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Abstract

Lipschitzian and kernel aggregation op-
erators with respect to the natural T -
indistinguishability operator ET and their
powers are studied. A t-norm T is proved
to be ET -lipschitzian, and is interpreted as a
fuzzy point and a fuzzy map as well. Given
an archimedean t-norm T with additive gen-
erator t, the quasi-arithmetic mean generated
by t is proved to be the more stable aggrega-
tion operator with respect to T .

Keywords: Aggregation Opoerator, T -
indistinguishability Operator, Lipschitzian,
Kernel.

1 Introduction

Lipschitzian aggregation operators have been studied
in [4] [5] [13] [14] by considering the usual met-
ric on the unit interval. In this paper we study
the lipschitzian condition of aggregation operators
with respect to the natural indistinguishability
operator ET and their powers Ep

T (see definitions
below) so that an aggregation operator h is EP

T -
lipschitzian when for all x1, x2, ..., xn, y1, y2, ..., yn ∈
[0, 1] T (Ep

T (x1, y1), ..., E
p
T (xn, yn)) ≤

ET (h(x1, x2, ..., xn), h(y1, y2, ..., yn)). This means
that from similar inputs we obtain similar aggrega-
tions. The use of ET and Ep

T assumes the election of
a specific t-norm T and therefore the selection of a
particular family of logics where the semantics of the
conjunction and the biimplication are given by T and
ET .

As it will be seen in this paper, when T is the
Lukasiewicz t-norm, the ET -lipschitzian condition co-
incides with the 1-lipschitzian condition with the usual
metric on [0,1] and the definition of [13] is recovered.
This is not a surprising result, due to the relation be-
tween ET and the usual metric on [0,1] in this case.

It is worth noticing the relation between the lips-
chitzian condition of an aggregation operator ET and
its extensionality with respect to the integral powers

T (

n times︷ ︸︸ ︷
ET , ..., ET ) (Proposition 3.9).

Among other results, it will be proved in this pa-
per that if T is a continuous archimedean t-norm
with an additive generator t and mt the quasi-
arithmetic mean generated by t (mt(x1, x2, ..., xn) =
t−1

(
t(x1)+t(x2)+...+t(xn)

n

)
), then mt is the more stable

aggregation operator with respect to T (Proposition
3.21).

Also the t-norm T is not only lipschitzian with respect
to ET , but it can be seen as a fuzzy point and a fuzzy
map as well (Proposition 3.23, Proposition 3.25) and
an aggregation operator h is greater than or equal to
T if and only if h is 1-ET -lipschitzian.

In the definition of ET -lipschitzianity we
replace the t-norm T by the minimum,
i.e. (Min(Ep

T (x1, y1), ..., E
p
T (xn, yn)) ≤

ET (h(x1, x2, ..., xn), h(y1, y2, ..., yn))), then we obtain
a generalization of the kernel aggregation operators
studied in [17] [13]. Again, if T is the Lukasiewicz
t-norm this definition is equivalent to the one given in
the above mentioned references.

2 Preliminaries

This section contains some results on t-norms and in-
distinguishability operators that will be needed later
on in the paper. Besides well known definitions and
theorems, the power Tn of a t-norm is generalized to
irrational exponents in Definition 2.3 and given explic-
itly for continuous archimedean t-norms in Proposition
2.4.

For the sake of simplicity we will assume continuity for
the t-norms throughout the paper.

Since a t-norm T is associative, we can extend it to an



n-ary operation in the standard way:

T (x) = x

T (x1, x2, ...xn) = T (x1, T (x2, ..., xn)).

In particular, following the notation in [18],

T (
n times︷ ︸︸ ︷

x, x, ..., x) will be denoted by x
(n)
T .

The n-th root x
( 1

n )

T of x with respect to T is defined
by

x
( 1

n )

T = sup{z ∈ [0, 1] | z
(n)
T ≤ x}

and for m,n ∈ N , x
( m

n )

T =
(
x

( 1
n )

T

)(m)

T
.

Lemma 2.1. [18] If k,m, n ∈ N, k, n 6= 0 then

x
( km

kn )

T = x
( m

n )

T .
Lemma 2.2. Let x1, ..., xn ∈ (0, 1] and n ∈ N .

