate network resource utilisation so as to determine a reward.
Specifically, the reward resulting from a learning episode of
any agent is a vector R in which each term r(v) corresponds
to the reward of an allocation to the virtual resource® v, and
is dependent on the percentage resource allocation R,, the
percentage resource utilisation R, the link delay D;; in case
of I, € L, and the the number of dropped packets P, in the
case of ng, € Nj.

—100
VR, — (Hbij + 77131‘)

if R, <0.25
r(v) = otherwise

Where v, £ and ) are constants aimed at adjusting the influence
of the variables 1%, D;; and P; to the overall reward. In this
paper, the values v = 100, x = 1000 and n = 10 are used.
These values have been determined through simulations, for
example, by noting that the values of P; are about 100 times
more than those of D;; (See Figs. 8 and 10). We therefore
aim at scaling them to comparable magnitudes so that they
can have the same effect on r(v). D;; and P; are measures of

3In all cases, the percentage change is with respect to the total demand of
the virtual node or link.

4We remark that this algorithm is slightly different from the “conventional”
Q-learning algorithm [2] because instead of getting a reward immediately,
in our case the reward of a given learning episode are used just before the
following episode after a performance evaluation has been made.

SWe use the term virtual resource to mean either a virtual node queue or
virtual link bandwidth.



Algorithm 1 Agent Learning Algorithm
1: POLICY INITIALISATION:

2: for s € S,a € A do

3:  Initialize the Q-table values Q(s,a)

4: end for

5: Determine current state s,

6: previous state, s, = s, previous action, a, = Ap, next
state, s,.

7: repeat

8:  Wait(Learning Interval)

9:  POLICY UPDATE:

10:  Read s, ap, s,

11:  Observe Virtual Network Performance and Determine
reward for previous action rp,.

12:  Update the Q-Table using the equation (1)

13:  ACTION SELECTION:

14: Determine current state, s..

15:  Choose an action, a. € A, for that state using a given
action selection criterion

16:  Take the action, a. and determine next state s.

17:  Set s, = S, Gp = A, Sp = S

18: until Learning is stopped

the performances of link agents and node agents respectively.
Therefore, for n, € N,, D;; = 0 while P, = 0 for I, € L,.
The objective of the reward function is to encourage high
virtual resource utilisation while punishing n, € N, for
dropping packets and [, € L, for having a high delay. We
also assign a punitive reward of —100 to resource allocations
below 25% to ensure that this is the minimum allocation to a
virtual resource and therefore avoid adverse effects to QoS in
cases of fast changes from very low to high VN loading.

Policy Initialisation

Before learning can start, we need to initialise the learning
policy. One possible approach is to assign random or constant
values to all states and actions. However, since Q-learning
requires all state-action pairs to be visited at least once so as to
reach optimality, using random or constant initial values may
lead to a slow convergence especially for a policy with many
state-action values like we have in our approach. The idea is
to start with a Q-table with values that more easily represent
the expected actions of the agents. We therefore propose an
initialisation approach that improves the rate of convergence.
We initialise every possible state-action value using equation
(3). a

Q(s,a) = T X (s — 255) 3)
Where ¥ is a constant aimed at scaling the (Q(s, a) values to
the required ranges. The formula in equation (3) is based on
observing that the free substrate and virtual resources increase
as we move from state (000,000,000) to (111,111,111).
Therefore, the rationale behind equation (3) is to generally bias
the agents to increase resource allocation to the virtual network
whenever it finds itself in a state closer to (000, 000,000) and
reduce the allocation while in states closer to (111,111, 111).
To this end, we represent each of the states s € S with integers
[0,511] and all the actions a € A with integers [0,8]. We
then divide the total state space into two; such that while in
states [0 — 255] the agents in general allocate more resources
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to the virtual network and then allocate less while in the
states [256 — 512]. In Fig. 3, we show the different possible
combinations with their respective values. As shown in the
figure, for the same state (000,000, 000), action Ay has a Q-
value of 0 while action Ag has —20.4. The evaluation of the
proposed initialisation method is presented in Section VI.

Policy Update

The idea of learning is to gradually improve the policy until
an optimal or near optimal policy is reached. This is achieved
by updating the policy table after every learning episode. In
this paper, the policy table is updated using the Q-learning
equation (1).

