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Abstract. We study the degree of nonhomogeneous lattice ideals over arbitrary fields, and give
formulas to compute the degree in terms of the torsion of certain factor groups of Zs and in terms
of relative volumes of lattice polytopes. We also study primary decompositions of lattice ideals over
an arbitrary field using the Eisenbud–Sturmfels theory of binomial ideals over algebraically closed
fields. We then use these results to study certain families of integer matrices (positive critical binomial
(PCB), generalized positive critical binomial (GPCB), critical binomial (CB), and generalized critical
binomial (GCB) matrices) and the algebra of their corresponding matrix ideals. In particular, the
family of GPCB matrices is shown to be closed under transposition, and previous results for PCB
ideals are extended to GPCB ideals. Then, more particularly, we give some applications to the theory
of 1-dimensional binomial ideals. If G is a connected graph, we show as a further application that the
order of its sandpile group is the degree of the Laplacian ideal and the degree of the toppling ideal.
We also use our earlier results to give a structure theorem for graded lattice ideals of dimension 1 in
3 variables and for homogeneous lattices in Z3 in terms of CB ideals and CB matrices, respectively,
thus complementing a well-known theorem of Herzog on the toric ideal of a monomial space curve.
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1. Introduction. Let S = K[t1, . . . , ts] be a polynomial ring over a field K. As
usual, m will denote the maximal ideal of S generated by t1, . . . , ts. For an arbitrary
ideal I of S there are various ways of introducing the notion of degree; let us briefly
recall one of them. The vector space of polynomials in S (resp., I) of degree at most
i is denoted by S≤i (resp., I≤i). If Ha

I (i) := dimK(S≤i/I≤i) is the affine Hilbert
function of S/I and k is the Krull dimension of S/I, the positive integer

deg(S/I) := k! lim
i→∞

Ha
I (i)/i

k

is called the degree or multiplicity of S/I. If S = ⊕∞
i=0Si has the standard grading and

I ⊂ S is a graded ideal, then Ha
I is the Hilbert–Samuel function of S/I with respect

to m in the sense of [35, Definition B.3.1]. The notion of degree plays a central role in
this paper. One of our aims is to give a formula for the degree when I is any lattice
ideal.

The set of nonnegative integers (resp., positive integers) is denoted by N (resp.,
N+). A binomial is a polynomial of the form tb − tc, where b, c ∈ Ns and where, if
c = (ci) ∈ Ns, we set tc = tc11 · · · tcss . We use the term “binomial” as a shorthand for
what elsewhere has been called pure difference binomial [10, p. 2] or unital binomial
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DEGREE AND ALGEBRAIC PROPERTIES 395

[18]. A binomial ideal is an ideal generated by binomials. The set {i | ci �= 0}, denoted
by supp(c), is called the support of c.

Consider an s × m integer matrix L with column vectors a1, . . . , am. Each ai
can be written uniquely as ai = a+i − a−i , where a+i and a−i are in Ns and have
disjoint support. The matrix ideal of L, denoted by I(L), is the ideal of S generated

by ta
+
1 − ta

−
1 , . . . , ta

+
m − ta

−
m . A matrix ideal is an ideal of the form I(L) for some

L. Matrix ideals are a special class of binomial ideals. Some of our results concern
certain integer matrices and the algebra of their matrix ideals.

A subgroup L of Zs is called a lattice. A lattice ideal , over the field K, is an ideal
of S of the form I(L) = (ta

+ − ta
− | a ∈ L) for some lattice L in Zs. Let L be the

lattice generated by the columns a1, . . . , am of an integer matrix L. It is well known
that I(L) and I(L) are related by the equality I(L) = (I(L): (t1 · · · ts)∞) and that
I(L) is also a matrix ideal. The class of lattice ideals has been studied in many places;
see [27] and the references therein. This concept is a natural generalization of a toric
ideal.

Using commutative algebra methods and the Eisenbud–Sturmfels theory of bi-
nomial ideals over algebraically closed fields [10], in this paper we study algebraic
properties and primary decompositions of lattice ideals and binomial ideals of a vari-
ety of types. By and large, we focus on the structure of the class of graded binomial
ideals I that satisfy the vanishing condition V (I, ti) = {0} for all i, where V (·) is the
variety of (·). This class of ideals includes the graded lattice ideals of dimension 1
[20], the vanishing ideals over finite fields of algebraic toric sets [33], the toric ideals
of monomial curves [16], the Herzog–Northcott ideals [29], the positive critical bino-
mial (PCB) ideals [30], and the Laplacian ideals of complete graphs [23]. We will
also present some other interesting families of ideals that satisfy this hypothesis. In
particular, for s = 3, we completely determine the structure of any graded lattice
ideal in terms of critical binomial ideals and also the structure of any homogeneous
lattice in Z3. The transpose of L is denoted by L�. If I(L�) is graded, following [30],
we study when I(L) is also graded.

The contents of this paper are as follows. In section 2, we introduce the notion of
degree via Hilbert polynomials and observe that the degree is independent of the base
field K (Proposition 2.8). We present some of the results on lattice ideals that will be
needed throughout the paper, introduce some notation, and recall how the structure
of T (Zs/L), the torsion subgroup of Zs/L, can be read off from the normal form of
L. All results of this section are well known.

In section 3, we study primary decompositions of lattice ideals. The first main
result is an auxiliary theorem that relates the degree of S/I(L) and the torsion of Zs/L
to the primary decomposition of I(L) over an arbitrary field K (Theorem 3.2). If K is
algebraically closed, the primary decomposition of I(L) is given in [10, Corollary 2.5]
in terms of lattice ideals of partial characters of the saturation of L. In this situation,
the primary components are generated by polynomials of the form ta − λtb, where
0 �= λ ∈ K. Let γ be the order of T (Zs/L). If K is a field containing the γth roots of
unity with char(K) = 0 or char(K) = p, p a prime with p � γ, it is well known that
I(L) is a radical ideal (see Theorem 2.7). Assuming that I(L) is a graded lattice ideal
of dimension 1, following [30] we give explicitly the minimal primary decomposition
of I(L) in terms of the normal decomposition of L (Theorem 3.3).

Section 4 is devoted to developing a formula for the degree of any lattice ideal.
First, we exhibit a formula for the degree that holds for any toric ideal (Theorem 4.5),
the graded case was shown in [34, Theorem 4.16, p. 36] and [12]. If S has the standard
grading and I(L) is a graded lattice ideal of dimension 1, the degree of S/I(L) is the
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396 L. O’CARROLL, F. PLANAS-VILANOVA, R. H. VILLARREAL

order of T (Zs/L) [21]. As usual, we denote the relative volume of a lattice polytope
P by vol(P) and the convex hull of a set A by conv(A).

We come to the main result of section 4.
Theorem 4.6.

(a) If rank(L) = s, then deg(S/I(L)) = |Zs/L|.
(b) If rank(L) < s, there is an integer matrix A of size (s−r)×s with rank(A) =

s− r such that we have the containment of rank r lattices L ⊂ kerZ(A).
(c) If rank(L) < s and v1, . . . , vs are the columns of A, then

deg(S/I(L)) = |T (Zs/L)|(s− r)!vol(conv(0, v1, . . . , vs))

|T (Zs−r/〈v1, . . . , vs〉)| .

One can effectively use Theorem 4.6 to compute the degree of any lattice ideal
(Examples 4.11 and 4.12). For certain families, we show explicit formulas for the de-
gree (Corollary 4.9). For a 1-dimensional lattice ideal I(L), not necessarily homoge-
neous, we can express the degree in terms of a Z-basis of the lattice L (Corollary 4.10,
Example 8.14).

Section 5 focuses on graded binomial ideals satisfying the vanishing condition
V (I, ti) = {0} for all i. For ideals of this type, we characterize when they are lattice
ideals (Proposition 5.3). This enables us to present some applications of the main
result of section 3 to the theory of binomial ideals.

We show the following result on the structure of graded matrix ideals I, writing
Hull(I) for the intersection of the isolated primary components of I.

Proposition 5.7. Let I be the matrix ideal of an s × m integer matrix L and
let L be the lattice spanned by the columns of L. Suppose that I is graded and that
V (I, ti) = {0} for all i. Then

(a) I has a minimal primary decomposition either of the form I = q1 ∩ · · · ∩ qc,
if I is unmixed, or else I = q1 ∩ · · · ∩ qc ∩ q, if I is not unmixed, where the qi
are pi-primary ideals with ht(pi) = s− 1, and q is an m-primary ideal;

(b) I(L) = q1 ∩ · · · ∩ qc = Hull(I);
(c) rank(L) = s− 1 and there exists d ∈ Ns

+ with dL = 0;
(d) if I is not unmixed and h = t1 · · · ts, there exists a ∈ N+ such that I(L) =

(I:ha), q = I + (ha) is an irredundant m-primary component of I, and I =
I(L) ∩ q;

(e) either c ≤ |T (Zs/L)|, if char(K) = 0, or else c ≤ |G|, if char(K) = p, p
a prime, where G is the unique largest subgroup of T (Zs/L) whose order is
relatively prime to p. If K is algebraically closed, then equality holds.

As a consequence, for the family of matrix ideals satisfying the hypotheses of
Proposition 5.7, we obtain the following formula for the degree:

deg(S/I) = max{d1, . . . , ds}|T (Zs/L)|,
where d = (d1, . . . , ds) ∈ Ns

+ is the weight vector, with gcd(d) = 1, that makes the
matrix ideal I homogeneous (Corollary 5.9).

In section 6 we restrict our study to matrix ideals associated with square integer
matrices of a certain type. Throughout, set 1 = (1, . . . , 1).

Definition 1.1. Let ai,j ∈ N, i, j = 1, . . . , s, and let L be an s× s matrix of the
following special form:

L =

⎛
⎜⎜⎜⎝

a1,1 −a1,2 · · · −a1,s
−a2,1 a2,2 · · · −a2,s

...
... · · · ...

−as,1 −as,2 · · · as,s

⎞
⎟⎟⎟⎠ .(1.1)D
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DEGREE AND ALGEBRAIC PROPERTIES 397

The matrix L is called (a) a pure binomial matrix (PB matrix, for short) if aj,j > 0
for all j, and for each column of L at least one off-diagonal entry is nonzero; (b) a
positive pure binomial matrix (PPB matrix) if all the entries of L are nonzero; (c) a
critical binomial matrix (CB matrix) if L is a PB matrix and L1� = 0; (d) a PCB
matrix [30] if all the entries of L are nonzero and L1� = 0; (e) a generalized critical
binomial matrix (GCB matrix), if L is a PB matrix and there exists b ∈ Ns

+ such
that Lb� = 0; and (f) a generalized positive critical binomial matrix (GPCB matrix)
if all the entries of L are nonzero and there exists b ∈ Ns

+ such that Lb� = 0.
If L is a PB matrix, we will call I(L) = (f1, . . . , fs) the PB ideal associated with

L, where fi is the binomial defined by the ith column of L (see Definition 5.4). We
will use similar terminology when L is a PPB, CB, PCB, GCB, or GPCB matrix.

Summarizing, we have the following inclusions among these classes of matrices
and ideals:

CB ⊂ GCB ⊂ PB
∪ ∪ ∪

PCB ⊂ GPCB ⊂ PPB

It turns out that L is a CB matrix if and only if L is the Laplacian matrix of a
weighted digraph without sinks or sources (see section 7). Thus, in principle, we can
and will use the techniques of algebraic graph theory [4, 14], matrix theory [3], and
digraph theory [2] to study CB and GCB matrices and their matrix ideals.

The support of a polynomial f , denoted by supp(f), is the set of variables that
occur in f . If I(L) = (f1, . . . , fs) is the matrix ideal of a PB matrix L and |supp(fj)| ≥
4, for j = 1, . . . , s, we show that I(L) is not a lattice ideal (Proposition 6.1). Let
g1, . . . , gs be the binomials defined by the rows of a GCB matrix L and let I be the
matrix ideal of L�. If V (I, ti) = {0} and |supp(gi)| ≥ 3 for all i, we show that I is
not a complete intersection (Proposition 6.2).

The GPCB matrices (resp., ideals) are a generalization of the PCB matrices
(resp., ideals) introduced and studied in [30]. The origin of this generalization is in
the overlap between the results in [21, section 3] and the results in [30, section 5] (see
[30, Remark 5.8]). While the class of PCB matrices is easily seen not to be closed
under transposition, the wider class of GPCB matrices is shown to be closed under
transposition (Theorem 6.3).

We are also interested in displaying new families of binomial ideals verifying the
usual hypotheses above, namely, graded matrix ideals I of integer matrices such that
V (I, ti) = {0} for all i. Some new such families are the GPCB ideals (Remark 6.6),
the Laplacian ideals associated with connected weighted graphs (Proposition 7.1), and
the GCB ideals that arise from matrices with strongly connected underlying digraphs
(Proposition 7.6). Thus we can apply to these families some of the results of this
article.

In the rest of section 6, we extend to GPCB ideals some properties that hold
for PCB ideals. We give an explicit syzygy among the generators of a GPCB ideal
(Proposition 6.7). This will be used to give an explicit description of an irredundant
embedded component of a GPCB ideal in at least 4 variables (Theorem 6.11). We give
an explicit description of the hull of a GPCB ideal and, if s ≥ 4, of an irredundant
embedded component (Proposition 6.10 and Theorem 6.11). For s = 2, we give a
description of a GPCB ideal I(L) and its hull in terms of the entries of the matrix
L (Lemma 6.12). This description will be used in section 8 (see Proposition 8.8) to
characterize when I(L) is a lattice ideal.
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In section 7 we show how our results apply to matrix ideals arising from Laplacian
matrices of weighted graphs and digraphs. We are interested in relating the combi-
natorics of a graph (resp., digraph) to the algebraic invariants and properties of the
matrix ideal associated with the Laplacian matrix of the graph (resp., digraph). Let
G = (V,E,w) be a weighted simple graph, where V = {t1, . . . , ts} is the set of vertices,
E is the set of edges, and w is a weight function that associates a weight we with every
e ∈ E. The Laplacian matrix of G, denoted by L(G), is a prime example of a CB
matrix. Laplacian matrices of complete graphs are PCB matrices; this type of matrix
occurs in [23]. The matrix ideal I ⊂ S of L(G) is called the Laplacian ideal of G. If
I ⊂ S is the Laplacian ideal of G, the lattice ideal I(L) = (I: (t1 · · · ts)∞) is called the
toppling ideal of G [23, 32]. If G is connected, the toppling ideal has dimension 1.

The torsion subgroup of the factor group Zs/Im(L(G)), denoted by K(G), is
called the critical group or the sandpile group of G [1, 22]. The group K(G) is equal
to the torsion subgroup of Zs/L. Below, we denote the set of edges of G incident to
ti by E(ti). Thus we can give an application of our earlier results to this setting.

Proposition 7.1. Let G = (V,E,w) be a connected weighted simple graph with
vertices t1, . . . , ts and let I ⊂ S be its Laplacian ideal. Then the following hold.

(a) V (I, ti) = {0} for all i.
(b) deg(S/I) = deg(S/I(L)) = |K(G)|.
(c) Hull(I) = I(L).
(d) If |E(ti)| ≥ 3 for all i, then I is not a lattice ideal.
(e) If G = Ks is a complete graph, then deg(S/I) = ss−2.
As another application, we show that the Laplacian ideal is an almost complete

intersection for any connected simple graph without vertices of degree 1 (Proposi-
tion 7.3).

Given a square integer matrix L, we denote its underlying digraph by GL (Def-
inition 7.4). If L is a GCB matrix and GL is strongly connected, we show that L�

is a GCB matrix (Theorem 7.5). If L is a GCB matrix, we show that GL is strongly
connected if and only if V (I(L), ti) = {0} for all i (Proposition 7.6). Thus, the results
of the previous sections can also be applied to GCB ideals that arise from matrices
with strongly connected underlying digraphs.