T (x( 1
n )

1T
, ..., x

( 1
n )

nT ) 6= 0.

The powers x
( m

n )

T can be extended to irrational expo-
nents in a straightforward way.
Definition 2.3. If r ∈ R+ is a positive real number,
let {an}n∈N be a sequence of rational numbers with
limn→∞an = r. For any x ∈ [0, 1], the power x

(r)
T is

x
(r)
T = limn→∞x

(an)
T .

Continuity assures the existence of limit and inde-
pendence of limit from the selection of the sequence
{an}n∈N .
Proposition 2.4. Let T be an archimedean t-norm
with additive generator t, x ∈ [0, 1] and r ∈ R+. Then

x
(r)
T = t[−1](rt(x)).

Proof. Due to continuity of t we need to prove it only
for rational r.

If r is a natural number m, then trivially x
(m)
T =

t[−1](mt(x)).

If r = 1
n with n ∈ N , then x

( 1
n )

T = z with z
(n)
T = x or

t[−1](nt(z)) = x and x
( 1

n )

T = t[−1]
(

t(x)
n

)
.

For a rational number m
n ,

x
( m

n )

T =
(
x

( 1
n )

T

)(m)

T
= t[−1]

(
mt

(
x

( 1
n )

T

))
=

t[−1]

(
mt

(
t[−1]

(
t(x)
n

)))
= t[−1]

(m

n
t(x)

)
.

Theorem 2.5. Ling [15] A continuous t-norm T is
archimedean if and only if there exists a continuous
decreasing map t : [0, 1] → [0,∞] with t(1) = 0 such
that

T (x, y) = t[−1](t(x) + t(y))

where t[−1] stands for the pseudo-inverse of t defined
by

t[−1](x) =


1 if x < 0
t−1(x) if x ∈ [0, t(0)]
0 otherwise.

T is strict if t(0) = ∞ and non-strict otherwise.

t is called an additive generator of T and two additive
generators of the same t-norm differ only by a multi-
plicative constant.

Definition 2.6. The residuation
→
T of a t-norm T is

defined by

→
T (x|y) = sup{α ∈ [0, 1] | T (x, α) ≤ y).

Definition 2.7. The natural T -indistinguishability
operator ET associated to a given t-norm T is the fuzzy
relation on [0,1] defined by

ET (x, y) = T (
→
T (x|y),

→
T (y|x)) = Min(

→
T (x|y),

→
T (y|x)).

Example 2.8.

1. If T is an archimedean t-norm with additive gen-
erator t, then ET (x, y) = t−1(|t(x)− t(y)|) for all
x, y ∈ [0, 1].

2. If T is the Lukasiewicz t-norm, then ET (x, y) =
1− |x− y| for all x, y ∈ [0, 1].

3. If T is the Product t-norm, then ET (x, y) ={
Min(x,y)
Max(x,y) if x 6= y

1 otherwise.

4. If T is the Minimum t-norm, then ET (x, y) ={
Min(x, y) if x 6= y

1 otherwise.

ET is indeed a special kind of (one-dimensional) T -
indistinguishability operator (Definition 2.9) [3] and in
a logical context where T plays the role of the conjunc-
tion, ET is interpreted as the bi-implication associated
to T [7].

The general definition of T -indistinguishability opera-
tor is



Definition 2.9. Given a t-norm T , a T -
indistinguishability operator E on a set X is a
fuzzy relation E : X × X → [0, 1] satisfying for all
x, y, z ∈ X

1. E(x, x) = 1 (Reflexivity)

2. E(x, y) = E(y, x) (Symmetry)

3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Proposition 2.10. [21] Let µ be a fuzzy subset of X
and T a continuous t-norm. The fuzzy relation Eµ on
X defined for all x, y ∈ X by

Eµ(x, y) = ET (µ(x), µ(y))

is a T -indistinguishability operator on X.

Definition 2.11. Let E be a T -indistinguishability op-
erator on a set X. A fuzzy subset µ of X is extensional
with respect to E if and only if for all x, y ∈ X

T (E(x, y), µ(y)) ≤ µ(x).