Action Selection

An agent can select one out of the 9 possible actions.
Since the suitability of any of the two action selection methods
described in Section IV depends on the nature of the task, in
this paper, we evaluate both of them with respect to our specific
learning task, and their respective performances discussed in
Section VI.

Time Complexity

We now formally analyse the time complexity of Algorithm
1. The initialisation step in Line 2 requires initilisation of the
learning policy and can be solved in O(|N;_,—,|), Where
Ny_q4_, is the number of state-action-values (4608 in this
paper). Lines 5, 14 and 16 may each require iteration through
all possible states in the worst case and can therefore be solved
in O(|S)]). Finally, the for loop in Line 15 runs in time O(].A|).
Therefore, each episode of the proposed algorithm can be
solved in linear time determined by the policy size.

Cooperation between Agents

Since a virtual link can be mapped to more than one
substrate link, the agents [, € L, that support the given
virtual link must cooperate to avoid conflicting resource alloca-
tions. We accomplish this by allowing the agents to exchange
messages. We consider that each agent [, € £, maintains a
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TABLE II. NS3 PARAMETERS
Parameter H Value
Queue Type Drop Tail
Queue drop Mode Bytes

Maximum Queue Size 6,553,500 Bytes

Maximum Packets Per VN 3500 Packets

Number of VNs 1024

Network Mask 255.255.224.0

IP Adress Range 10.0.0.0 — 10.255.224.0

Network Protocol IPv4

Transport Protocol TCP

Packet MTU 1518 Bytes
Packet Error Rate 0.000001 per Byte
Error distribution Uniform (0, 1)
Port 8080

record of other agents I/, € L, with which it is managing
the resources of a given virtual link. This set of collaborating
agents changes dynamically for each agent as new virtual
networks are embedded and old ones leave. To ensure that the
agents [, € L, do not perform conflicting actions, only one
of them learns at any given time. This is achieved by starting
the learning processes of each agent at different times on their
creation and thereafter performing learning at regular intervals.
After each learning episode, if an agent [, € £, needs to
change an allocation, and the virtual link under consideration
is mapped onto more than one substrate link, a message is
sent to all the other affected substrate link agents I, € L,
with information about the proposed allocation. This allows
for a synchronised allocation of virtual link resources. This is
reasonable since all agents belong to the same organisation (the
SN) and learn the same policy; as they cannot have conflicting
objectives. It would however be interesting to consider a more
advanced cooperation protocol that allows for possibilities
of agents accepting or rejecting proposals of other agents,
which would be ideal in heterogeneous environments where
the agents belong to different organisations and hence have
different objectives.

Scalabity: Tt is worth noting that in general, a virtual link is
mapped to 2—3 substrate links. This means that at any point, a
given agent only needs to send update messages to about 1 —2
other agents. We consider that this number of update messages
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TABLE III. BRITE NETWORK TOPOLOGY GENERATION PARAMETERS
Parameter H Substrate Network H Virtual Network
Name (Model) Router Waxman Router Waxman
Number of nodes (N) 25 [5—10]
Size of main plane (HS) 250 250
Size of inner plane (LS) 250 250
Node Placement Random Random
GrowthType Incremental Incremental
Neighbouring Nodes 3 2
alpha (Waxman Parameter) 0.15 0.15
beta (Waxman Parameter) 0.2 0.2
BWDist Uniform Uniform
Minimum BW (BWMin) 2 x 10° bps 1 x 108 bps
Maximum Dev. (BWMax) 8 x 108 bps 1 x 108 bps

is manageable, and would not congest the network. In addition,
since the communicating agents represent substrate links that
are part of a simple substrate paths, they should be connected
to each other, and hence the update messages are restricted to
small regions even for big network sizes.