Finally, in section 8 we focus on matrix ideals with s = 3 and apply our earlier
results in this setting. From [31, Theorem 6.1], it follows that graded lattice ideals
of height 2 in 3 variables are generated by at most 3 binomials. The main results
of section 8 uncover the structure of this type of ideal and the structure of graded
lattices of rank 2 in Z3. We show that a graded lattice ideal in K[t1, t2, t3] of height 2
is generated by a full set of critical binomials (Definition 8.1, Theorem 8.2); our proof
follows that of [19, pp. 137–140]. This result complements the well-known result of
Herzog [16] showing that the toric ideal of a monomial space curve is generated by a
full set of critical binomials.

It is easy to see that an ideal I ⊂ K[t1, t2] is a graded lattice ideal of dimension 1 if
and only if I is a PCB ideal. The main result of section 8 is the analogue of this result
in the case of 3 variables. Concretely, an ideal I ⊂ K[t1, t2, t3] is a graded lattice ideal
of dimension 1 if and only if I is a CB ideal (Theorem 8.6). Then we show that the
graded lattices of rank 2 in Z3 are precisely the lattices generated by the columns of a
CB matrix of size 3 (Corollary 8.7). As a corollary of Theorem 8.6, and for s = 3, we
deduce a characterization of the structure of the hull of a GCB ideal (Corollary 8.9).

For all unexplained terminology and additional information, we refer to [10, 27, 36]
(for the theory of binomial and lattice ideals), [9, 15] (for Gröbner bases and Hilbert
functions), and [5, 25, 38] (for commutative algebra).
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2. Preliminaries. In this section, we present some of the results that will be
needed throughout the paper and introduce some more notation. All results of this
section are well known. To avoid repetition, we continue to employ the notation and
definitions used in section 1.

Let S = K[t1, . . . , ts] be a polynomial ring over a field K and let I be an ideal of
S. As usual, m will denote the maximal ideal of S generated by t1, . . . , ts. The vector
space of polynomials in S (resp., I) of degree at most i is denoted by S≤i (resp., I≤i).
The functions

Ha
I (i) = dimK(S≤i/I≤i) and HI(i) = Ha

I (i)−Ha
I (i − 1)

are called the affine Hilbert function and the Hilbert function of S/I, respectively.
Let k = dim(S/I) be the Krull dimension of S/I. According to [15, Remark 5.3.16,

p. 330], there are unique polynomials ha
I (t) =

∑k
j=0 ajt

j and hI(t) =
∑k−1

j=0 cjt
j in

Q[t] of degrees k and k − 1, respectively, such that ha
I (i) = Ha

I (i) and hI(i) = HI(i)
for i � 0. By convention, the zero polynomial has degree −1. Notice that ak(k!) =
ck−1((k − 1)!) for k ≥ 1. If k = 0, then Ha

I (i) = dimK(S/I) for i � 0.
Definition 2.1. The integer ak(k!), denoted by deg(S/I), is called the degree of

S/I.
Remark 2.2. If S = ⊕∞

i=0Si has the standard grading and I ⊂ S is a graded ideal,
then HI(i) is equal to dimK(Si/Ii) for all i, and Ha

I is the Hilbert–Samuel function
of S/I with respect to m in the sense of [35, Definition B.3.1].

We will use the following multi-index notation: for a = (a1, . . . , as) ∈ Zs, set
ta = ta1

1 · · · tas
s . Notice that ta is a monomial in the Laurent polynomial ring T :=

K[t±1
1 , . . . , t±1

s ]. If ai ≥ 0 for all i, ta is just a monomial in S.
Definition 2.3. The graded reverse lexicographical order (GRevLex for short)

on the monomials of S is defined as tb 
 ta if and only if deg(tb) > deg(ta), or
deg(tb) = deg(ta) and the last nonzero entry of b− a is negative.

Let 
 be a monomial order on S and let I ⊂ S be an ideal. As usual, if g is a
polynomial of S, we will denote the leading term of g by in(g) and the initial ideal of
I by in(I). We refer to [9] for the theory of Gröbner bases. Let u = ts+1 be a new
variable. For f ∈ S of degree e define

fh = uef (t1/u, . . . , ts/u) ;

that is, fh is the homogenization of the polynomial f with respect to u. The homog-
enization of I is the ideal Ih of S[u] given by Ih = (fh| f ∈ I), and S[u] is given the
standard grading.

The Gröbner bases of I and Ih are nicely related.
Lemma 2.4. Let I be an ideal of S and let 
 be the GRevLex order on S and

S[u], respectively.
(a) If g1, . . . , gr is a Gröbner basis of I, then gh1 , . . . , g

h
r is a Gröbner basis of Ih.

(b) Ha
I (i) = HIh(i) for i ≥ 0.

(c) deg(S/I) = deg(S[u]/Ih).
Proof. (a) This follows readily from [36, Propositions 2.4.26 and 2.4.30]. (b) Fix

i ≥ 0. The mapping S[u]i → S≤i induced by mapping u �→ 1 is a K-linear surjection.
Consider the induced composite K-linear surjection S[u]i → S≤i → S≤i/I≤i. An
easy check shows that this has kernel Ihi . Hence, we have a K-linear isomorphism of
finite-dimensional K-vector spaces

S[u]i/I
h
i � S≤i/I≤i.
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400 L. O’CARROLL, F. PLANAS-VILANOVA, R. H. VILLARREAL

Thus Ha
I (i) = HIh(i). (c) From classical theory [38, p. 192], dim(S[u]/Ih) is equal to

dim(S/I) + 1. Hence the equality follows from (b).
Proposition 2.5. Let I be an ideal of S and let p1, . . . , pr be the set of associated

primes of I of dimension dim(S/I). If I = q1∩· · ·∩qm is a minimal primary decompo-
sition of I such that rad(qi) = pi for i = 1, . . . , r, then deg(S/I) =

∑r
i=1 deg(S/qi).

Proof. By [38, p. 181, Theorem 17, items [7]–[9]] and [38, p. 192], qh1 , . . . , , q
h
r

are the primary components of Ih of maximal dimension. Hence, by (part of) the
associativity law of multiplicities (cf. [15, Lemma 5.3.11, p. 327]), we get

deg(S[u]/Ih) =
∑r

i=1 deg(S[u]/q
h
i ).

Hence, by Lemma 2.4(c), deg(S/I) =
∑r

i=1 deg(S/qi).
Definition 2.6. The torsion subgroup of an abelian group (M,+), denoted by

T (M), is the set of all x in M such that �x = 0 for some � ∈ N+.

Binomial and lattice ideals. Let L ⊂ Zs be a lattice and let I(L) ⊂ S be its
lattice ideal. It is well known that the height of I(L) is the rank of L and that I(L)
is a toric ideal if and only if Zs/L is free as a Z-module [27, p. 131]. Let p be the
characteristic of the field K. The next result will be relevant in our context because
it says that when p = 0, or when p > 0 and p is relatively prime to the cardinality
of the torsion subgroup of Zs/L, then I(L) is a radical ideal and hence I(L) has a
unique minimal primary decomposition (see Theorem 3.3).

Theorem 2.7 (see [13, pp. 99–106]). If p = 0, then rad(I(L)) = I(L), and if
p > 0, then

rad(I(L)) = (ta − tb| pr(a− b) ∈ L for some r ∈ N).

The degree is independent of the base field K.
Proposition 2.8. If IQ(L) is the lattice ideal of L over the field Q, then

deg(S/I(L)) = deg(Q[t1, . . . , ts]/IQ(L)).
Proof. Let 
 be the GRevLex order on S and SQ = Q[t1, . . . , ts], and on the

extensions S[u] and SQ[u], respectively. Let GQ be the reduced Gröbner basis of
IQ(L). We set I = I(L) and IQ = IQ(L). Notice that Z/pZ ⊂ K, where p = char(K).
Hence SZ = Z[t1, . . . , ts] maps into S. If G denotes the image of GQ under this map,
then using Buchberger’s criterion [9, p. 84], it is seen that G is a Gröbner basis of I.
Hence, by Lemma 2.4(a), Gh

Q and Gh are Gröbner bases of IhQ and Ih, respectively,

where Gh is the set of all fh with f ∈ G. Therefore, the rings SQ[u]/I
h
Q and S[u]/Ih

have the same Hilbert function. Thus, by Lemma 2.4, the result follows.
If I ⊂ S is an ideal and h ∈ S, we set (I:h) := {f ∈ S| fh ∈ I}. This is

the colon ideal of I relative to h. The saturation of I with respect to h is the ideal
(I:h∞) := ∪∞

k=1(I:h
k).

The following is a well-known result that follows from [10, Corollary 2.5].
Theorem 2.9 (see [10]). Let I be a binomial ideal of S. Then the following are

equivalent:
(a) I is a lattice ideal;
(b) I = (I: (t1 · · · ts)∞);
(c) ti is a nonzero-divisor of S/I for all i.
Lemma 2.10 (see [20]). Let L ⊂ Zs be a lattice. Then L is generated by a1, . . . , am

if and only if

((ta
+
1 − ta

−
1 , . . . , ta

+
m − ta

−
m): (t1 · · · ts)∞) = I(L).
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DEGREE AND ALGEBRAIC PROPERTIES 401

If B is a subset of Zs, 〈B〉 will denote the subgroup of Zs generated by B. Let
T be the Laurent polynomial ring K[t±1] = K[t±1

1 , . . . , t±1
s ]. As usual, if I is an ideal

of S, IT will denote its extension in T . Part (b) of the next result can be applied to
any matrix ideal.

Corollary 2.11.

(a) If I(L) = ({ta+
i − ta

−
i }mi=1), then L = 〈{ai}mi=1〉.

(b) If I = ({ta+
i − ta

−
i }mi=1) ⊂ S and L = 〈{ai}mi=1〉, then I(L) = IT ∩ S.

Proof. (a) By Theorem 2.9, (I(L): (t1 · · · ts)∞) = I(L). Hence, by Lemma 2.10,
L = 〈{ai}mi=1〉.

(b) See [10, Corollary 2.5] and its proof.

Normal forms and critical groups. Let L ⊂ Zs be a lattice of rank r generated
by a1, . . . , am and let L be the s×m matrix of rank r with column vectors a1, . . . , am.

There are invertible integer matrices P and Q such that PLQ = Γ, where Γ is
an s×m “diagonal” matrix Γ = diag(γ1, γ2, . . . , γr, 0, . . . , 0) with γi ∈ N+ and γi | γj
if i ≤ j. The matrix Γ is called the normal form of L and the expression PLQ = Γ
the normal decomposition of L (Γ is also called the Smith normal form of L). The
integers γ1, . . . , γr are the invariant factors of L. The greatest common divisor of all
the nonzero i× i subdeterminants of L will be denoted by Δi(L). The cardinality of
a finite set C is denoted by |C|.

Definition 2.12. The group T (Zs/L) is called the critical group of L or the
critical group of L.

Critical groups of lattices will play an important role in several parts of the paper.
Their structure can easily be determined using the next result, which follows from the
fundamental structure theorem for finitely generated abelian groups [17]. Thus, using
any algebraic system that computes normal forms of matrices, Maple [7] for instance,
one can determine the structure of critical groups.

Theorem 2.13.

(a) [17, Theorem 3.9] γ1 = Δ1(L), γi = Δi(L)Δi−1(L)
−1 for i = 2, . . . , r.

(b) [17, pp. 187–188] Zs/L � Z/(γ1)⊕ Z/(γ2)⊕ · · · ⊕ Z/(γr)⊕ Zs−r.
(c) T (Zs/L) � Z/(γ1)⊕ Z/(γ2)⊕ · · · ⊕ Z/(γr).
(d) Δr(L) = |T (Zs/L)| = γ1 · · · γr.
(e) |T (Zs/L)| = |T (Zm/L�)|, where L� is the lattice of Zm spanned by the rows

of L.
If m = s, let hi,j be the (i, j)-minor of L, i.e., the determinant of the matrix

obtained from L by eliminating the ith row and the jth column of L. Let Li,j =
(−1)i+jhj,i and set adj(L) = (Li,j), the adjoint matrix of L. Note that Li,i = hi,i.
The adjoint matrix will come up later in Theorem 6.3 and Proposition 7.6.

3. Degree and torsion in primary decompositions. In this section, we
study primary decompositions of lattice ideals over an arbitrary field, using the
Eisenbud–Sturmfels theory of binomial ideals over algebraically closed fields [10]. For
a graded lattice ideal of dimension 1, we give the explicit minimal primary decompo-
sition over a field with enough roots of unity.

Lemma 3.1. Let F be a field extension of K, let B = F [t1, . . . , ts] be a polynomial
ring with coefficients in F , and let I be an ideal of S. Then the following hold.

(a) IB ∩ S = I.
(b) deg(S/I) = deg(B/IB).
(c) If q is a p-primary ideal of B, then q ∩ S is a p ∩ S-primary ideal of S.
(d) If IB = ∩r

i=1qi is a primary decomposition of IB, then I = ∩r
i=1(qi ∩S) is a

primary decomposition of I such that rad(qi ∩ S) = rad(qi) ∩ S.
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402 L. O’CARROLL, F. PLANAS-VILANOVA, R. H. VILLARREAL

(e) If I is the lattice ideal of L in S, then IB is the lattice ideal of L in B.
Proof. Let G = {g1, . . . , gm} be a Gröbner basis of I with respect to the GRevLex

order. By Buchberger’s criterion [9, Theorem 6, p. 84], G is also a Gröbner basis for
IB with respect to the GRevLex order on B.

(a) Note that K ↪→ F is a faithfully flat extension. Apply the functor (−)⊗K S.
By base change, it follows that S ↪→ B is a faithfully flat extension. Hence,
by [25, Theorem 7.5(ii)], I = IB ∩ S for any ideal I of S.

(b) By Lemma 2.4(a), Ih and IBh are both generated by Gh = {gh1 , . . . , ghm},
and Gh is a Gröbner basis for IBh. Hence, by Lemma 2.4(b), we get

Ha
I (i) = HIh(i) = dimK(S[u]/Ih)i = dimF (B[u]/IBh)i = HIBh(i) = Ha

IB(i)

for i ≥ 0. Therefore, one has the equality deg(S/I) = deg(B/IB).
(c) This is well known and not hard to show.
(d) This follows from (a) and (c).

(e) Let ta
+
1 −ta

−
1 , . . . , ta

+
m −ta

−
m be a set of generators of I. This set also generates

IB. Then, by Lemma 2.10, one has

(IB:B (t1 · · · ts)∞) = IB,(3.1)

where IB is the lattice ideal of L in B. We claim that ti is not a zero divisor of
B/IB for i = 1, . . . , s. Note that since S ↪→ B is a flat extension, applying the
functor (−)⊗S S/I and using base change, we deduce that S/I ↪→ B/IB is a

flat extension. Hence since the map S/I
ti−→ S/I is injective, by Theorem 2.9,

so is the map B/IB
ti−→ B/IB. Consequently, by the claim, the left-hand

side of (3.1) is equal to IB and we get the equality IB = IB .
We come to the first main result of this section.
Theorem 3.2. Let I(L) be a lattice ideal of S over an arbitrary field K of

characteristic p, let c be the number of associated primes of I(L), and for p > 0, let G
be the unique largest subgroup of T (Zs/L) whose order is relatively prime to p. Then

(a) all associated primes of I(L) have height equal to rank(L);
(b) |T (Zs/L)| ≥ c if p = 0 and |G| ≥ c if p > 0 with equality if K is algebraically

closed;
(c) deg(S/I(L)) ≥ |T (Zs/L)| if p = 0 and deg(S/I(L)) ≥ |G| if p > 0.
Proof. Let K be the algebraic closure of K and let S = K[t1, . . . , ts] be the

corresponding polynomial ring with coefficients in K. Thus, we have an integral
extension S ⊂ S of normal domains. We set I = I(L) and I = IS, where the latter is
the extension of I to S. The ideal I is the lattice ideal of L in S (see Lemma 3.1(e)).
Hence, as K is algebraically closed, by [10, Corollaries 2.2 and 2.5] I has a unique
minimal primary decomposition

I = q1 ∩ · · · ∩ qc1 ,(3.2)

where c1 = |T (Zs/L)| if p = 0 and c1 = |G| if p > 0. Notice that c1 = |T (Zs/L)|
if p is relatively prime to |T (Zs/L)|. Furthermore, also by [10, Corollaries 2.2 and
2.5], one has that if pi = rad(qi) for i = 1, . . . , c1, then p1, . . . , pc1 are the associated

primes of I and ht(pi) = rank(L) for i = 1, . . . , c1. Hence, by Lemma 3.1(d), one has
a primary decomposition

I = (q1 ∩ S) ∩ · · · ∩ (qc1 ∩ S)(3.3)

such that rad(qi ∩ S) = rad(qi) ∩ S = pi ∩ S. We set pi = pi ∩ S and qi = qi ∩ S for
i = 1, . . . , c1.
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(a) Since S is a normal domain and S ⊂ S is an integral extension, we get
ht(pi) = ht(pi) = rank(L) for all i (see [24, Theorems 5 and 20]).