Proposition 2.12. Let E be a T -indistinguishability
operator on a set X. A fuzzy subset µ of X is exten-
sional with respect to E if and only if for all x, y ∈ X

E(x, y) ≤ ET (µ(x), µ(y)).

Finally, let us recall the definition of aggregation op-
erator.

Definition 2.13. [4] An aggregation operator is a map
h :

⋃
n∈N [0, 1]n → [0, 1] satisfying

1. h(0, ..., 0) = 0 and h(1, ..., 1) = 1

2. h(x) = x ∀x ∈ [0, 1]

3. h(x1, ..., xn) ≤ h(y1, ..., yn) if x1 ≤ y1, ..., xn ≤
yn (monotonicity).

The restriction of h to [0, 1]n will be denoted by h(n)

so that a global aggregation operator h can be split
into the family of n-ary operators (h(n))n∈N .

3 ET -Lipschitzian and ET -kernel
aggregation operators

Lipschitzian and kernel aggregation operators with re-
spect to the natural T -indistinguishability operator
ET and their powers are a special kind of aggrega-
tion operators that generalize the definitions of [13],
[17]. Their interest is in the fact that they are stable
operators in the sense that the similarity between the
aggregation of two n-tuples is bounded by the similar-
ity between them.

It is interesting to point out that the lipschitzian
and kernel conditions are equivalent to extensionality
(Proposition 3.9, Proposition 3.27).

Among other results, it will be proved that a t-norm T
is ET -lipschitzian and moreover the maps T(n) can be
interpreted as fuzzy points of [0, 1]n and a fuzzy maps
from [0, 1]k to [0, 1]n−k.

Also quasi-arithmetic means are proved to be the more
stable aggregation operators.

Proposition 3.1. Let E be a T indistinguishability
operator on a set X. The fuzzy relation En defined by

En(x, y) = T (

n times︷ ︸︸ ︷
E(x, y), ...E(x, y)) ∀x, y ∈ X

is a T -indistinguishability operator.

The powers En
T of the natural T -indistinguishability

operators have been studied in relation with antonymy
and fuzzy partitions in [20].

Proposition 3.2. [11] Let E be a T -
indistinguishability operator on a set X. E

1
n is

a T -indistinguishability operator on X.

Corollary 3.3. Let E be a T -indistinguishability op-
erator on a set X. E

m
n is a T -indistinguishability op-

erator on X.

Proof. Propositions 3.1. and 3.2.

Corollary 3.4. Let ET be the natural T -
indistinguishability operator on [0,1] associated
to T . E

m
n

T is a T -indistinguishability operator.

Continuity of the t-norm T allows us to extend the
powers of a T -indistinguishability operator to positive
irrational numbers in the same way as in Definition
2.3.

Example 3.5.

1. If T is continuous archimedean with additive gen-
erator t, then Ep

T (x, y) = t[−1](p|t(x) − t(y)|) for
all x, y ∈ [0, 1].

2. If T is the Lukasiewicz t-norm, then Ep
T (x, y) =

Max(0, 1− p|x− y|) for all x, y ∈ [0, 1].

3. If T is the Product t-norm, then Ep
T (x, y) ={

Min(xp,yp)
Max(xp,yp) if x 6= y

1 otherwise.

4. If T is the Minimum t-norm, then Ep
T (x, y) =

ET (x, y) for all x, y ∈ [0, 1].

Proposition 3.6. Let T -be a t-norm and p, q > 0.
Ep

T ≤ Eq
T if and only if p ≥ q.



Definition 3.7. Let E be a T -indistinguishability op-
erator on [0, 1]. h is E-lipschitzian if and only if
∀n ∈ N , ∀x1, ..., xn, y1, ..., yn ∈ [0, 1]

T (E(x1, y1), ..., E(xn, yn)) ≤

ET (h(x1, ..., xn), h(y1, ..., yn)).

If E1, ..., En are T -indistinguishability operators de-
fined on the universes X1, ..., Xn respectively, there
are at least two natural ways to define a T -
indistinguishability operator on X1 × ...×Xn.