VI. PERFORMANCE EVALUATION
A. Simulation Setup

To evaluate the performance of the proposed approach, we
added a network virtualisation module to NS3 [25]. Table II
shows the NS3 parameters used in our simulations. The im-
plemetation is such that every time a virtual network request is
accepted by the substrate network, the virtual network topolgy
is created in NS3, and a traffic application starts transfering
packets over the virtual network. The traffic used in this
paper is based on real traffic traces from CAIDA anonymised
Internet traces [26]. This data set contains anonymized passive
traffic traces from CAIDA’s equinix-chicago and equinix-
sanjose monitors on high-speed Internet backbone links, and
is mainly used for research on the characteristics of Internet
traffic, including flow volume and duration [26]. The trace
source used in this paper was collected on 20th December
2012 and contains over 3.5Million packets. We divide these
packets amoung 1000 virtual networks, so that each virtual
network receives about 3500 packets. These traces are used
to obtain packet sizes and time between packet arrivals for
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TABLE 1IV. SUBSTRATE AND VIRTUAL NETWORK PROPERTIES
Parameter H Substrate Network H Virtual Network
Minimum Number of Nodes 25 5
Maximum Number of Nodes 25 10

Minimum Node Queue Size
Maximum Node Queue Size
Minimum Link Bandwidth
Maximum Link Bandwidth

(100 x 1518) Bytes
(200 x 1518) Bytes
2.0Mbps

10.0Mbps

(10 x 1518) Bytes
(20 x 1518) Bytes
1.0Mbps
2.0Mbps

each VN. As the source and destination of the packets are
anonymised, for each packet in a given VN, we generate a
source and destination IP address in NS-3 using a uniform
distribution.

The substrate and virtual network topologies are generated
using Brite [27] with settings shown in Table III. Simulations
were run on an Ubuntu 12.04 LTS Virtual Machine with
4.00GB RAM and 3.00GHz CPU specifications. Both substrate
and virtual networks were generated on a 25 X 25 grid.
The queue size and bandwidth capacities of substrate nodes
and links as well as the demands of virtual networks are
all uniformly distributed between values shown in Table IV.
Link delays are as determined by Brite. Each virtual node is
allowed to be located within a uniformly distributed distance
7.5 < x < 15 of its requested location, measured in grid units.
We assumed that virtual network requests arrive following a
Poisson distribution with an average rate of 1 per minute. The
average service time of each virtual network is 60 minutes and
is assumed to follow a negative exponential distribution.

B. Initial Evaluations

The initial evaluations are aimed at determining the ap-
propriate action selection method for our task, as well as
the effectiveness of the proposed policy initialisation scheme.
Both of these evaluations are based on a comparison of agent
actions with optimal actions. We define an optimal action for
an agent as that action that would lead to a resource allocation
equal to what the network is actually using. The deviations in

Total Number of Packets

Fig. 10. Node Packet Drop Rate Variation

Thousands Thousands

Learning Episode

Fig. 11. Link Packet Delay Variation

these evaluations are therefore with reference to actual resource
usage in a similar network that is not performing dynamic
allocations.

Fig. 4 compares the performance of the action selection
methods e-greedy and softmax. It is evident that for this
task, softmax performs better than e-greedy. The difference
in performance can be attributed to the fact that for e-greedy,
when random actions are chosen, the worst possible action
is just as likely to be selected as the second best, yet softmax
favours actions with better values. This could also explain why
softmax actions appear to be relatively stable as compared to
those by e-greedy. In Fig. 5, we show the effect of the proposed
initialisation method (action selection based on softmax). We
observe that an initialised policy requires about 350,000
learning episodes less to converge than a random policy. This
can be attributed to the agents not having to explore all possible
actions in all states as initialisation makes some actions more
valuable than others.

For these evaluations as well as those in the next subsection
the reinforcement learning parameters used are: learning rate,
a = 0.8, discount factor, A = 0.1 and temperature, 7 = 1.
We remark that based on the results of the evaluations in this
subsection, the rest of the simulations in this paper are based on
an initialised policy and the action selection method is softmax.

C. Performance Metrics

We evaluate the performance of our proposal on two fronts;
the quality of the embeddings, as well as the quality of service
to the virtual networks. The idea is that the opportunistic use
of virtual network resources should not be at the expense of
the service quality expectations of the network users.

1) Embedding Quality: This is evaluated using the accep-
tance ratio and total instantaneous accepted virtual networks.
The acceptance ratio is a measure of the long term number
of virtual network requests that are accepted by the substrate
network. The total instantaneous accepted virtual networks is



a measure of the embedding cost incurred by a given substrate
network, as a substrate network that incurs a lower embedding
cost normally has more extra resources at any point and hence
is able to have many embedded virtual networks at any point.