(b) By (3.3), the associated primes of I are contained in {p1, . . . , pc1}. Thus,
c1 ≥ c, which proves the first part. Now, assume that K = K. By (a), we
may assume that p1, . . . , pc are the minimal primes of I. Consequently, I has
a unique minimal primary decomposition I = Q1 ∩ · · · ∩Qc such that Qi is
pi-primary and ht(pi) = rank(L) for i = 1, . . . , c. As I = I, from (3.2), we
get that c1 = c.

(c) Using Lemma 3.1(b), (3.2) that was stated at the beginning of the proof, and
the additivity of the degree (Proposition 2.5), we get

deg(S/I) = deg(S/I) =
∑c1

i=1 deg(S/qi) ≥ c1.

Primary decompositions of graded lattice ideals. The aim here is to give
explicitly the minimal primary decomposition of a graded lattice ideal of dimension 1
in terms of the normal decomposition of an integer matrix (see section 2).

Let L be a lattice in Zs of rank s − 1 generated by a1, . . . , am and let L be the
s ×m matrix with column vectors a1, . . . , am. There are invertible integer matrices
P = (pij) and Q such that PLQ = Γ, where Γ = diag(γ1, γ2, . . . , γs−1, 0, . . . , 0) with
γi ∈ N+ and γi | γj if i ≤ j. The torsion subgroup of Zs/L has order γ := γ1 · · · γs−1.
If pi,∗ denotes the ith row of P , then the last row of P satisfies gcd(ps,∗) = 1,
ps,∗L = 0, and L ⊂ ker(ps,∗). This follows using the technique described in [28, p. 37]
to solve systems of linear equations over the integers. Thus ker(ps,∗) is equal to Ls,
the saturation of L in the sense of [10]. For convenience recall that Ls is the set of all
a ∈ Zs such that ηa ∈ L for some 0 �= η ∈ Z.

For the rest of this section we suppose thatK is a field containing the γs−1th roots
of unity with char(K) = 0 or char(K) = p, p a prime with p � γs−1. Under this assump-
tion, the lattice ideal I(L) is radical because char(K) = 0 or gcd(p, |T (Zs/L|) = 1 (see
Theorem 2.7), and for each i the polynomial zγi − 1 has γi distinct roots in K. Write

Λi to denote the set of γith roots of unity in K and Λ =
∏s−1

i=1 Λi. The set Λ is a
group under componentwise multiplication and |Λ| = γ. We also suppose that I(L) is
graded with respect to a weight vector d = (d1, . . . , ds) in Ns

+ with gcd(d) = 1. Notice
that d = ±ps,∗. This means that in the nongraded case, ±ps,∗ can play the role of d.
Consider a polynomial ring K[x1] in one variable. For any λ = (λ1, . . . , λs−1) ∈ Λ,
there is an homomorphism of K-algebras

ϕλ:S → K[x1], ti �−→ λ
p1,i

1 · · ·λps−1,i

s−1 xdi
1 , i = 1, . . . , s.

The kernel of ϕλ, denoted by aλ, is a prime ideal of S of height s− 1 [30]. This type
of ideal was introduced in [30] to study the algebraic properties of PCB ideals.

The primary decomposition of an arbitrary lattice ideal over an algebraically
closed field is given in [10, Corollary 2.5]. This decomposition will be used to prove
Theorem 4.6(c). The next result shows an explicit primary decomposition for the
class of ideals under consideration.

Theorem 3.3. If I(L) is a graded lattice ideal of dimension 1, then I(L) =
∩λ∈Λaλ is the minimal primary decomposition of I(L) into exactly γ primary compo-
nents.

Proof. First of all, recall from Theorem 2.7 that I(L) is a radical ideal. For any
λ = (λ1, . . . , λs−1) in Λ, let ρλ:Ls → K∗ be the partial character of Ls given by

ρλ(α) =
∏s−1

i=1 λ
pi,1α1+···+pi,sαs

i , where α = (α1, . . . , αs).
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Clearly ρλ is a group homomorphism. First we show the following two conditions:
(i) ρλ(α) = 1 for α ∈ L; (ii) if ρλ(α) = 1 for all α ∈ Ls, then λ = (1, . . . , 1).

(i) Take α = (α1, . . . , αs) in L. To show ρλ(α) = 1 it suffices to prove

pi,1α1 + · · ·+ pi,sαs ≡ 0 mod(γi) for all i.(3.4)

As α is a linear combination of the columns of L, one has α� = Lμ� =
P−1ΓQ−1μ� for some μ ∈ Zm. Hence

Pα� = ΓQ−1μ� = (η1γ1, . . . , ηs−1γs−1, 0)
�

for some ηi’s in Z. Thus (3.4) holds, as required.
(ii) Fix k such that 1 ≤ k ≤ s − 1. We set P−1 = (rij) and denote by r∗,k the

kth column of P−1. Then P−1e�k = r∗,k and Pr∗,k = e�k , where ek is the kth
unit vector. Since PP−1 = I, we get that 〈pi,∗, r∗,k〉 is 1 if i = k and is 0
otherwise. In particular 〈ps,∗, r∗,k〉 = 0, i.e, r∗,k is in Ls = ker(ps,∗). Setting
α� = r∗,k and using that ρλ(α) = 1, we get that λk = 1.

Let Iλ be the ideal of S generated by all tα
+ − ρλ(α)t

α−
with α ∈ Ls. Let us see

that I(L) ⊂ Iλ ⊂ aλ for all λ ∈ Λ. The first inclusion follows from (i). To show the

second inclusion take f = tα
+ − ρλ(α)t

α−
in Iλ with α ∈ Ls. It is easy to see that

f ∈ ker(ϕλ) using that α ∈ ker(d) and the definition of ρλ. Hence, as aλ is a prime
ideal of height s − 1 for all λ ∈ Λ, we get that aλ is a primary component of I(L)
for all λ ∈ Λ. We claim that aλ �= aυ if λ �= υ and λ, υ ∈ Λ. To show this assume
that aλ = aυ. Take an arbitrary α = (αi) in Ls. Then f = tα

+ − ρλ(α)t
α−

is in
Iλ ⊂ aλ. Thus f ∈ aυ = ker(ϕυ). It follows readily that ρλ(α) = ρυ(α). Therefore
ρλυ−1(α) = 1 for all α ∈ Ls, and by (ii) λ = υ. This proves the claim. Altogether
I(L) has at least γ prime components and by Theorem 3.2(b) it has at most γ prime
components. Thus I(L) = ∩λ∈Λaλ.

Remark 3.4. The ideal Iλ is called the lattice ideal of Ls relative to the partial
character ρλ [10]. Since aλ is a prime ideal generated by “binomials” of the form

tα
+ − ηtα

−
, with η ∈ K∗, it follows that the inclusion Iλ ⊂ aλ is an equality.

4. The degree of lattice and toric ideals. In this section we show that the
homogenization of a lattice ideal (resp., toric ideal) is again a lattice ideal (resp., toric
ideal). For any toric or lattice ideal, we give formulas to compute the degree in terms
of the torsion of certain factor groups of Zs and in terms of relative volumes of lattice
polytopes. A general reference for connections between monomial subrings, Ehrhart
rings, polyhedra, and volume is [5, Chapters 5 and 6] (see also [12, 34, 37]).

Let L ⊂ Zs be a lattice and let ei be the ith unit vector in Zs+1. For a = (ai) ∈ Zs

define the value of a as |a| = ∑s
i=1 ai, and the homogenization of a with respect to

es+1 as ah = (a, 0) − |a|es+1 if |a| ≥ 0 and ah = (−a)h if |a| < 0. The choice of the
last coordinate of ah is a convenience. The homogenization of L, denoted by Lh, is
the lattice of Zs+1 generated by all ah such that a ∈ L.

Lemma 4.1. Let I(L) ⊂ S be a lattice ideal and let f1, . . . , fr be a set of binomials
such that the terms of fi have disjoint support for all i. Then the following hold.

(a) I(L)h ⊂ S[u] is a lattice ideal.
(b) If L = 〈b1, . . . , br〉, then Lh = 〈bh1 , . . . , bhr 〉.
(c) I(Lh) = I(L)h.
(d) If ((f1, . . . , fr): (t1 · · · ts)∞) = I(L), then ((fh

1 , . . . , f
h
r ): (t1 · · · tsu)∞) = I(L)h.

Proof. We set I = I(L). Let 
 denote the GRevLex order on S and on S[u], and
let g1, . . . , gm be the reduced Gröbner basis of I. By Lemma 2.4(a), gh1 , . . . , g

h
m is a

Gröbner basis of Ih.
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(a) As Ih is a binomial ideal, by Theorem 2.9 we need only show that ti is a
nonzero divisor of S[u]/Ih for i = 1, . . . , s + 1, where ts+1 = u. First, we
show the case i = s + 1. Assume that uf ∈ Ih for some f ∈ S[u]. By the
division algorithm [11, Theorem 2.11], we can write

f = h1g
h
1 + · · ·+ hmghm + f,

where h1, . . . , hm, f are in S[u] and f is not divisible by any of the leading
terms of gh1 , . . . , g

h
m. We claim that f = 0. If f �= 0, then uf ∈ Ih and,

consequently, u in(f) ∈ in(Ih), where in(f) is the leading term of f and in(Ih)
is the initial ideal of Ih. Hence, u in(f) is a multiple of in(gh� ) for some �.
Since u does not appear in the monomial in(g�) = in(gh� ), we get that in(f)
is divisible by in(gh� ), a contradiction. Thus, f = 0 and f ∈ Ih, as required.
Next, we show the case 1 ≤ i ≤ s. Assume that tig ∈ Ih for some i and some
g in S[u]. As Ih is graded, we may assume that g is homogeneous of degree
δ. Since u is a nonzero divisor of S[u]/Ih, we may assume that u does not
divide the leading term of g. If f = g(t1, . . . , ts, 1), then deg(f) = δ, fh = g,
and tif ∈ I. Hence f ∈ I. Therefore, as g1, . . . , gm is a Gröbner basis, we
can write f = h1g1 + · · · + hmgm, where deg(f) ≥ deg(hjgj) for all j. It is
not hard to see that g = fh ∈ Ih, as required.

(b) By changing the sign of bi, if necessary, we may assume that |bi| ≥ 0 for
all i. Clearly Lh contains 〈bh1 , . . . , bhr 〉. Indeed, since bi ∈ L for all i, we
get bhi ∈ Lh for all i. Now, we prove that Lh is contained in 〈bh1 , . . . , bhr 〉.
It suffices to show that ch ∈ 〈bh1 , . . . , bhr 〉 for any c ∈ L with |c| ≥ 0. By
hypothesis, we can write c = λ1b1 + · · · + λrbr for some integers λ1, . . . , λr.
Hence |c| = λ1|b1|+ · · ·+λr|br|. From the last two equalities, we obtain that
ch is equal to λ1b

h
1 + · · ·+ λrb

h
r , as required.

(c) We can write gi = ta
+
i − ta

−
i , with |ai| ≥ 0, for i = 1, . . . ,m. By Corol-

lary 2.11, L is generated by a1, . . . , am. Then, by part (b), Lh is generated

by ah1 , . . . , a
h
m. Notice that ghi is equal to t(a

h
i )

+ − t(a
h
i )

−
for all i. Therefore,

using part (a) and Lemma 2.10, we get

I(L)h = (I(L)h: (t1 · · · tsu)∞)

= ((t(a
h
1 )

+ − t(a
h
1 )

−
, . . . , t(a

h
m)+ − t(a

h
m)−): (t1 · · · tsu)∞) = I(Lh).

(d) This part follows from Lemma 2.10 and part (b).
Let H = {xv1 , . . . , xvs} ⊂ K[x±1

1 , . . . , x±1
n ] be a set of Laurent monomials, where

vi ∈ Zn, and let K[H ] be the K-subalgebra generated by H . There is an epimorphism
of K-algebras

ϕ:S = K[t1, . . . , ts] −→ K[H ], ti �−→ xvi .

The kernel of ϕ, denoted by P , is called the toric ideal of K[H ]. In general, P is not
a graded ideal. Since S/P � K[H ], the degree of K[H ] is defined to be the degree of
S/P .

Lemma 4.2. Let P h ⊂ S[u] be the homogenization of P . Then the following hold.
(a) P h is the toric ideal of K[H ′] := K[z, xv2−v1z, . . . , xvs−v1z, x−v1z].
(b) The toric ideal of K[xv1z, . . . , xvsz, z] is the toric ideal P h of K[H ′].
Proof. (a) The toric ideal of K[H ′], denoted by P ′, is the kernel of the map

ϕ:S[u] → K[H ′] induced by ti �→ xvi−v1z for i = 1, . . . , s + 1, where vs+1 = 0 and
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ts+1 = u. Let G be the reduced Gröbner basis of P with respect to the GRevLex order.
First, we show the inclusion P h ⊂ P ′. Take an element f of G. By Lemma 2.4(a), it

suffices to show that fh is in P ′. We can write f = ta
+ − ta

−
with in(f) = ta

+

. Thus,

|a+| ≥ |a−| and fh = ta
+ − ta

−
u|a|, where a = a+ − a−. We set a = (a1, . . . , as).

From the equality

0 = a1v1 + · · ·+ asvs = a2(v2 − v1) + · · ·+ as(vs − v1) + (a1 + · · ·+ as)v1,

we get that fh ∈ P ′, as required. Let G′ be the reduced Gröbner basis of P ′ with
respect to the GRevLex order. Next we show the inclusion P ′ ⊂ P h. Take an element
f ′ of G′. It suffices to show that f ′ is in P h. As f ′ is homogeneous in the standard
grading of S[u], we can write f ′ = tc

+ − tc
−
u|c| with in(f ′) = tc

+

and c = (c1, . . . , cs).
Since f ′ ∈ P ′, we get

(zc
+
1 )(xv2−v1z)c

+
2 · · · (xvs−v1z)c

+
s = (zc

−
1 )(xv2−v1z)c

−
2 · · · (xvs−v1z)c

−
s (x−v1z)|c|.

Hence, c2(v2 − v1) + · · ·+ cs(vs − v1) = −|c|v1. Consequently, c1v1 + · · ·+ csvs = 0,

that is, the binomial f = tc
+ − tc

−
is in P . As f ′ = fh, we get f ′ ∈ P h.

(b) The map that sends z to xv1z induces an isomorphism K[H ′] → K[H ′′]. So
this part is an immediate consequence of (a).