Proposition 3.8. Let E1, ..., En be T -
indistinguishability operators on X1, ..., Xn re-
spectively. Then the two fuzzy relations T (E1, ..., En)
and Min(E1, ..., En) on X1 × ... × Xn defined for all
(x1, ..., xn), (y1, , , , yn) ∈ X1 × ...×Xn by

T (E1, ..., En)((x1, ..., xn), (y1, , , , yn)) =

T (E1(x1, y1), ..., En(xn, yn))

and

Min(E1, ..., En)((x1, ..., xn), (y1, , , , yn)) =

Min(E1(x1, y1), ..., En(xn, yn))

are T -indistinguishability operators on X1 × ...×Xn.

Proposition 3.9. Let E be a T -indistinguishability
on [0, 1] and h an aggregation operator. h is E-
lipschitzian if and only if h(n) (as a fuzzy subset of

[0, 1]n) is extensional with respect to T (

n times︷ ︸︸ ︷
E, ..., E) for

all n ∈ N .

Proof. Proposition 2.12

Lemma 3.10. Let T be a continuous t-norm. The for
all x, y ∈ [0, 1] x ≥ y

T (x,
→
T (x|y) = y.

Next Proposition shows that a t-norm T is an ET -
lipschitzian aggregation operator.

Proposition 3.11. Let T be a continuous t-norm.
Then T is an ET -lipschitzian aggregation operator.

Note that if xi ≤ yi for all i =
1, ...n, then T (ET (x1, y1), ..., ET (xn, yn)) =
ET (T (x1, ..., xn), T (y1, ..., yn)). Since for every t-
norm different from the Minimum Ep

T < Eq
T if p > q,

we have that T 6= Min is not Ep
T -lipschitzian for

p < 1.

If T is a continuous archimedean t-norm, the Ep
T -

lipschitzian property translates to a classical lips-
chitzian condition.

Proposition 3.12. Let T be a continuous
archimedean t-norm with additive generator t,
p ∈ [0, 1] and h an aggregation operator. h is Ep

T if
and only if ∀n ∈ N , ∀x1, ..., xn, y1, ..., yn ∈ [0, 1]

p|t(x1)− t(y1)|+ ... + p|t(xn)− t(yn)| ≥

|t (h(x1, ..., xn))− t (h(y1, ..., yn)) | (1).

Last Proposition says that for all n ∈ N the map H :
[0, t(0)]n → [[0, t(0)] defined by

H(x1, ..., xn) = t(h(t−1(x1), ..., t−1(xn)))

is a p-lipschitzian map.

Also note that if T is the Lukasiewicz t-norm, then
(1) is the definition of the Lipschitz property in [13],
so that Definition 3.7 contains the one in [13] as a
particular case.

If an aggregation operator h is Ep
T -lipschitzian, it may

happen that for different values of n the correspond-
ing n-ary operators h(n) may satisfy the lipschitzian
conditions for different values of p ([4] p. 12).

Definition 3.13. An aggregation operator is sub
idempotent if and only if for all x ∈ [0, 1] and n ∈ N ,

h(
n times︷ ︸︸ ︷
x, ..., x) ≤ x

Proposition 3.14. Let T 6= Min be a t-norm, h a
sub idempotent aggregation operator and n ∈ N . If
h(n) is Ep

T -lipschitzian, then p ≥ 1
n .

Proof. If h(n) is Ep
T -lipschitzian, then in particular, for

x ∈ X

T ((

n times︷ ︸︸ ︷
Ep

T (1, x), ..., Ep
T (1, x) ≤ ET (h(

n times︷ ︸︸ ︷
1, ..., 1), h(

n times︷ ︸︸ ︷
x, ..., x))

and so

x
(pn)
T ≤ h(

n times︷ ︸︸ ︷
x, ..., x) ≤ x

which holds if and only if pn ≥ 1 or equivalently, if
and only of p ≥ 1

n

If T is a non-strict continuous archimedean t-norm the
sub idempotent property can be dropped.