2) Quality of Service: We use the packet delay and drop
rate as indications of the quality of service. We define the
packet delay as the total time a packet takes to travel from
its source to its final destination. The drop rate is defined as
the ratio of the number of packets dropped by the network to
the total number of packets sent. As shown in Table II, we
model the networks to drop packets due to both node buffer
overflow as well as packet errors. In addition, as it is more
important in some applications, we define the variations of
these two parameters. The jitter (delay variation) is defined
as the difference between delays during different time periods,
while the drop rate variation is defined as the variation between
packet drops in different time periods. The time interval to
update the measurements corresponds to the transmission of
50 packets.

D. Discussion of Results

The simulation results are shown in Fig. 6 — 11. As can be
seen from Fig. 6, the dynamic approach performs better than
the static one in terms of virtual network acceptance ratio. This
can be attributed to the fact that in the dynamic approach the
substrate network always has more available resources than in
the static case, as only the resources needed for actual transfer
of packets is allocated and/or reserved for virtual networks.
This is further confirmed by Fig. 9 which shows that at any
given point a substrate network that dynamically manages its
resources is able to embed more VNs than a static one.

Fig. 7 shows that the packet drop rate of the static approach
is in general constant (due to packet errors as well as buffer
overflows) while that of the dynamic approach is initially high,
but gradually reduces. The poor performance of the dynamic
approach at the start of the simulations can be attributed to the
fact that at the beginning of the simulation when the agents are
still learning, the virtual node queue sizes are allocated varying
node buffers that lead to more packet drops. In fact, this initial
number of packet drops affects the rate at which the overall
drop rate reduces towards the one for the static approach. This
can be confirmed by observing the actual periodic drops in
packets as shown in Fig. 10 which show that the total number
of packets dropped by both approaches is comparable towards
the end of the simulation.

Similarly, Fig. 8 shows that the packets in the dynamic
approach initially have higher delays than those in the static
approach. Once more, the reason for this is the initial learning
period of the agents. This is again confirmed by observing
that the delay variations in Fig. 11 easily converge to those
of the static approach. It is however worth noting that unlike
the packet drop rate (Fig. 7), the actual delay (Fig. 8) of
the dynamic approach finally converges to that of the static
approach. Again, this could confirm that the slow convergence
of the drop rate is due to the initial packet drops, since initial
packets delays would not affect the delays of other packets,
yet initial packet drops remain factors in the final drop rate.

We are however mindful that it could require a much
higher number of learning episodes for the overall drop rate in
Fig. 7 to finally converge to that of the static approach. This
is because we used a learning policy with 4608 state-action

values. With this high number of state-action values, the agents
require a lot of time to learn an optimal policy. Moreover, it
could improve the accuracy and precision of the agents’ actions
even more if the state-action values were increased. It would
therefore be better to use function approximation or a more
compact parametrised function representation to model the
agents’ policy other than a look-up table. We will investigate
this approach more in the future.

VII. CONCLUSION

This paper has proposed a dynamic approach to the man-
agement of resources in virtual networks. We used a distributed
reinforcement learning algorithm to allocate resources dynam-
ically. We also proposed a method of initialising the learning
policy that enhances the convergence rate of the learning
algorithm. We have been able to show through simulation that
our proposal improves the acceptance ratio of virtual networks,
which would directly translate in revenue for the substrate
network providers, while ensuring that, after the agents have
learnt an allocation policy, the quality of service to the virtual
networks is not negatively affected.

However, a number of future research directions can be
considered. Implementing our proposed algorithm in real net-
works could pose more questions, e.g., the ease of having
distributed network loading information, whether a dedicated
network would be needed for communication between the
agents, e.t.c. In future, we will study these issues and develop
a prototype LAN where the agents are based on a real agent
development platform. In addition, dynamic virtual network
resource management in a multi-domain virtual network envi-
ronment may raise more challenges since it may require a clear
communication protocol, negotiations and agreements between
competing agents that support inter-domain substrate paths. It
could also be interesting to study the possible improvement
in the agents’ learning policy for example by using function
approximation techniques such as artificial neural networks.
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