Proposition 4.3 (see [12, Proposition 3.5], [37, Corollary 5.35]). Let A =
{αi}mi=1 be a set of points of Zn and let P = conv(A) be the convex hull of A. Then

|T (Zn/(α1 − αm, . . . , αm−1 − αm))| deg(K[xα1z, . . . , xαmz]) = r!vol(P),

where r = dim(P), vol(P) is the relative volume of P, and z is a new variable.
Definition 4.4. The term r!vol(P) is called the normalized volume of P.
The next result holds for any toric ideal.
Theorem 4.5. Let P be the toric ideal of K[H ] = K[xv1 , . . . , xvs ], let A be the

n× s matrix with column vectors v1, . . . , vs, and let r be the rank of A. Then

|T (Zn/〈v1, . . . , vs〉)| deg(S/P ) = r!vol(conv(v1, . . . , vs, 0)).

Proof. By Lemma 2.4(c), deg(S/P ) = deg(S[u]/P h). On the other hand, by
Lemma 4.2(b), P h is the toric ideal of the monomial subring

K[H ′′] = K[xv1z, . . . , xvsz, z].

Hence S[u]/P h � K[H ′′]. Therefore, setting m = s+ 1, αi = vi for i = 1, . . . ,m− 1,
αm = 0, and A = {α1, . . . , αm}, the result follows readily from Proposition 4.3.

We come to the main result of this section.
Theorem 4.6. Let L ⊂ Zs be a lattice of rank r. Then the following hold.
(a) If r = s, then deg(S/I(L)) = |Zs/L|.
(b) If r < s, there is an integer matrix A of size (s− r)× s with rank(A) = s− r

such that we have the containment of rank r lattices L ⊂ kerZ(A) with equality
if and only if Zs/L is torsion free.

(c) If r < s and v1, . . . , vs are the columns of A, then

deg(S/I(L)) = |T (Zs/L)|(s− r)!vol(conv(0, v1, . . . , vs))

|T (Zs−r/〈v1, . . . , vs〉)| .
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Proof. (a) By Lemma 2.4, deg(S/I(L)) = deg(S[u]/I(L)h), and by Lemma 4.1,
I(L)h = I(Lh). Since S[u]/I(Lh) has dimension 1, by [21, Theorem 3.12] the degree

of S[u]/I(Lh) is |T (Zs+1/Lh)|. Let ta+
1 − ta

−
1 , . . . , ta

+
m − ta

−
m be a set of generators of

I(L). By Corollary 2.11, L is generated by a1, . . . , am. We may assume that |ai| ≥ 0
for all i. Then, by Lemma 4.1(b), Lh is generated by ah1 , . . . , a

h
m. Let A and Ah

be the matrices with rows a1, . . . , am and ah1 , . . . , a
h
m, respectively. Notice that Ah

is obtained from A by adding the column vector b = (−|a1|, . . . ,−|am|)�. Since b
is a linear combination of the columns of A, by the fundamental theorem of finitely
generated abelian groups (see [17, p. 187] and Theorem 2.13), we get that the groups
Zs/L and Zs+1/Lh have the same torsion. Thus, |Zs/L| is equal to |T (Zs+1/Lh)|.
Altogether, the degree of S/I(L) is the order of Zs/L.

(b) We may assume that L = Zα1 ⊕ · · · ⊕ Zαr , where α1, . . . , αs is a Q-basis of
Qs. Consider the hyperplane Hi of Q

s generated by α1, . . . , α̂i, . . . , αs. Note that the
subspace of Qs generated by α1, . . . , αr is equal to Hr+1∩· · ·∩Hs. There is a normal
vector wi ∈ Zs such that

Hi = {α ∈ Qs| 〈α,wi〉 = 0}.
It is not hard to see that the matrix A with rows wr+1, . . . , ws is the matrix with the
required conditions, because, by construction, αi ∈ Hj for i �= j and, consequently,
wr+1, . . . , ws are linearly independent. In particular we have the equality rank(L) =
rank(kerZ(A)).

(c) By Proposition 2.8 and Lemma 3.1(b), we may assume that K is algebraically
closed of characteristic zero. Let P be the toric ideal of K[xv1 , . . . , xvs ] over the field
K. By Theorem 4.5, we need only show the equality

deg(S/I(L)) = |T (Zs/L)| deg(S/P ).

Let Ls = {a ∈ Zs| ηa ∈ L for some η ∈ Z \ {0}} be the saturation of L. By part
(b), Ls is equal to kerZ(A). We set c = |T (Zs/L)|. Notice that T (Zs/L) = Ls/L.
Recall that a partial character of Ls is a homomorphism from the additive group Ls

to the multiplicative group K∗ = K \ {0}. According to [10, Corollaries 2.2 and 2.5],
there exist distinct partial characters ρ1, . . . , ρc of Ls, extending the trivial character
ρ(a) = 1 for a ∈ L, such that the minimal primary decomposition of I(L) is given by

I(L) = Iρ1(Ls) ∩ · · · ∩ Iρc(Ls),

where Iρi(Ls) is a prime ideal generated by all ta
+ − ρi(a)t

a−
with a ∈ Ls. As P

is a minimal prime of I(L) by part (b), we may assume ρ1(a) = 1 for a ∈ Ls, i.e.,
P = Iρ1(Ls). By the additivity of the degree (see Proposition 2.5), we get

deg(S/I(L)) = deg(S/Iρ1(Ls)) + · · ·+ deg(S/Iρc(Ls)).

Therefore, it suffices to show that deg(S/P ) = deg(S/Iρk
(Ls)) for k = 1, . . . , c. The

ideal Iρk
(Ls) contains no monomials because it is a prime ideal. Let 
 be the GRevLex

order on S and let G = {g1, . . . , gm} be the reduced Gröbner basis of P with respect

to 
. We can write gi = ta
+
i − ta

−
i for i = 1, . . . ,m, with in(gi) = ta

+
i . We set

g′i = ta
+
i − ρk(ai)t

a−
i and Gk = {g′1, . . . , g′m}. Next, we show that Gk is a Gröbner

basis of Iρk
(Ls). Let f �= 0 be an arbitrary (not necessarily pure) binomial of Iρk

(Ls).
We claim that f reduces to zero with respect to Gk in the sense of [11, p. 23]. By the
division algorithm (see [11, Theorem 2.11]), we can write

f = h1g
′
1 + · · ·+ hmg′m + g,
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where in(f) 
 in(hig
′
i) for all i, and g is a binomial (not necessarily pure) in Iρk

(Ls)

such that none of the two terms of g is divisible by any of the monomials ta
+
1 , . . . , ta

+
m .

We can write

g = μ(ta − λtb) = μtδ(tu
+ − λtu

−
)

with μ, λ ∈ K∗ and a − b = u+ − u−. As tu
+ − λtu

−
is in Iρk

(Ls), it can be seen

that u = u+ − u− is in Ls. Since tu
+ − ρk(u)t

u− ∈ Iρk
(Ls), we get that λ = ρk(u).

If g �= 0, we obtain that tu
+ − tu

−
, being in P , has one of its terms in the ideal

in(P ) = (ta
+
1 , . . . , ta

+
m), a contradiction. Thus, g must be zero, i.e., f reduces to zero

with respect to Gk. This proves the claim. In particular, we obtain that Iρk
(Ls) is

generated by Gk. To show that Gk is a Gröbner basis, note that the S-polynomial
of g′i and g′j is a binomial; thus, by the claim, it reduces to zero with respect to Gk.
Therefore by Buchberger’s criterion [9, Theorem 6, p. 84], Gk is a Gröbner basis of
Iρk

(Ls). Hence, S/P and S/Iρk
(Ls) have the same degree.

Remark 4.7. Part (b) is well known. The proof given here is constructive and
can be used—in one of the steps—to compute the degree of an arbitrary lattice ideal
(see Example 4.12).

The programNormaliz [6] computes normalized volumes of lattice polytopes using
polyhedral geometry. Thus we can compute the degree of any lattice ideal using
Theorem 4.6. Next we give some applications and present some examples.

Corollary 4.8. If d1, . . . , ds are positive integers and I is the toric ideal of
K[xd1

1 , . . . , xds
1 ], then

gcd(d1, . . . , ds) deg(S/I) = max{d1, . . . , ds}.
Proof. We may assume that d1 ≤ · · · ≤ ds. The order of T (Z/〈d1, . . . , ds〉)

is gcd(d1, . . . , ds). Then, by Theorem 4.5, we get that gcd(d1, . . . , ds) deg(S/I) is
vol([0, ds]) = ds.

Corollary 4.9. If I(L) is a lattice ideal of dimension 1 which is homogeneous
with respect to a positive vector (d1, . . . , ds), then

gcd(d1, . . . , ds) deg(S/I(L)) = max{d1, . . . , ds}|T (Zs/L)|.
Proof. Let A be the 1 × s matrix (d1, . . . , ds). By hypothesis L ⊂ kerZ(A). The

order of T (Z/〈d1, . . . , ds〉) is gcd(d1, . . . , ds). Then, by Theorem 4.6, we get

deg(S/I(L)) = T (Zs/L)vol(conv(0, d1, . . . , ds))
T (Z/〈d1, . . . , ds〉) =

|T (Zs/L)|max{d1, . . . , ds}
gcd(d1, . . . , ds)

.

For 1-dimensional lattice ideals that are not necessarily homogeneous, we can
express the degree in terms of a basis of the lattice (see Example 8.14).

Corollary 4.10. Let L ⊂ Zs be a lattice of rank s − 1 and let α1, . . . , αs−1 be
a Z-basis of L. If αi = (α1,i, . . . , αs,i), for i = 1, . . . , s− 1, and

vi = (−1)i det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,1 . . . α1,s−1

...
...

αi−1,1 . . . αi−1,s−1

αi+1,1 . . . αi+1,s−1

...
...

αs,1 . . . αs,s−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for i = 1, . . . , s,

then deg(S/I(L)) = max{v1, . . . , vs, 0} −min{v1, . . . , vs, 0}.
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Proof. Let B be the s × (s − 1) matrix with columns α1, . . . , αs−1 and let A be
the 1 × s matrix (v1, . . . , vs). We set r = s − 1. The order of T (Zs/L) is equal to
gcd(v1, . . . , vs), the gcd of the r × r minors of B. The order of T (Z/〈v1, . . . , vs〉) is
also equal to gcd(v1, . . . , vs). Since AB = 0, we obtain that L ⊂ ker(A). Hence,
by Theorem 4.6, we get that deg(S/I(L)) is equal to vol(conv(0, v1, . . . , vs)) which is
equal to max{v1, . . . , vs, 0} −min{v1, . . . , vs, 0}.

The next examples illustrate how to use Theorems 4.5 and 4.6 to compute the
degree.

Example 4.11. Let P be the toric ideal of the monomial subring

K[H ] = K[x2x
−1
1 , x3x

−1
2 , x4x

−1
3 , x1x

−1
4 , x5x

−1
2 , x3x

−1
5 , x4x

−1
5 ].

We employ the notation of Theorem 4.5. The rank of A is 4 and the height of P is 3.
Using Normaliz [6], we get

4!vol(conv(v1, . . . , v7, 0)) = 11.

As the group Z5/〈v1, . . . , v7〉 is torsion free, by Theorem 4.5 we have that the degree
of K[t1, . . . , t7]/P is equal to 11.

Example 4.12. Let K be the field of rational numbers and let L be the lattice of
rank 4 generated by

a1 = (2, 1, 1, 1,−1,−1,−1,−2), a2 = (1, 1,−1,−1, 1, 1,−1,−1),

a3 = (2,−1, 1,−2, 1,−1, 1,−1), a4 = (5,−5, 0, 0, 0, 0, 0, 0).

We use the notation of Theorem 4.6. The vectors a1, . . . , a4, e1, e3, e4, e5 form a Q-
basis of Q8. In this case we obtain the matrix

A =

⎛
⎜⎜⎝

4 4 0 0 0 −1 1 6
0 0 1 0 0 1 0 0
0 0 0 4 0 7 9 −6
0 0 0 0 2 −3 −3 2

⎞
⎟⎟⎠

whose columns are denoted by v1, . . . , v8. Let P be the toric ideal of K[xv1 , . . . , xv8 ].
Therefore, by Theorem 4.6, we get

deg(S/I(L)) = |T (Z8/L)| deg(S/P ) =
5(4)!vol(conv(0, v1, . . . , v8))

|T (Z4/〈v1, . . . , v8〉)| =
(5)(200)

8
.

Thus deg(S/I(L)) = 125. The normalized volume of the polytope conv(0, v1, . . . , v8)
was computed using Normaliz [6].

5. Primary decompositions of homogeneous binomial ideals. In this part
we present some applications of the main result of section 3 to the theory of graded
binomial ideals and graded lattice ideals of dimension 1. We continue to employ the
notation and definitions used in section 2.

Given a subset I ⊂ S, its variety, denoted by V (I), is the set of all a ∈ As
K such

that f(a) = 0 for all f ∈ I, where As
K denotes an affine s-space overK. In this section

we focus on homogeneous binomial ideals I of S with V (I, ti) = {0} for all i.
Lemma 5.1. Let I be a homogeneous binomial ideal of S such that V (I, ti) = {0}

for all i. Then, for any associated prime p of I, either p = m, or else p � m, ti �∈ p
for all i, and ht(p) = s− 1. Moreover, ht(I) = s− 1.

Proof. Since I is homogeneous, any associated prime p of I is homogeneous too.
Hence I ⊂ p ⊂ m. In particular, (I, t1) ⊂ m. Let q be any minimal prime ideal over
(I, t1). By [20, Lemma 2.6], q = m and so s = ht(I, t1) ≤ ht(I) + 1 (here we use the
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fact that I is homogeneous). Thus ht(I) ≥ s − 1. Suppose that p is an associated
prime of I, p �= m. Then ti �∈ p for all i, because if some ti ∈ p, (I, ti) ⊂ p, and by
[20, Lemma 2.6] again, p would be equal to m. In particular, ht(p) = s − 1. Finally
ht(I) = s−1, otherwise m would be the only associated prime of I. Thus m = rad(I),
a contradiction because I cannot contain a power of ti for any i = 1, . . . , s.

The assumption that I is homogeneous in the result above is crucial.
Example 5.2. Let S = K[t1, t2, t3] and I = (t1t2t3 − 1)m. Clearly V (I, ti) = {0}

for all i. However, ht(I) = 1 and ht(I, ti) = 3 for all i.
An ideal I is said to be unmixed if all of its associated primes have the same

height (see, e.g., [38, p. 196]). We write Hull(I) for the intersection of the isolated
primary components of I.

Proposition 5.3. Let I be a graded binomial ideal of S such that V (I, ti) = {0}
for all i. The following conditions are equivalent:

(a) I is a lattice ideal; (b) I = (I : (t1 · · · ts)∞); (c) ti is regular on S/I for all i;
(d) I = (I : t1); (e) I is Cohen–Macaulay; (f) I is unmixed; (g) I = Hull(I).
Proof. The equivalences among (a), (b), and (c) follow from Theorem 2.9. By

Lemma 5.1, (f) and (g) are equivalent. Clearly (c)⇒(d). By Lemma 5.1, ht(I) = s−1
and, for any associated prime p of I, either p = m, or else p � m, ht(p) = s− 1, and
t1 · · · ts �∈ p. Therefore I has a minimal primary decomposition either of the form
I = q1 ∩ · · · ∩ qc = Hull(I), or else I = q1 ∩ · · · ∩ qc ∩ q = Hull(I) ∩ q, where the qi
are pi-primary ideals with ht(pi) = s − 1, and q is m-primary. Therefore (e) and (f)
are equivalent. Moreover, either (I : t∞1 ) = ∩c

i=1(qi : t
∞
1 ) = ∩c

i=1qi = Hull(I), or else
(I : t∞1 ) = ∩c

i=1(qi : t
∞
1 ) ∩ (q : t∞1 ) = ∩c

i=1qi = Hull(I), since (q : t∞1 ) = S. In both
cases, Hull(I) = (I : t∞1 ).

Suppose (d) holds. Then I = (I : t1) = (I : t∞1 ) = Hull(I) and I is unmixed.
Thus (d)⇒(f). Suppose (f) holds. Then m is not an associated prime of I, and, by
Lemma 5.1, ti cannot be in any associated prime of I, so each ti is regular modulo I
and (c) holds.