Proposition 3.15. Let T be a non-strict continu-
ous archimedean t-norm with additive generator t, h
an aggregation operator and n ∈ N . If h(n) is Ep

T -
lipschitzian, then p ≥ 1

n .

Proof. Putting xi = 1 and yi = 0 for all i = 1, ..., n in
Proposition 3.12, we get

p|t(1)− t(0)|+ ... + p|t(1)− t(0)| ≥ |t(1)− t(0)|.



npt(0) ≥ t(0)

or

p ≥ 1
n

.

In [4] it has been proved that the arithmetic mean
is the only aggregation operator h whose n-ary maps
h(n) are 1

n -lipschitzian. Proposition 3.21 generalizes
this result to arbitrary quasi-arithmetic means.

Next Proposition is well known.

Proposition 3.16. [1], [18] m is a quasi-arithmetic
mean in [0,1] if and only if there exists a continuous
monotonic map t : [0, 1] → [−∞,∞] such that for all
n ∈ N and x1, ..., xn ∈ [0, 1]

m(x1, ...xn) = t−1

(
t(x1) + ... + t(xn)

n

)
.

m is continuous if and only if Ran t 6= [−∞,∞].

t will be called a generator of m and if m is generated
by t we will denote it by mt.

Lemma 3.17. [11] Let t, t′ : [0, 1] → [−∞,∞]
be two continuous strict monotonic maps with
Ran t, Ran t′ 6= [−∞,∞] differing only by a non-zero
multiplicative constant α (t′ = α t) and mt,mt′ the
quasi-arithmetic means generated by them respectively.
Then mt = mt′ .

Lemma 3.18. [11] Let t, t′ : [0, 1] → [−∞,∞]
be two continuous strict monotonic maps with
Ran t,Ran t′ 6= [−∞,∞] differing only by an addi-
tive constant and mt,mt′ the quasi-arithmetic means
generated by them respectively. Then mt = mt′ .

Lemma 3.19. [11] Let t : [0, 1] → [−∞,∞] be a con-
tinuous strict monotonic map. Then mt = m−t.

Proposition 3.20. [11] The map assigning to every
continuous Archimedean t-norm T with generator t the
mean mt generated by t is a bijection between the set
of continuous Archimedean t-norms and the set of con-
tinuous quasi-arithmetic means.

Proposition 3.21. Let T be a continuous
archimedean t-norm with additive generator t
and mt the quasi-arithmetic mean generated by t.

• (a) For every n ∈ N mt(n) is Ep
T -lipschitzian if

and only if p ≥ 1
n .

• (b) mt is the only aggregation operator fulfilling
(a)

In Proposition 3.11 we have proved that a t-norm T
is ET -lipschitzian. In fact, T(n) can also be seen as a
fuzzy point of [0, 1]n and a fuzzy map from [0, 1]n−1

into [0, 1].
Definition 3.22. Let E be a T -indistinguishability op-
erator on a set X and µ a fuzzy subset of X. µ is a
fuzzy point of X with respect to E if and only if for all
x, y ∈ X

T (µ(x), µ(y)) ≤ E(x, y).

Proposition 3.23. Let T be a continuous t-norm.
T(n) is a fuzzy point of [0, 1]n with respect to

T (

n times︷ ︸︸ ︷
ET , ..., ET ).

Proof. We have to prove that

T (T (x1, ..., xn), T (y1, ..., yn))

≤ T (ET (x1, y1), ..., ET (xn, yn))

which is an immediate consequence of

T (xi, yi) ≤ ET (xi, yi) for all i = 1, ..., n.

Definition 3.24. Let E,F be two T -
indistinguishability operators on X and Y respectively
and R a fuzzy set of X × Y (i.e.: R : X × Y → [0, 1]).
R is a fuzzy map from X to Y if and only if for all
x, x′ ∈ X, y, y′ ∈ Y

• (a) T (E(x, x′), F (y, y′), R(x, y)) ≤ R(x′, y′)

• (b) T (R(x, y), R(x, y′)) ≤ F (y, y′).

Proposition 3.25. Let T be a continuous t-norm.
T(n) is a fuzzy map from [0, 1]n−1 to [0, 1] endowed with

the T indistinguishability operators T (

n−1 times︷ ︸︸ ︷
ET , ..., ET ) and

ET respectively.