Definition 5.4. Let L be an s ×m integer matrix, let l∗,i be the ith column of

L, and let fi = tl
+
∗,i − tl

−
∗,i be the binomial of S = K[t1, . . . , ts] defined by l∗,i. We call

I(L) := (f1, . . . , fm) the matrix ideal associated with L.
Whenever I(L) is graded with respect to a weight vector d = (d1, . . . , ds) ∈ Ns

+,
we can and will suppose, without loss of generality, that gcd(d) = 1.

Definition 5.5 (see [30, p. 397]). Let d = (d1, . . . , ds) ∈ Ns
+. The Herzog ideal

associated with d, denote by pd, is the toric ideal of K[xd1
1 , . . . , xds

1 ], where x1 is a
variable.

Remark 5.6. Let I(L) = (f1, . . . , fm) be the matrix ideal associated with an
s×m integer matrix L. The following conditions are equivalent:

(a) there exists an N-grading of S, with each ti of weight di > 0, under which
each fi is homogeneous of positive degree;

(b) there exists d = (d1, . . . , ds) ∈ Ns
+ such that dL = 0;

(c) there exists d = (d1, . . . , ds) ∈ Ns
+ with I(L) ⊂ pd, the Herzog ideal associ-

ated with d.
We give now a result on the structure of graded matrix ideals.
Proposition 5.7. Let I be the matrix ideal of an s × m integer matrix L and

let L be the lattice spanned by the columns of L. Suppose that I is graded and that
V (I, ti) = {0} for all i. Then we have the following.

(a) I has a minimal primary decomposition either of the form I = q1 ∩ · · · ∩ qc,
if I is unmixed, or else I = q1 ∩ · · · ∩ qc ∩ q, if I is not unmixed, where the qi
are pi-primary ideals with ht(pi) = s− 1, and q is an m-primary ideal.
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(b) For all g ∈ m \ ∪c
i=1pi, I(L) = (I : (t1 · · · ts)∞) = (I : g∞) = q1 ∩ · · · ∩ qc =

Hull(I).
(c) rank(L) = s− 1 and there exists a unique Herzog ideal pd containing I.
(d) If I is not unmixed and h = t1 · · · ts, there exists a ∈ N+ such that I(L) =

(I:ha), q = I + (ha) is an irredundant m-primary component of I, and I =
I(L) ∩ q.

(e) Either c ≤ |T (Zs/L)|, if char(K) = 0, or else c ≤ |G|, if char(K) = p, p
a prime, where G is the unique largest subgroup of T (Zs/L) whose order is
relatively prime to p. If K is algebraically closed, then equality holds.

Proof. We set h = t1 · · · ts. Item (a) follows from Lemma 5.1 (see the proof of
Proposition 5.3). By Lemma 2.10, I(L) = (I:h∞), which proves the first equality in
(b). Let g ∈ m \ ∪c

i=1pi. Suppose that I = q1 ∩ · · · ∩ qc. Then, for any a ∈ N+, we
have (I: ga) = ∩c

j=1(qj : g
a) = ∩c

j=1qj , because ga �∈ pj and qj is pj-primary. Suppose
that I = q1 ∩ · · · ∩ qc ∩ q. Then, for a � 0, (I: ga) = (I: g∞) and ga ∈ ma ⊂ q, so
that (q: ga) = S. Thus (I: ga) = ∩c

j=1(qj : g
a) ∩ (q: ga) = ∩c

j=1qj . In either case, one
has the equality (I: g∞) = q1 ∩ · · · ∩ qc, which coincides with Hull(I). By a similar
calculation, we get (I:h∞) = q1 ∩ · · · ∩ qc.

In particular, using (b), ht(I) = ht(I(L)). Since ht(I(L)) = rank(L) = rank(L),
it follows that rank(L) = s− 1. Since I is homogeneous, by Remark 5.6, there exists
d ∈ Ns

+ such that I ⊂ pd, the Herzog ideal associated with d. Since rank(L�) =
rank(L) = s− 1, then ker(L�) is generated as a Q-linear subspace by d�. Thus pd is
the unique Herzog ideal containing I (see [30, Remark 3.2]). This proves (c).

Suppose that I is not unmixed. As S is a Noetherian ring, there exists a ∈ N+

such that (I:ha) = (I:h∞). By [10, Proposition 7.2], I = (I:ha) ∩ (I + (ha)), where
(I:ha) = I(L) is the hull of I. Since I is not unmixed, I + (ha) must be irredundant.
Moreover, by [20, Lemma 2.6], the only prime ideal containing I + (ha) is m. It
follows that I + (ha) is m-primary. This proves (d). Finally, (e) follows from Theo-
rem 3.2(b).

Let I be the matrix ideal associated with an s × m integer matrix L. The con-
ditions I homogeneous and rank(L) = s− 1 do not imply that V (I, ti) = {0} for all
i.

Example 5.8. Let L be the matrix with column vectors (2,−2, 0) and (−2, 1, 1)
and let I be its matrix ideal (t21 − t22, t

2
1 − t2t3). Clearly I is homogeneous (with the

standard grading) and rank(L) = 2. However (0, 0, λ) ∈ V (I, t1) for any λ ∈ K.
As a consequence of the previous result, we obtain the following.
Corollary 5.9. Let I = I(L) be the matrix ideal associated with an s × m

integer matrix L. Let L be the lattice spanned by the columns of L. Suppose that
I is homogeneous with respect to a weight vector d = (d1, . . . , ds) ∈ Ns

+ and that
V (I, ti) = {0} for all i. Then

deg(S/I) = max{d1, . . . , ds}|T (Zs/L)| = max{d1, . . . , ds}Δs−1(L).

Proof. By Proposition 5.7, Hull(I) = q1∩· · ·∩qc = I(L). Thus, by Proposition 2.5,

deg(S/I) =
∑c

j=1 deg(S/qj) = deg(S/I(L)).

By Corollary 4.9, we have deg(S/I(L)) = max{d1, . . . , ds}|T (Zs/L)|. To complete
the proof notice that, by Theorem 2.13, one has |T (Zs/L)| = Δs−1(L).

6. Generalized positive critical binomial ideals. We continue to employ
the notation and definitions used in section 1. In this section we restrict ourselves to
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the study of certain classes of square integer matrices (see Definition 1.1) and their
corresponding matrix ideals.

Recall that the support of a polynomial f ∈ S, denoted by supp(f), is defined as
the set of all variables ti that occur in f .

Proposition 6.1. Let I = I(L) = (f1, . . . , fs) be the matrix ideal associated with
an s× s PB matrix L. Suppose that |supp(fj)| ≥ 4, for all j = 1, . . . , s. Then

(a) I is not a lattice ideal;
(b) if V (I, ti) = {0} for all i, then m is an associated prime of I;
(c) if I is graded and V (I, ti) = {0} for all i, then I has a minimal primary

decomposition of the form I = q1 ∩ · · · ∩ qc ∩ q, where the qi are pi-primary
ideals with ht(pi) = s− 1, and q = (I, (t1 · · · ts)a) is an m-primary ideal, for
some a ∈ N+. Moreover, I has at most |T (Zs/L)|+ 1 primary components.

Proof. Assume that I is a lattice ideal. There is k > 1 such that f1 = t
a1,1

1 −
t
ak,1

k · · · tas,1
s and fk = t

ak,k

k − t
a1,k

1 · · · tak−1,k

k−1 t
ak+1,k

k+1 · · · tas,k
s with ak,1 > 0. We claim

that a1,1 > a1,k. If a1,1 ≤ a1,k, then from the equality

(t
a1,1

1 − t
ak,1

k · · · tas,1
s )t

a1,k−a1,1

1 t
a2,k

2 · · · tak−1,k

k−1 t
ak+1,k

k+1 · · · tas,k
s

+ (t
ak,k

k − t
a1,k

1 · · · tak−1,k

k−1 t
ak+1,k

k+1 · · · tas,k
s )

= t
ak,k

k − t
a1,k−a1,1

1 t
a2,k

2 · · · tak−1,k

k−1 t
ak,1

k t
ak+1,k+ak+1,1

k+1 · · · tas,k+as,1
s =: tkg �= 0,

one has tkg ∈ I. As tk is a nonzero divisor of S/I, we get g ∈ I. Thus, g is a

linear combination with coefficients in S of f1, . . . , fs. Since t
ak,k−1
k is a term of g, we

conclude that t
ak,k−1
k is a multiple of some term of fi for some i �= k, a contradiction

to the fact that, a fortiori, supp(fi) has at least 3 variables. This proves a1,1 > a1,k.
Moreover, from the equality

(t
ak,k

k − t
a1,k

1 · · · tak−1,k

k−1 t
ak+1,k

k+1 · · · tas,k
s )t

a1,1−a1,k

1

+ (t
a1,1

1 − t
ak,1

k · · · tas,1
s )t

a2,k

2 · · · tak−1,k

k−1 t
ak+1,k

k+1 · · · tas,k
s

= t
ak,k

k t
a1,1−a1,k

1 − t
a2,k

2 · · · tak−1,k

k−1 t
ak,1

k t
ak+1,k+ak+1,1

k+1 · · · tas,k+as,1
s =: tkg

′ �= 0,

the argument above shows that t
ak,k−1
k t

a1,1−a1,k

1 is a multiple of some term of fi for
some i, a contradiction to the fact that supp(fi) has at least 4 variables. Hence I is
not a lattice ideal.

Since I is not a lattice ideal, ti is a zero divisor of S/I for some i. Then some
associated prime p of I contains ti. Hence, by [20, Lemma 2.6], p is equal to m, which
proves (b). Since I is not a lattice ideal, I is not unmixed (see Proposition 5.3). The
rest follows on applying Proposition 5.7.

Proposition 6.2. Let g1, . . . , gs be the binomials defined by the rows of a
GCB matrix L and let I be the ideal generated by g1, . . . , gs. If V (I, ti) = {0} and
|supp(gi)| ≥ 3 for all i, then I is not a complete intersection.

Proof. We may assume that gi corresponds to the ith row of L. We proceed by
contradiction. Assume that I is a complete intersection. As I is graded, since L is a
GCB matrix, and the height of I is s− 1, we may assume that g1, . . . , gs−1 generate
I. Hence, we can write

gs = tas,s
s − t

as,1

1 · · · tas,s−1

s−1 = h1g1 + · · ·+ hs−1gs−1

for some h1, . . . , hs−1 in S, where as,s > 0. Therefore, the monomial t
as,s
s has to occur

in the right-hand side of this equation, a contradiction to the fact that |supp(gi)| ≥ 3
for all i.
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In what follows, we examine GPCB matrices—a natural extension of the PCB
matrices introduced in [30]—and the algebra of their matrix ideals. The class of
GPCB matrices is closed under transposition, as the next result shows.

Theorem 6.3. Let L be an integer matrix of size s×s with rows �1, . . . , �s and let
(Li,j) be the adjoint matrix of L. Suppose Lb� = 0 for some b in Ns

+. The following
hold.

(a) If rank(�1, . . . , �̂i, . . . , �s) = s− 1 and Li,i ≥ 0 for all i, then cL = 0 for some
c ∈ Ns

+.
(b) If Li,i > 0 for all i, then cL = 0 for some c ∈ Ns

+.

(c) If L is a GCB matrix and rank(�1, . . . , �̂i, . . . , �s) = s − 1 for all i, then L�

is a GCB matrix.
(d) If L is a GPCB matrix, then rank(L) = s− 1 and L� is a GPCB matrix.
(e) If s = 3 and L is a GCB matrix, then rank(L) = 2 and L� is a GCB matrix.
Proof.
(a) Let Li be the ith column of adj(L) = (Li,j). Since �1, . . . , �̂i, . . . , �s are linearly

independent, we get Li �= 0. The vector b generates kerQ(L) because L has
rank s− 1 and Lb� = 0. Then, because of the equality Ladj(L) = 0, we can
write Li = μib for some μi ∈ Q. Notice that μi > 0 because Li,i ≥ 0 and
b ∈ Ns

+. Hence, all entries of adj(L) are positive integers. If c is any row of
adj(L), we get cL = 0 because adj(L)L = 0.

(b) For any i, the vectors �1, . . . , �̂i, . . . , �s are linearly independent because Li,i >
0. Thus this part follows from (a).

(c) Let L be a GCB matrix as in Definition 1.1, (1.1). (c1) First we treat the
case b = 1 = (1, . . . , 1), i.e., the case where L is a CB matrix. By part
(a) it suffices to show that Li,i ≥ 0 for all i. Let Hi,i be the submatrix of L
obtained by eliminating the ith row and ith column. By the Gershgorin circle
theorem, every (possibly complex) eigenvalue λ of Hi,i lies within at least one
of the discs {z ∈ C| ‖z − aj,j‖ ≤ rj}, j �= i, where rj =

∑
u
=i,j | − aj,u| ≤ aj,j

since L1� = 0 and ai,j ≥ 0 for all i, j. If λ ∈ R, we get |λ − aj,j| ≤ aj,j ,
and, consequently, λ ≥ 0. If λ /∈ R, then since Hi,i is a real matrix, its
conjugate λ must also be an eigenvalue of Hi,i. Since det(Hi,i) is the product
of the s − 1 (possibly repeated) eigenvalues of Hi,i, we get Li,i ≥ 0. This
argument is adapted from the proof of [30, Lemma 2.1]. (c2) Now, we treat
the general case. Let B be the s× s diagonal matrix diag(b1, . . . , bs), where

b = (b1, . . . , bs), and let L̃ = LB. Notice that L̃1� = 0 because Lb� = 0,

and L̃ is a CB matrix because L is a GCB matrix. Let (L̃i,j) be the adjoint

matrix of L̃. Since bi > 0 for all i, by the multilinearity of the determinant,
it follows that Li,j �= 0 if and only if L̃i,j �= 0. Hence, any set of s − 1 rows

of L̃ is linearly independent. Therefore, applying case (c1) to L̃, we obtain

that L̃� is a GCB matrix. Thus, there is c ∈ Ns
+ such that cL̃ = 0. Then,

cL = 0, i.e., L� is a GCB matrix, as required.
(d) Let L be a GPCB matrix. By the argument given in (c1), it follows readily

that Li,i > 0 for all i. In particular the rank of L is s − 1. Hence, by part
(b), L� is a GPCB matrix.

(e) Let L be a GCB matrix with s = 3. It is easy to see that Li,j > 0 for i �= j.
In particular L has rank 2 and any two rows of L are linearly independent.
Then by (c), L� is a GCB matrix.

Following the proof of (c) above, we call L̃ := LB the associated CB matrix of L.
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Lemma 6.4. Let L be a GCB matrix of size s× s. If rank(L) = s− 1, then any
set of s− 1 columns is linearly independent.

Proof. Let �∗,1, . . . , �∗,s be the columns of the matrix L. By hypothesis, there is
a vector b = (b1, . . . , bs) ∈ Ns

+ such that Lb� = 0. Thus it suffices to observe that
b1�∗,1 + · · ·+ bs�∗,s = 0.

Example 6.5. Let L be the 4× 4 integer matrix of rank 3:

L =

⎛
⎜⎜⎝

5 −2 0 −1
0 1 −1 0
0 −1 1 0

−1 0 −1 4

⎞
⎟⎟⎠ .

Then L is a GCB matrix, where Lb� = 0 if b = (9, 19, 19, 7) but L� is not a GCB
matrix because rows 2, 3, and 4 are linearly dependent (see Lemma 6.4).

Remark 6.6. Observe that if I = I(L) is a GPCB ideal associated to a GPCB
matrix L, then (I, t1) = (t1, t

a2,2

2 , . . . , t
as,s
s ), rad(I, t1) = m, and V (I, t1) = {0} (and

similarly V (I, ti) = {0} for all the other variables). Moreover, by Theorem 6.3, I is
homogeneous. Therefore, one can apply to GPCB ideals most of the results of the
previous section.