In fact, it can be proved in the same way that T(n)

is a fuzzy map from [0, 1]k to [0, 1]n−k (2 ≤ k ≤ n −
1) endowed with the T indistinguishability operators

T (

k times︷ ︸︸ ︷
ET , ..., ET ) and T (

n−k times︷ ︸︸ ︷
ET , ..., ET ) respectively.

Kernel aggregation operators are a family of aggre-
gation operators tightly related to lipschitzian ones.
They were introduced in [17] (see also [13], [4]). As
the lipschitzian condition, the condition for being a
kernel operator was related to the usual metric on the
unit interval. It can be extended using natural in-
distinguishability operators in the same way as it has
been done in this paper with the lipschitzian condi-
tion. Again, if the T norm is the Lukasiewicz one, the
original definition of [17] is recovered.



Definition 3.26. Let E be a T -indistinguishability op-
erator on [0,1] and h an aggregation operator. h is an
E-kernel aggregation operator if and only if ∀n ∈ N ,
∀x1, ..., xn, y1, ..., yn ∈ [0, 1]

Min(E(x1, y1), ..., E(xn, yn)) ≤

ET (h(x1, ..., xn), h(y1, ..., yn)).

Proposition 3.27. Let E be a T -indistinguishability
operator on [0,1] and h an aggregation operator. h is
an E-kernel aggregation operator if and only if h(n)

(as a fuzzy subset of [0, 1]n) is extensional with respect

to Min(

n times︷ ︸︸ ︷
E, ..., E) for all n ∈ N .

Proof. Proposition 2.12

For archimedean t-norms, the kernel property can be
written as in the follows.

Proposition 3.28. Let T be a continuous
archimedean t-norm with additive generator t,
p ∈ [0, 1] and h an aggregation operator. h is Ep

T -
kernel aggregation operator if and only if ∀n ∈ N ,
∀x1, ..., xn, y1, ..., yn ∈ [0, 1]

Max(p|t(x1)− t(y1)|, ..., p|t(xn)− t(yn)|) ≥

|t (h(x1, ..., xn))− t (h(y1, ..., yn)) | (2).

Proof.

Min(t−1(p|t(x1)− t(y1)|), ..., t−1(p|t(xn)− t(yn)|)) ≤

t−1(|t(h(x1, ..., xn))− t(h(x1, ..., xn))|)

t−1 (Max(p|t(x1)− t(y1)|, ..., p|t(xn)− t(yn)|)) ≤

t−1(|t(h(x1, ..., xn))− t(h(x1, ..., xn))|)

Max(p|t(x1)− t(y1)|, ..., p|t(xn)− t(yn)|) ≥

|t(h(x1, ..., xn))− t(h(x1, ..., xn))|.

If T is the Lukasiewicz t-norm and p = 1, then (2)
is the definition of the kernel aggregation operator in
[17].

4 Concluding Remarks

In this paper Lipschitzian and kernel aggregation oper-
ators with respect to the natural T -indistinguishability
operator ET and their powers have been studied.

It has been proved that a t-norm T is ET -lipschitzian,
and a fuzzy point and a fuzzy map as well.

Quasi-arithmetic means mt play an important role
since they are the more stable aggregation operator

with respect to T , meaning that the corresponding n-
ary operators mt(n) are E

1
n

T -lipschitzian maps.

Lipschitzian and kernel properties are not only inter-
esting for aggregation operators, but in almost any
part of fuzzy reasoning and they deserve a deep study.
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R. Mesiar, Aggregation Operators: Properties,
Classes and Construction Methods. In Mesiar,
Calvo, Mayor Eds. Aggregation Operators: New
Trends and Applications. Studies in Fuzziness and
Soft Computing. Springer, (2002), 3-104.

[5] T. Calvo, R. Mesiar, Stability of aggregation op-
erators. Proc EUSFLAT 2001, Leicester, (2001)
457-458.

[6] M. Demirci, Fundamentals of M-vague algebra
and M-vague arithmetic operations, International
Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 10 (2002) 25-75.
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