In what follows, we extend to GPCB ideals some properties that hold for PCB
ideals. First of all, using Theorem 6.3, we get that [30, Proposition 3.3(a)–(c)] holds
for any GPCB ideal provided that we assume s ≥ 3 in part (c). Regarding the
(un)mixedness property of GPCB ideals, observe that Proposition 5.7 generalizes [30,
Proposition 4.1].

To simplify notation and to avoid repetitions, for the rest of this section we assume
that L is a GPCB matrix with b = (b1, . . . , bs) ∈ Ns

+, gcd(b) = 1, and Lb� = 0. If
char(K) = p, p a prime, since gcd(b) = 1, then on reordering the variables, one can
always suppose without loss of generality that p � bs. From now on and until the end
of the section, we will suppose that, if char(K) = p > 0, then p � bs. The entries of L
are denoted by ai,i and −ai,j if i �= j. As in the proof of Theorem 6.3(c), the matrix

L̃ := LB, where B := diag(b1, . . . , bs), denotes the so-called PCB matrix associated
with L.

Proposition 6.7 (cf. [30, Remark 3.4]). Let I = I(L) = (f1, . . . , fs) be the ideal

of a GPCB matrix L and let L̃ be the PCB matrix associated with L. For i = 1, . . . , s,
let xi = t

ai,i

i and yi = t
a1,i

1 · · · tai−1,i

i−1 t
ai+1,i

i+1 · · · tas,i
s be the two terms of fi, so that

fi = xi − yi. If bi = 1, set gi = 1 and qi = 0. If bi > 1, set gi =
∑bi

j=1 x
bi−j
i yj−1

i ∈ S.

Let qi =
∑bi−1

j=1 jxbi−1−j
i yj−1

i ∈ S and let b(1), . . . , b(s) be the vectors in Ns given by

b(1) = (0, 0, b3,3 − b3,4 − · · · − b3,s − b3,1, b4,4 − b4,5

− · · · − b4,s − b4,1, . . . , bs,s − bs,1),

b(2) = (b1,1 − b1,2, 0, 0, b4,4 − b4,5 − · · · − b4,s − b4,1 − b4,2, . . . , bs,s − bs,1 − bs,2),

b(3) = (b1,1 − b1,2 − b1,3, b2,2 − b2,3, 0, 0, . . . , bs,s − bs,1 − bs,2 − bs,3), . . . ,

b(s− 1) = (b1,1 − b1,2 − · · · − b1,s−1, . . . , bs−2,s−2 − bs−2,s−1, 0, 0), and

b(s) = (0, b2,2 − b2,3 − · · · − b2,s, b3,3 − b3,4 − · · · − b3,s, . . . , bs−1,s−1 − bs−1,s, 0),

where bi,i and −bi,j, i �= j, are the entries of L̃. Then, for each i = 1, . . . , s,
(a) gi is homogeneous and tb(1)g1f1 + · · ·+ tb(s)gsfs = 0;
(b) qifi = gi − biy

bi−1
i .

In particular, biy
bi−1
i tb(i)fi ∈ (f1, . . . , fi−1, fi+1, . . . , fs) + I2.
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Proof. Applying [30, Remark 3.4] to L̃, the PCB matrix associated with L, one

gets the syzygy tb(1)f̃1 + · · ·+ tb(s)f̃s = 0, where f̃i is the binomial defined by the ith
column of L̃. Note that f̃i = fl̃∗,i = xbi

i − ybii = (xi − yi)(x
bi−1
i + · · ·+ xbi−j

i yji + · · ·+
ybi−1
i ) = figi (even if bi = 1). It follows that tb(1)g1f1 + · · · + tb(s)gsfs = 0. Since

dL = 0 for some d ∈ Ns
+ (see Theorem 6.3), clearly dL̃ = 0 and f̃i is homogeneous.

Since f̃i = figi and S is a domain, gi is homogeneous too. This proves (a). On the
other hand, one has the following identity:

qifi = (xbi−2
i + 2xbi−3

i yi + · · ·+ (bi − 1)ybi−2
i )(xi − yi)

= xbi−1
i + xbi−2

i yi + · · ·+ xiy
bi−2
i − (bi − 1)ybi−1

i = gi − biy
bi−1
i .

To see where this equality comes from, consider the polynomials f = X − Y and
g = Xb−1 +Xb−2Y + · · ·+ Y b−1 in a polynomial ring K[X,Y ], where b is a positive
integer. Set Z = X/Y and dehomogenize f and g to obtain u = Z − 1 and v =
Zb−1+Zb−2+ · · ·+1 in the Euclidean domain K[Z]. If char(K) = 0 or char(K) = p,
p a prime with p � b, u and v are relatively prime. The Euclidean algorithm explicitly
gives us two polynomials α, β ∈ K[Z] with αu + βv = 1. On rehomogenizing and
multiplying by b one gets the desired identity, which holds in any characteristic. This
proves (b). Finally, on multiplying the equality qifi = gi − biy

bi−1
i by tb(i)fi, one gets

biy
bi−1
i tb(i)fi = tb(i)gifi − qit

b(i)f2
i ∈ (f1, . . . , fi−1, fi+1, . . . , fs) + I2.

Lemma 6.8. Let I(L) = (f1, . . . , fs) be the ideal of a GPCB matrix L. Then,
any subset of s− 1 elements of f1, . . . , fs is a regular sequence in S.

Proof. The ideal I(L) is graded by Theorem 6.3. Thus the lemma follows using
the proof of [30, Proposition 3.3].

The following result generalizes [30, Proposition 3.5].
Corollary 6.9. Let I = I(L) be the ideal of a GPCB matrix L. Then the

following hold.
(a) For any associated prime p of I, either ht(p) = s − 1 and ti �∈ p, for all

i = 1, . . . , s, or else p = m.
(b) For any minimal prime ideal p over I, ISp is a complete intersection.
(c) If s ≥ 3, I is an almost complete intersection.
Proof. Item (a) follows from Remark 6.6, Theorem 6.3, and Lemma 5.1. Item (c)

follows from Proposition 6.2. To prove (b), let I = (f1, . . . , fs), let p be an arbitrary
minimal prime over I, so ti �∈ p for all i = 1, . . . , s. Either char(K) = 0, or else we may
suppose that char(K) = p, p a prime with p � bs, because gcd(b) = 1 (and s ≥ 2).
In particular, by Proposition 6.7, bsy

bs−1
s �∈ p (otherwise, if we had bsy

bs−1
s ∈ p,

it would follow that ys is in p, so one of t1, . . . , ts−1 is in p, a contradiction) and
gs = qsfs + bsy

bs−1
s �∈ p. Therefore tb(s)gs /∈ p and it follows from Proposition 6.7(a)

and Lemma 6.8 that ISp = (f1, . . . , fs−1)Sp is generated by a regular sequence in
Sp.

In the next pair of results, we give an explicit description of the hull of a GPCB
ideal and, if s ≥ 4, of an irredundant embedded component.

Proposition 6.10 (cf. [30, Proposition 4.4]). Let I = I(L) = (f1, . . . , fs) be the
ideal of a GPCB matrix L. Set J = (f1, . . . , fs−1). Suppose that g ∈ (J : fs) is such
that g �∈ p for any minimal prime p over I. Then the following hold.

(a) I(L) = Hull(I) = (I: g) = (J : g).
(b) For b(s) ∈ Ns and gs ∈ S as in Proposition 6.7, I(L) = (I: tb(s)gs) =

(J : tb(s)gs).
Proof. Since J is a graded complete intersection and fs �∈ J , (J : fs) ⊂ m and

g ∈ m. By Proposition 5.7, I(L) = Hull(I) = (I: g∞). Hence I ⊂ (J : g) ⊂ (I: g) ⊂
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(I: g∞) = I(L). To finish the proof of (a), just proceed as in [30, Proposition 4.4].
By Proposition 6.7, tb(s)gs ∈ (J : fs) and tb(s)gs ∈ m \ p, for all minimal prime ideals
p over I. Thus (b) follows from (a).

Theorem 6.11 (cf. [30, Theorem 4.10]). Let s ≥ 4. Let I = I(L) = (f1, . . . , fs)
be the ideal of a GPCB matrix L. Suppose that (I: g) = (I: g∞) for some g ∈ m, g �∈ p
for any minimal prime ideal p over I. Then the following hold.

(a) I + (g) is an irredundant m-primary component of I.
(b) For b(s) ∈ Ns and gs ∈ S as in Proposition 6.7, I+(xb(s)gs) is an irredundant

m-primary component of I.
Proof. This is a straightforward extension of [30, Theorem 4.10].
In the light of the preceding results, and taking into account Theorem 3.3 and

Proposition 5.7, it is not hard to see that analogues of [30, Theorems 6.5 and 7.1]
hold for GPCB ideals. The details are left to the interested reader.

For s = 2, we now give an explicit description of a GPCB ideal and its hull in
terms of the entries of the corresponding GPCB matrix. This description will be used
later in section 8 (see Proposition 8.8).

Lemma 6.12. Let I = I(L) = (f1, f2) be a GPCB ideal associated with a 2 × 2
GPCB matrix L and let L be the lattice of Z2 spanned by the columns of L. Then
there exists (c1, c2) ∈ N2

+ such that I(L) = (tc11 − tc22 ). Moreover, either I is a PCB
ideal, I is principal, and I = I(L) is a lattice ideal, or else I is not a PCB ideal, I is
not principal, and I is not a lattice ideal.

Proof. Set b = (b1, b2) ∈ N2
+, gcd(b) = 1, with Lb� = 0. Then a1,1b1 = a1,2b2

and a2,1b1 = a2,2b2. Since gcd(b) = 1, this forces a1,1 = b2c1, a1,2 = b1c1, for some
c1 ∈ N+, and a2,1 = b2c2, a2,2 = b1c2, for some c2 ∈ N+. Therefore,

L =

(
a1,1 −a1,2

−a2,1 a2,2

)
=

(
b2c1 −b1c1

−b2c2 b1c2

)
.

Set h := tc11 − tc22 and gi := t
(bi−1)c1
1 + · · ·+ t

(bi−j)c1
1 tjc22 + · · ·+ t

(bi−1)c2
2 , for i = 1, 2

(if bi = 1, we understand that gi = 1). Then f1 = tb2c11 − tb2c22 = hg2 and f2 =
tb1c22 − tb1c11 = −hg1. Hence I = I(L) = (hg2, hg1) and I ⊂ (h). Since gcd(b) = 1,
there exist v1, v2 ∈ Z such that 1 = v1b1 + v2b2. Hence

v2(a1,1,−a2,1)− v1(−a1,2, a2,2) = v2(b2c1,−b2c2)− v1(−b1c1, b1c2) = (c1,−c2),

and L = 〈(a1,1,−a2,1), (−a1,2, a2,2)〉 = 〈(c1,−c2)〉. Therefore I = I(L) ⊂ I(L) =
(tc11 − tc22 ) = (h).

If b1 = 1 or b2 = 1, then g1 = 1 or g2 = 1 and I = (hg1, hg2) = (h) = I(L).
Moreover I is the PCB ideal associated to the PCB matrix with columns (c1,−c2)

�

and (−c1, c2)
�.

Suppose that b1, b2 > 1 with gcd(b) = 1. Then b1 � b2 and b2 � b1. It follows that
f2 � f1 and f1 � f2 (see, e.g., [29, Lemma 8.2]). Since I = (f1, f2) is homogeneous,
f1, f2 is a minimal homogeneous system of generators of I. Hence I is not principal
and h ∈ I(L) \ I. In particular, I is not a PCB ideal (by [30, Remark 2.3]) and is not
a lattice ideal (see Proposition 5.7(b)).

We finish the section with an example.
Example 6.13. Let L be the following PCB matrix and let I = I(L) and I� =

I(L�) be the matrix ideals of L and L�, respectively:

L =

⎛
⎜⎜⎝

4 −2 −1 −1
−1 4 −2 −1
−1 −1 3 −1
−1 −1 −1 3

⎞
⎟⎟⎠ .
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Observe that L1� = 0 and L�b� = 0 with b = (20, 24, 31, 25) and 1 = (1, 1, 1, 1).
Let L and L� be the lattices spanned by the columns of L and L�, respectively.
Here Δ3(L) = 1. By Corollary 5.9, deg(S/I) = 31 and deg(S/I�) = 1. Moreover
I = pb ∩ q and I� = p1 ∩ q′ are minimal primary decompositions of I and I�,
respectively, where I(L) = pb is the Herzog ideal associated with b, I(L�) = p1 is
the Herzog ideal associated with 1, and q and q′ are m-primary ideals which can be
calculated explicitly (see Theorem 6.11).

7. Laplacian matrices and ideals. In this section we show how our results can
be applied to an interesting family of binomial ideals arising from Laplacian matrices.

Connecting combinatorial properties of graphs to linear-algebraic properties of
Laplacian matrices has attracted a great deal of attention [4, 14, 26]. We are interested
in relating the combinatorics of the graph with the algebraic invariants and properties
of the binomial ideals associated with Laplacian matrices.

Let S = K[t1, . . . , ts] be a polynomial ring over a field K and let G = (V,E,w)
be a weighted connected simple graph, where V = {t1, . . . , ts} is the set of vertices, E
is the set of edges, and w is a weight function that associates a weight we with every
edge e in the graph. Edges of G are unordered pairs {ti, tj} with i �= j. To define the
Laplacian matrix, recall that the adjacency matrix A(G) of this graph is given by

A(G)i,j :=

{
we if e = {ti, tj} ∈ E,
0 otherwise.

Now, the Laplacian L(G) of the graph G is defined as L(G) := D(G) −A(G), where
D(G) is a diagonal matrix with entryD(G)i,i equal to the weighted degree

∑
e∈E(ti)

we

of the vertex ti. Here, we denoted by E(ti) the set of edges adjacent (incident) to ti.
One can check that the entries of the Laplacian are given by

L(G)i,j :=

⎧⎨
⎩

∑
e∈E(ti)

we if i = j,

−we if i �= j and e = {ti, tj} ∈ E,
0 otherwise.

Notice that L(G) is symmetric and 1L(G) = 0. The Laplacian matrix is a prime ex-
ample of a CB matrix. The Laplacian matrices of complete graphs are PCB matrices;
this type of matrix occurs in [23]. The binomial ideal I ⊂ S defined by the columns
of L(G) is called the Laplacian ideal of G. If I ⊂ S is the Laplacian ideal of G, the
lattice ideal I(L) = (I: (t1 · · · ts)∞) is called the toppling ideal of the graph [23, 32].
If G is connected, the toppling ideal is a lattice ideal of dimension 1.

The torsion subgroup of the factor group Zs/Im(L(G)), denoted byK(G), is called
the critical group or the sandpile group of G (see [1, 22] for additional information).
Notice that K(G) is the torsion subgroup of Zs/L. The structure, as a finite abelian
group, of K(G) is only known for a few families of graphs (see [1] and the references
therein). If G is regarded as a multigraph (where each edge e occurs we times), then
by Kirchhoff’s matrix tree theorem, the order of K(G) is the number of spanning
trees of G and this number is equal to the (i, j)-entry of the adjoint matrix of L(G)
for any (i, j) (see [4, Theorem 6.3, p. 39] and [26, Theorem 1.1]).

Next we give an application of our earlier results to this setting.
Proposition 7.1. Let G = (V,E,w) be a connected weighted simple graph with

vertices t1, . . . , ts and let I ⊂ S be its Laplacian ideal. Then the following hold.
(a) V (I, ti) = {0} for all i.
(b) deg(S/I) = deg(S/I(L)) = |K(G)|.
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� t4

�t2

�t1
1 2

3

4 1

�t3

�
��

�
��
�
���

�� L(G) =

⎛
⎜⎜⎝

3 −1 −2 0
−1 8 −3 −4
−2 −3 6 −1
0 −4 −1 5

⎞
⎟⎟⎠

Fig. 1. Weighted graph G.

(c) Hull(I) = I(L).
(d) If |E(ti)| ≥ 3 for all i, then I is not a lattice ideal.
(e) If G = Ks is a complete graph, then deg(S/I) = ss−2.
(f) If G is a tree, then deg(S/I) = deg(S/I(L)) = 1.
Proof. (a) For 1 ≤ k ≤ s, let fk be the binomial defined by the kth column of

L(G). Fix i such that 1 ≤ i ≤ s. Clearly {0} is contained in V (I, ti) because I is
graded. To show the reverse containment, let α = (α1, . . . , αs) be a point in V (I, ti).
If {ti, tk} ∈ E(ti), we claim that αk = 0. We can write

fk = t

∑
e∈E(tk) we

k −
∏

e∈E(tk), tj∈e

twe

j .

Using that fk(α) = 0, we get α

∑
e∈E(tk) we

k =
∏

{e∈E(tk), tj∈e} α
we

j . Since {ti, tk} is

in E(tk) and using that αi = 0, we obtain that αk = 0, as claimed. Let � be an
integer in {1, . . . , s}. Since the graph G is connected, there is a path {v1, . . . , vr}
joining ti and t�, i.e., v1 = ti, vr = t�, and {vj , vj+1} ∈ E(G) for all j. There is a
permutation π of V such that π(1) = i, π(r) = �, and vj = tπ(j) for j = 1, . . . , r. Then
tπ(j) ∈ E(tπ(j−1)) for j = 2, . . . , r. Applying the claim successively for j = 2, . . . , r,
we obtain απ(2) = 0, απ(3) = 0, . . . , απ(r) = 0. Thus, α� = 0. This proves that α = 0.

(b) and (c) These two parts follow from Proposition 2.5, Corollary 4.9, and Propo-
sition 5.7(a), since L(G) is homogeneous with respect to the weight vector 1.

(d) This part follows from Proposition 6.1(a).
(e) By part (b) one has deg(S/I) = |K(G)|, and by [4, p. 39] one has |K(G)| =

ss−2.
(f) Since |K(G)| is the number of spanning trees of the graph G, this number

is equal to 1. Thus, K(G) = {0}, i.e., K(G) is torsion free. By (b), we get that
deg(S/I) = 1.

Example 7.2. Let G be the weighted graph of Figure 1 and let I be its Laplacian
ideal. Then I = (t31 − t2t

2
3, t

8
2 − t1t

3
3t

4
4, t

6
3 − t21t

3
2t4, t

5
4 − t42t3), deg(S/I) = 67, and

Hull(I) = I(L) = (t31 − t2t
2
3, t1t

4
3 − t42t4, t

4
2t3 − t54, t

6
3 − t21t

3
2t4, t

8
2 − t1t

3
3t

4
4, t

2
1t

7
2 − t53t

4
4).

If K = Q, the toppling ideal I(L) has two primary components of degrees 66 and 1.
As another application, by Proposition 6.2, the Laplacian ideal is an almost com-

plete intersection for any connected simple graph without vertices of degree 1.
Proposition 7.3. Let G = (V,E,w) be a connected weighted simple graph with

vertices t1, . . . , ts and let I ⊂ S be its Laplacian ideal. If |E(ti)| ≥ 2 for all i, then I
is an almost complete intersection.

The notion of a Laplacian matrix can be extended to weighted digraphs; see [8]
and the references therein. Let G = (V,E,w) be a weighted digraph without loops
and with vertices t1, . . . , ts, let w(ti, tj) be the weight of the directed arc from ti
to tj , and let A(G) be the adjacency matrix of G given by A(G)i,j = w(ti, tj). The
Laplacian matrix ofG is given by L(G) = D+(G)−A(G), whereD+(G) is the diagonal
matrix with the out-degrees of the vertices of G in the diagonal entries. Note that
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L(G)1� = 0 and that the Laplacian matrix of a digraph may not be symmetric (see
Example 7.8). If ti is a sink, i.e., there is no arc of the form (ti, tj), then the ith row
of L(G) is zero. Thus, the rank of L(G) may be much less than s − 1. When G is
a strongly connected digraph, it is well-known that the rank of L(G) is s − 1. This
follows from the Perron–Frobenius theorem; see the proof of Theorem 7.5 .

Let G be a weighted digraph without sources or sinks, i.e., for each vertex ti
there is at least one arc of the form (tj , ti) and one arc of the form (ti, tk). Then L(G)
is a CB matrix. Conversely if L is a CB matrix as in Definition 1.1, then L is the
Laplacian matrix of the weighted digraph G defined as follows. A pair (ti, tj) is an
arc of G if and only if i �= j and ai,j �= 0. The weight of the arc (ti, tj) is ai,j .

Definition 7.4 (see [14, pp. 175 and 29]). Let A = (ai,j) be an s×s real matrix.
The underlying digraph of A, denoted by GA, has vertex set {t1, . . . , ts} with an arc
from vertex ti to vertex tj if and only if ai,j �= 0. Note that this digraph may have
loops. A digraph is called strongly connected if any two vertices can be joined by a
directed path.

The underlying digraph of the matrix of Example 7.2 is strongly connected. If
G is a weighted digraph and L is its Laplacian matrix, then G is obtained from the
underlying digraph GL of L by removing all loops of GL.

Theorem 7.5. Let L be a GCB matrix and let G be its underlying graph. If G
is strongly connected, then rank(L) = s− 1 and L� is a GCB matrix.

Proof. By passing to the associated CB matrix L̃, we may assume that L is a CB
matrix (see the proof of Theorem 6.3(c)). Let L be a CB matrix as in Definition 1.1.
We can write L = D − A, where D = diag(a1,1, . . . , as,s) and A is the matrix whose
i, j entry is ai,j if i �= j and whose diagonal entries are equal to zero. We set δi = ai,i
for i = 1, . . . , s. By hypothesis L1� = 0, hence rank(L) ≤ s − 1. There exists a
nonzero vector b ∈ Zs such that bL = 0. Therefore

bD = bA = bD(D−1A).

Since L1� = 0, we get that D1� = A1� or, equivalently, (D−1A)1� = 1�. Thus,
as the entries of D−1A are nonnegative, the matrix B := D−1A is stochastic. It is
well known that the spectral radius ρ(B) of a stochastic matrix B is equal to 1 [3,
Theorem 5.3], where ρ(B) is the maximum of the moduli of the eigenvalues of B. As
the diagonal entries of B are zero and δi > 0 for all i, the underlying digraph GB of
B is equal to the digraph obtained from G by removing all loops of G. Since G is
strongly connected, so is GB , and by the Perron–Frobenius theorem for nonnegative
matrices [14, Theorem 8.8.1, p. 178], ρ(B) = 1 and 1 is a simple eigenvalue of B (i.e.,
the eigenspace of B relative to ρ(B) = 1 is 1 dimensional), and if z is an eigenvector
for ρ(B) = 1, then no entries of z are zero and all have the same sign. Applying this
to z = bD, we get that bi �= 0 for all i and all entries of b have the same sign. Hence,
ker(L�) = (b�) for any nonzero vector b such that bL = 0, so L� is a GCB matrix
of rank s− 1.

The results of the previous sections can also be applied to GCB ideals that arise
from matrices with strongly connected underlying digraphs.

Proposition 7.6. Let L be a GCB matrix of size s× s, let GL be the underlying
digraph of L, and let I = I(L�) be the matrix ideal of L�. The following conditions
are equivalent.

(a) GL is strongly connected.
(b) V (I, ti) = {0} for all i.
(c) Li,j > 0 for all i, j, where adj(L) = (Li,j) is the adjoint of L.
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t1

t2 t3

t4
3

1

1

1

14 L = L(G) =

⎛
⎜⎜⎝

5 −4 0 −1
0 1 −1 0
0 −1 1 0

−3 0 −1 4

⎞
⎟⎟⎠

Fig. 2. A weighted digraph G with four vertices and its Laplacian matrix.

Proof. By passing to the associated matrix L̃, we may assume that L is a CB
matrix (see the proof of Theorem 6.3(c)).

(a) ⇒ (b). Since any two vertices can be joined by a directed path, the proof
follows adapting the argument given to prove Proposition 7.1(a).

(b) ⇒ (a). We proceed by contradiction. Assume that GL is not strongly con-
nected. Without loss of generality we may assume that there is no directed path from
t1 to ts. Let W be the set of all vertices ti such that there is a directed path from
ti to ts, the vertex ts being included in W . The set W is nonempty because GL has
no sources or sinks by the definition of a CB matrix, and the vertex t1 is not in W .
Consider the vector α ∈ Ks defined as αi = 1 if ti /∈ W and αi = 0 if ti ∈ W . To
derive a contradiction it suffices to show that all binomials of I(L�) vanish at the
nonzero vector α. Let L be as in Definition 1.1 and let fk = t

ak,k

k −∏
j 
=k t

ak,j

j be the
binomial defined by the k-row of L. If tk ∈ W , there is a directed path P from tk to
ts. Then tj is part of the path P for some j such that ak,j > 0. Thus, since tj ∈ W ,
fk(α) = 0. If tk /∈ W , then tj is not in W for any j such that ak,j > 0, because if
ak,j > 0, the pair (tk, tj) is an arc of GL. Thus, fk(α) = 0.

(a) ⇒ (c). By the proof of Theorem 6.3(c), one has that Li,i ≥ 0 for all i. By
Theorem 7.5 and using the proof of Theorem 6.3(a), we get that Li,j > 0 for all i, j.

(c) ⇒ (a). We proceed by contradiction. Assume that GL is not strongly con-
nected. We may assume that there is no directed path from t1 to ts. Let W be as
above and letW c = {ti| ti /∈ W} be its complement. We can writeW c = {t�1 , . . . , t�r}.
Consider the r×r submatrix B obtained from L by fixing rows �1, . . . , �r and columns
�1, . . . , �r. Notice that by the arguments above W c = ∪tk∈W c(supp(fk)). Hence any
row of B extends to a row of L by adding 0’s only, and, consequently, the sum of the
columns of B is zero. Hence det(B) = 0. By permuting rows and columns, L can be
brought to the form

L′ =
(

C 0
C′ C′′

)
,

where C and C′′ are square matrices of orders r and s−r, respectively, and det(C) = 0.
Hence the adjoint of L′ has a zero entry, and so does the adjoint of L, a contradic-
tion.

Corollary 7.7. Let L be a GCB matrix of size s×s and let (Li,j) be its adjoint.
If GL is strongly connected, then

gcd({Li,k}si=1) deg(S/I(L
�)) = max({Li,k}si=1) gcd({Li,j}) for any k.

Proof. By Proposition 7.6, all entries of adj(L) are positive and any column of
adj(L) gives a grading for I(L�). Hence the formula follows from Corollary 5.9.

Example 7.8. Let G be the weighted digraph of Figure 2 and let L be its Laplacian
matrix. The digraph GL is not strongly connected, the CB ideal I(L�) is graded but
I(L) is not.
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8. Homogeneous lattice ideals of dimension 1 in 3 variables. The main
results of this section uncover the structure of lattice ideals of dimension 1 in 3 vari-
ables and the structure of the homogeneous lattices of rank 2 in Z3.

Definition 8.1. Let I be a binomial ideal of S and let f = ta − tb ∈ I. We will
say that

(a) f is ti-pure if ta and tb are nonconstant, have no common variables, and
supp(a) = {i};

(b) f is ti-critical if f is ti-pure and for any other ti-pure binomial g = tcii − td

of I, ci ≥ ai;
(c) a full set of pure (respectively, critical) binomials of I is a family f1, . . . , fs of

binomials where each fi is a ti-pure (respectively, ti-critical) binomial of I.
We begin with a result that complements the well-known result of Herzog [16]

that shows that the toric ideal of a monomial space curve is generated by a full set of
critical binomials.

Theorem 8.2. Let S = K[t1, t2, t3] and let I be a homogeneous lattice ideal of
S of height 2. Then I is generated by a full set of critical binomials. Concretely, and
with a suitable renumbering of the variables, only the two following cases can occur:

(a) I is minimally generated by f1 = ta1
1 − tc33 and f2 = tb22 − tb11 tb33 with 0 ≤ b1 ≤

a1, a1, b2, c3 > 0, and b1 + b3 > 0;
(b) I is minimally generated by f1 = ta1

1 − ta2
2 ta3

3 , f2 = tb22 − tb11 tb33 , and f3 =
tc33 − tc11 tc22 with 0 < a2 < b2, 0 < a3 < c3, 0 < b1 < a1, 0 < b3 < c3,
0 < c1 < a1, and 0 < c2 < b2. Moreover, a1 = b1 + c1, b2 = a2 + c2, and
c3 = a3 + b3.

Proof. Let d = (d1, d2, d3), gcd(d) = 1, be the grading in S under which I is
homogeneous. Since I is a lattice ideal, ti is a nonzero divisor of S/I for i = 1, 2, 3. In
particular, I can be generated by pure binomials, i.e., binomials of the form te11 −te22 te33
with e1 > 0, and similarly for i = 2, 3.

Since I is a homogeneous lattice ideal of height 2, by [20, Proposition 2.9],
V (I, ti) = {0} for all i. In particular, I contains ti-pure binomials, for i = 1, 2, 3.
Indeed, if I contains no t3-pure binomials, say, then V (I, t1) ⊃ V (t1, t2) �= {0}, a
contradiction.

Therefore there exist f1 = ta1
1 − ta2

2 ta3
3 , f2 = tb22 − tb11 tb33 , and f3 = tc33 − tc11 tc22 , a

full set of critical binomials of I; i.e., a1, b2, c3 > 0 and for any t1-pure binomial of I
of the form te11 − te22 te33 , one has e1 ≥ a1, and similarly with the other variables t2 and
t3. Notice that one could have fj = −fi for j �= i.

Following the proof of Kunz in [19, pp. 137–140], one can show that I is generated
by a full set of critical binomials. For the sake of clarity, we outline the main details
of the proof.

After renumbering the variables one may suppose that f1 is the one of least degree
among f1, f2, and f3. Then a2 ≤ b2 and a3 ≤ c3. Moreover, a2 = b2 is equivalent to
a3 = 0, and, in this case, −f1 = tb22 − ta1

1 is t2-critical and one may choose f2 to be
−f1. Similarly, a3 = c3 is equivalent to a2 = 0, and, in this case, −f1 = tc33 − ta1

1 is
t3-critical and one may choose f3 to be −f1.

If a2 = b2, (i.e., a3 = 0), we may interchange the numbering of the variables t2
and t3 so that, in the new numbering, a3 = c3 and a2 = 0. Hence, there are only the
following two cases for f1:

(a) f1 = ta1
1 − tc33 , if a2 = 0 and a3 = c3;

(b) f1 = ta1
1 − ta2

2 ta3
3 with 0 < a2 < b2 and 0 < a3 < c3.

Case (a). Here f1 = ta1
1 − tc33 , f2 = tb22 − tb11 tb33 , and f3 = tc33 − ta1

1 = −f1 with
deg(f1) ≤ deg(f2). Moreover, one can suppose that 0 ≤ b1 ≤ a1.
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In a rather long, but not difficult way, one proves that for any pure binomial f of
I, either f is in (f1, f2) or f modulo (f1, f2) is a multiple of a binomial g of I with
deg(g) < deg(f). One starts by taking f = te11 − te22 te33 ∈ I with e1 ≥ a1, and proving
that f − te1−a1

1 f1 is a multiple of a binomial g ∈ I with deg(g) < deg(f). There is an
analogous argument if f = te22 − te11 te33 ∈ I or f = te33 − te11 te22 ∈ I.

One concludes that I = (f1, f2). Indeed, suppose not and take f a pure binomial
in I\(f1, f2) of the smallest possible degree. We have seen that there exists h ∈ (f1, f2)
such that f − h is a multiple of a binomial g ∈ I with deg(g) < deg(f). Since f is the
element in I \ (f1, f2) of the smallest possible degree, this forces g to be in (f1, f2).
Hence f ∈ (g, h) ⊂ (f1, f2), a contradiction.

Case (b). Here f1 = ta1
1 − ta2

2 ta3
3 , f2 = tb22 − tb11 tb33 and f3 = tc33 − tc11 tc22 with

0 < a2 < b2 and 0 < a3 < c3.
Possibly after renumbering t2 and t3, one can assume that the degree of f2 is

smaller than the degree of f3. Observe that b1 < a1 and, in particular, b3 > 0.
Analogously, c1 < a1 and, in particular, c2 > 0. Moreover b3 ≤ c3, and b3 = c3 is
equivalent to b1 = 0. In this case, −f2 = tc33 − tb22 is t3-critical and one may choose as
f3 the binomial −f2.

Therefore, there are only the following two cases for f2:
(b1) f2 = tb22 − tc33 , if b1 = 0 and b3 = c3;

(b2) f2 = tb22 − tb11 tb33 with 0 < b1 < a1 and 0 < b3 < c3.
Case (b1). Here f1 = ta1

1 − ta2
2 ta3

3 , f2 = tb22 − tc33 and f3 = tc33 − tb22 = −f2 with
0 < a2 < b2, 0 < a3 < c3, and deg(f1) ≤ deg(f2). Similarly to the proof of Case (a),
one can show that I = (f1, f2) (although now the doubly pure binomial has a greater
degree than the other binomial).

Case (b2). Here f1 = ta1
1 − ta2

2 ta3
3 , f2 = tb22 − tb11 tb33 , and f3 = tc33 − tc11 tc22 with

0 < a2 < b2, 0 < a3 < c3, 0 < b1 < a1, and 0 < b3 < c3. Moreover, 0 ≤ c1 < a1,
c2 > 0, and deg(f1) ≤ deg(f2) ≤ deg(f3). Since b3 > 0, then c2 < b2. Since b3 < c3
(and b1 �= 0), then c1 > 0.

As in Case (a), one can prove that, for each pure binomial f of I, either f is in
(f1, f2, f3) or f modulo (f1, f2, f3) is a multiple of a binomial g of I with deg(g) <
deg(f). One concludes, as before, that I = (f1, f2, f3).

In Case (b2), I is minimally generated by f1, f2, and f3. Indeed, if f3 ∈ (f1, f2),
say, then on taking t1 = 0 and t2 = 0, one would get a contradiction.

Finally, a1 = b1 + c1, b2 = a2 + c2, and c3 = a3 + b3 (see [19, p. 139, line 15]).
Indeed, let α1 := a1−b1−c1, α2 := b2−a2−c2, and α3 := c3−a3−b3. Clearly α1d1+
α2d2 + α3d3 = 0. We may suppose that α2 and α3, say, have the same sign. Then
necessarily α1 = 0, because if not, since f1 is t1-critical and either tα1

1 − t−α2
2 t−α3

3 ∈ I
or t−α1

1 − tα2
2 tα3

3 ∈ I, we get that either α1 ≥ a1 or −α1 ≥ a1, which would imply that
either −b1 − c1 ≥ 0 or b1 + c1 ≥ 2a1, in contradiction to 0 < b1 < a1 and 0 < c1 < a1.
Thus α1 = 0, so α2 = 0 and α3 = 0.

Corollary 8.3. If I is a lattice ideal of dimension 0 and s = 2, then I is
generated by at most 3 binomials.

Proof. By Lemma 4.1, Ih ⊂ S[u] is a graded lattice ideal of dimension 1. Thus,
the result follows from Theorem 8.2.

Before proceeding with the main result of the section, we state some properties
of GCB and CB binomial ideals in the case s = 3.

Lemma 8.4. Let I = I(L) be the GCB ideal associated with a 3× 3 GCB matrix
L. Then I is homogeneous and V (I, ti) = {0} for all i.D
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Proof. Let L be a 3 × 3 GCB matrix, where b = (b1, b2, b3) ∈ N3
+, gcd(b) = 1,

and Lb� = 0,

L =

⎛
⎝ a1,1 −a1,2 −a1,3

−a2,1 a2,2 −a2,3
−a3,1 −a3,2 a3,3

⎞
⎠ .

If L is a GPCB matrix, I = I(L) is homogeneous and V (I, ti) = {0} for all i (see
Remark 6.6). Suppose that L is not a GPCB matrix, but a GCB matrix. After
renumbering the variables, one may suppose that a2,1 = 0. In particular, a3,1 > 0,
a1,2 + a3,2 > 0, and b2a2,2 = b3a2,3, so a2,3 > 0. Let h∗,3 be the third row of adj(L),
the adjoint matrix of L:

h∗,3 = (a2,2a3,1, a1,1a3,2 + a1,2a3,1, a1,1a2,2).

It follows that h∗,3 ∈ N3
+. Set d = h∗,3/ gcd(h∗,3). Then d ∈ N3

+, gcd(d) = 1, and
dL = 0. Hence I = I(L) is homogeneous. Moreover,

I = (t
a1,1

1 − t
a3,1

3 , t
a2,2

2 − t
a1,2

1 t
a3,2

3 , t
a3,3

3 − t
a1,3

1 t
a2,3

2 ).

Clearly rad(I, t1) = m and rad(I, t3) = m. Since a2,3 > 0, it follows that rad(I, t2) = m
too. Thus V (I, ti) = {0} for all i.

Proposition 8.5. Let I = I(L) be the CB ideal associated with a 3 × 3 CB
matrix L. Then the following conditions hold:

(a) t
a2,3

2 f1 + t
a3,1

3 f2 + t
a1,2

1 f3 = 0 and t
a3,2

3 f1 + t
a1,3

1 f2 + t
a2,1

2 f3 = 0;
(b) for {i, j, k} = {1, 2, 3}, then fi, fj , tk is a regular sequence (in any order);
(c) I is either a complete intersection or an almost complete intersection;
(d) I is an unmixed ideal of height 2;
(e) I is a homogeneous lattice ideal and I = I(L) = (I : (t1t2t3)

∞) = Hull(I).
Proof. The proof of (a) follows from a simple check. By Lemma 8.4, S can be

graded with t1, t2, t3 and f1, f2, f3 homogeneous elements of positive degree. Using
[29, Proposition 4.2, (c)], one deduces (b). If I is a PCB ideal, by Corollary 6.9, I
is an almost complete intersection of height 2. If I is not a PCB ideal, ai,j = 0 for
some i �= j. Using (a), I is generated by two of the three f1, f2, f3. In particular,
by (b), I is a complete intersection. This proves (c). If I is a PCB ideal, by [30,
Remark 4.7 and Proposition 3.3], I is an unmixed ideal of height 2. If I is not a PCB
ideal, ai,j = 0 for some i �= j, by (c), I is a complete intersection, hence unmixed
too. This proves (d). By Lemma 8.4, I = I(L) is graded and V (I, ti) = {0} for all i.
Moreover I = I(L) is an unmixed binomial ideal associated with an integer matrix L
(in fact a CB matrix). By Proposition 5.7, I = I(L) = (I : (t1t2t3)

∞) = Hull(I) is a
homogeneous lattice ideal.

As a consequence of Theorem 8.2 and Proposition 8.5, we obtain the main result
of the section.

Theorem 8.6. Let S = K[t1, t2, t3] and let I be an ideal of S. Then I is a
homogeneous lattice ideal of dimension 1 if and only if I is a CB ideal.

Proof. Suppose that I is a homogeneous lattice ideal of S of dimension 1. By
Theorem 8.2, only two cases can occur for I. In the first case, I = (f1, f2), where
f1 = ta1

1 − tc33 and f2 = tb22 − tb11 tb33 , with 0 ≤ b1 ≤ a1 and a1, b2, c3 > 0. Then I is the
CB ideal associated with the CB matrix L, where

L =

⎛
⎝ a1 −b1 −a1 + b1

0 b2 −b2
−c3 −b3 b3 + c3

⎞
⎠ ,

because f3 = −tb33 f1 − ta1−b1
1 f2 ∈ (f1, f2).
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In the second case, I = (f1, f2, f3), where f1 = ta1
1 − ta2

2 ta3
3 , f2 = tb22 − tb11 tb33 , and

f3 = tc33 −tc11 tc22 , with 0 < a2 < b2, 0 < a3 < c3, 0 < b1 < a1, 0 < b3 < c3, 0 < c1 < a1,
and 0 < c2 < b2, with a1 = b1+ c1, b2 = a2+ c2, and c3 = a3+ b3. Then I is the PCB
ideal associated with the PCB matrix L, where

L =

⎛
⎝ a1 −b1 −c1

−a2 b2 −c2
−a3 −b3 c3

⎞
⎠ .

Conversely, if I is a CB ideal, I is a graded lattice ideal of dimension 1 by Proposi-
tion 8.5.

Next, we show that the homogeneous lattices of rank 2 in Z3 are precisely the
lattices generated by the columns of a CB matrix.

Corollary 8.7. Let L be a lattice of rank 2 in Z3. Then, L is homogeneous if
and only if L is generated by the columns of a CB matrix.

Proof. If L is homogeneous of rank 2, I(L) is homogeneous of height 2. By
Theorem 8.6, I(L) is a CB ideal. Hence, by Corollary 2.11, L is generated by the
columns of a CB matrix. Conversely, let L be the lattice generated by the columns
of a 3 × 3 CB matrix L. Clearly L has rank 2 and, by Proposition 8.5, dL = 0 for
some d ∈ N3

+. In particular, L is homogeneous.
In the next result we add a new condition for a GPCB ideal to be a lattice ideal

(see Propositions 5.3 and 5.7(b)).
Proposition 8.8. Let I = I(L) be the binomial ideal associated with an s × s

GPCB matrix L. Then I is a lattice ideal if and only if s ≤ 3 and I is a PCB ideal.
Proof. (⇒) Assume that I is a lattice ideal. By Proposition 6.1, s ≤ 3. If s = 2,

by Lemma 6.12, I is a PCB ideal. If s = 3, by Theorem 6.3, I is a graded lattice
ideal. Hence, by Proposition 6.2, I cannot be a complete intersection. Applying
Theorem 8.2, we get as in the final paragraph of the proof of Theorem 8.6 that I is a
PCB ideal.

(⇐) Assume that I is a PCB ideal. In particular I is a CB ideal. If s = 3, by
Theorem 8.6, I is a lattice ideal. If s = 2, by Lemma 6.12, I is a lattice ideal.

As a corollary of Theorem 8.6 we deduce the structure of the hull of a GCB ideal.
Corollary 8.9. Let I = I(L) be the GCB ideal associated with a 3 × 3 GCB

matrix L. Then I(L) is a CB ideal.
Proof. By Lemma 8.4, I is homogeneous with V (I, ti) = {0} for all i. Therefore,

I(L) is a homogeneous lattice ideal of dimension 1 (see Proposition 5.7). Thus, by
Theorem 8.6, I(L) is a CB ideal.

We deduce a method to find a generating set for the hull of a GCB ideal.
Procedure 8.10. Given a 3× 3 GCB matrix L,
(a) find a CB matrix M such that M = L, where M and L are the lattices of

Z3 spanned by the columns of M and L, respectively. Equivalently, find a CB
matrix M and a 3× 3 integer matrix Q with det(Q) = 1, such that LQ = M ;

(b) by Proposition 8.5, I(M) is a lattice ideal and I(M) = I(M). Hence I(L) =
I(M).

We illustrate this method with some examples.
Example 8.11. Let I = (f1, f2, f3) = (t41 − t2t3, t

3
2 − t51t3, t

3
3 − t31t2) be the GPCB

ideal associated with the GPCB matrix

L =

⎛
⎝ 4 −5 −3

−1 3 −1
−1 −1 3

⎞
⎠ .
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Here Lb� = 0 with b = (2, 1, 1). We have (−1, 2,−2) = (4,−1,−1)+(−5, 3,−1) ∈ L.
Therefore L = 〈(4,−1,−1), (−1, 2,−2), (−3,−1, 3)〉. Take

M =

⎛
⎝ 4 −1 −3

−1 2 −1
−1 −2 3

⎞
⎠ ,

which is a PCB matrix. Hence I(L) = I(M) = I(M) = (t41 − t2t3, t
2
2 − t1t

2
3, t

3
3 − t31t2).

In this example, the hull of a GPCB ideal is a PCB ideal.
Example 8.12. Let I = (f1, f2, f3) = (t41 − t22t3, t

3
2 − t1t3, t3 − t1t2) be the GPCB

ideal associated with the GPCB matrix

L =

⎛
⎝ 4 −1 −1

−2 3 −1
−1 −1 1

⎞
⎠ .

Here Lb� = 0 with b = (2, 3, 5). Let Q and M be the 3× 3 integer matrices

Q =

⎛
⎝ 1 1 0

1 2 0
2 2 1

⎞
⎠ , det(Q) = 1; M =

⎛
⎝ 1 0 −1

−1 2 −1
0 −1 1

⎞
⎠ , a CB matrix; LQ = M.

Hence I(L) = I(M) = I(M) = (t1 − t2, t
2
2 − t3, t3 − t1t2). In this example, the hull of

a GPCB ideal is a CB ideal.
Example 8.13. Let L = 〈(−2, 4,−2), (−2,−3, 4)〉, which is a rank 2 homogeneous

lattice with respect to the vector (5, 6, 7). Thus the lattice ideal I(L) of L is a graded
lattice ideal of dimension 1. By Theorem 8.2, I(L) is generated by a full set of critical
binomials and, by Theorem 8.6, I(L) is a CB ideal (here a PCB ideal). Concretely,

I(L) = ((t42 − t21t
2
3, t

2
1t

3
2 − t43): (t1t2t3)

∞) = (t41 − t2t
2
3, t

4
2 − t21t

2
3, t

2
1t

3
2 − t43).

To obtain the above generating set one may “complete” the two generators of L to a
CB (in fact a PCB) matrix M , namely,

M =

⎛
⎝ 4 −2 −2

−1 4 −3
−2 −2 4

⎞
⎠ ,

and apply Procedure 8.10. The degree of S/I is 14. If K = Q, then I = p1∩p2, where
p1, p2 are prime ideals of degree 7.

Example 8.14. Let L = 〈(2,−1,−1), (−3, 1,−1)〉, which is a rank 2 nonhomoge-
neous lattice. The lattice ideal I(L) of L is a nongraded lattice ideal of height 2. By
Theorem 8.6, I(L) cannot be a CB ideal. Concretely,

I(L) = ((t21 − t2t3, t2 − t31t3): (t1t2t3)
∞) = (t21 − t2t3, t1t

2
3 − 1).

If we apply Corollary 4.10 with v1 = −2, v2 = −5, and v3 = 1, we get that I(L) has
degree 6.

Acknowledgments. The authors would like to thank the referees for their care-
ful reading of the paper and for the improvements that they suggested.

D
ow

nl
oa

de
d 

05
/1

6/
14

 to
 1

47
.8

3.
13

2.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

426 L. O’CARROLL, F. PLANAS-VILANOVA, R. H. VILLARREAL

REFERENCES

[1] C. Alfaro and C. E. Valencia, On the sandpile group of the cone of a graph, Linear Algebra
Appl., 436 (2012), pp. 1154–1176.

[2] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer
Monogr. Math., 2nd ed., Springer, London, 2006.

[3] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics
Appl. Math. 9, SIAM, Philadelphia, 1994.

[4] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[5] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Rev. ed., Cambridge University Press,

Cambridge, 1997.
[6] W. Bruns and B. Ichim, Normaliz 2.0, Computing Normalizations of Affine Semigroups,

http://www.math.uos.de/normaliz (2008).
[7] B. W. Char, K. G. Geddes, G. H. Gonnet, and S. M. Watt, Maple V Language Reference

Manual, Springer-Verlag, Berlin, 1991.
[8] H. Corrales and C. E. Valencia, On the critical ideals of graphs, Linear Algebra Appl., 439

(2013), pp. 3870–3892.
[9] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New

York, 1992.
[10] D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J., 84 (1996), pp. 1–45.
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